Effect of Consumer Demographics and Risk Factors on Online Purchase Behaviour in Malaysia
Abstract
:1. Introduction
2. Literature Review
2.1. SOR (Stimulus–Organism–Response) Model
2.2. Overview of Online Shopping Context in Malaysia
2.3. Customers’ Demographics and Online Purchase Behaviour
2.4. Perceived Risk and Online Purchasing Behaviour
3. Methodology
3.1. Research Instrument
3.2. Sample Selection and Data Collection
4. Data Analysis Results
4.1. Descriptive Analysis
4.2. Reliability and Validity
4.3. Path Coefficients
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Ji, R. Examining the Role of Online Reviews in Chinese Online Group Buying Context: The Moderating Effect of Promotional Marketing. Soc. Sci. 2018, 7, 141. [Google Scholar] [CrossRef]
- Lim, Y.J.; Osman, A.; Salahuddin, S.N.; Romle, A.R.; Abdullah, S. Factors influencing online shopping behavior: The mediating role of purchase intention. Procedia Econ. Financ. 2016, 35, 401–410. [Google Scholar] [CrossRef]
- Pristiwa, N.; Huang, W.T.; Ayuningtyas, D. The effect of internet user behavior on effective marketing via online group buying in Taiwan. Proc. AICS Soc. Sci. 2017, 7, 326–333. [Google Scholar]
- Sin, S.S.; Nor, K.M.; Al-Agaga, A.M. Factors Affecting Malaysian young consumers’ online purchase intention in social media websites. Procedia Soc. Behav. Sci. 2012, 40, 326–333. [Google Scholar] [CrossRef]
- Tang, L.; Wang, A.; Xu, Z.; Li, J. Online-Purchasing Behavior Forecasting with a Firefly Algorithm-based SVM Model Considering Shopping Cart Use. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 7967–7983. [Google Scholar] [CrossRef]
- Roy, G.; Datta, B.; Mukherjee, S. Role of electronic word-of-mouth content and valence in influencing online purchase behavior. J. Mark. Commun. 2018. [Google Scholar] [CrossRef]
- Rahman, M.S.; Mannan, M. Consumer online purchase behavior of local fashion clothing brands: Information adoption, e-WOM, online brand familiarity and online brand experience. J. Fash. Mark. Manag. Int. J. 2018, 22, 404–419. [Google Scholar] [CrossRef]
- Moon, M.A.; Javaid, B.; Kiran, M.; Awan, H.M.; Farooq, A. Consumer perceptions of counterfeit clothing and apparel products attributes. Mark. Intell. Plan. 2018, 36, 794–808. [Google Scholar] [CrossRef]
- Kawaf, F.; Tagg, S. Online shopping environments in fashion shopping: An SOR based review. Mark. Rev. 2012, 12, 161–180. [Google Scholar] [CrossRef]
- Peng, C.; Kim, Y.G. Application of the stimuli-organism-response (SOR) framework to online shopping behavior. J. Internet Commer. 2014, 13, 159–176. [Google Scholar] [CrossRef]
- Malaysian Communication and Multimedia Commission. Internet User Survey 2016; Malaysian Communications and Multimedia Commission: Putrajaya, Malaysia, 2017.
- Dhanapal, S.; Vashu, D.; Subramaniam, T. Perceptions on the challenges of online purchasing: A study from “baby boomers”, generation “X” and generation “Y” point of views. Contad. Y Adm. 2015, 60, 107–132. [Google Scholar]
- Ariff, M.S.M.; Sylvester, M.; Zakuan, N.; Ismail, K.; Ali, K.M. Consumer perceived risk, attitude and online shopping behaviour: Empirical evidence from Malaysia. In Proceedings of the 2014 International Conference on Manufacturing, Optimization, Industrial and Material Engineering, Jakarta, Indonesia, 29–31 March 2014. [Google Scholar]
- Farhana, N.; Khan, T.; Noor, S. Factors Affecting the Attitude Towards Online Shopping: An Empirical Study on Urban Youth in Bangladesh. Aust. Acad. Bus. Econ. Rev. 2017, 3, 224–234. [Google Scholar]
- Rana, S.; Tirtani, J. Effect of Education, Income and Gender on Impulsive Buying Among Indian Consumer an Empirical Study of Readymade Garment Customer. Eur. J. Bus. Manag. 2015, 7, 96–105. [Google Scholar] [CrossRef]
- Ghani, U.; Jan, F.A. An Exploratory Study of impulse buying of Urban Consumers in Peshawar. In Proceedings of the International Conference on business and Economics Research, Kuala Lumpur, Malaysia, 26–28 November 2010. [Google Scholar]
- Punj, G. Effect of consumer beliefs on online purchase behavior: The influence of demographic characteristics and consumption values. J. Interact. Mark. 2011, 25, 134–144. [Google Scholar] [CrossRef]
- Bianchi, C.; Andrews, L. Risk, trust, and consumer online purchasing behaviour: A Chilean perspective. Int. Mark. Rev. 2012, 29, 253–275. [Google Scholar] [CrossRef]
- Saw, S.L.; Goh, Y.N.; Isa, S.M. Exploring consumers’ intention toward online hotel reservations: Insights from Malaysia. Probl. Perspect. Manag. 2015, 13, 249–257. [Google Scholar]
- Masoud, E.Y. The effect of perceived risk on online shopping in Jordan. Eur. J. Bus. Manag. 2013, 5, 76–87. [Google Scholar]
- Orubu, O.F. The impact of perceived risk on willingness to buy in online markets. E3 J. Bus. Manag. Econ. 2016, 7, 13–18. [Google Scholar] [CrossRef]
- Thakur, R.; Srivastava, M. A study on the impact of consumer risk perception and innovativeness on online shopping in India. Int. J. Retail Distrib. Manag. 2015, 43, 148–166. [Google Scholar] [CrossRef]
- Hong, I.B.; Cha, H.S. The mediating role of consumer trust in an online merchant in predicting purchase intention. Int. J. Inf. Manag. 2013, 33, 927–939. [Google Scholar] [CrossRef]
- Zheng, L.; Favier, M.; Huang, P.; Coat, F. Chinese consumer perceived risk and risk relievers in e-shopping for clothing. J. Electron. Commer. Res. 2012, 13, 255–274. [Google Scholar]
- Subramanian, N.; Gunasekaran, A.; Yu, J.; Cheng, J.; Ning, K. Customer satisfaction and competitiveness in the Chinese E-retailing: Structural equation modeling (SEM) approach to identify the role of quality factors. Expert Syst. Appl. 2014, 41, 69–80. [Google Scholar] [CrossRef]
- Kumar, P.; Bajaj, R. Dimensions of perceived risk among students of high educational institutes towards online shopping in Punjab. J. Internet Bank. Commer. 2016, 21, 1–21. [Google Scholar]
- Erdil, S.D. Effects of customer brand perceptions on store image and purchase intention: An application in apparel clothing. Procedia Soc. Behav. Sci. 2015, 207, 196–205. [Google Scholar] [CrossRef]
- Tanadi, T.; Samadi, B.; Gharleghi, B. The Impact of Perceived Risks and Perceived Benefits to Improve an Online Intention among Generation-Y in Malaysia. Asian Soc. Sci. 2015, 11, 226–238. [Google Scholar] [CrossRef]
- Aghekyan-Simonian, M.; Forsythe, S.; Kwon, W.S.; Chattaraman, V. The role of product brand image and online store image on perceived risks and online purchase intentions for apparel. J. Retail. Consum. Serv. 2012, 19, 325–331. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, W.; Xu, Y.; Tan, G. Dimensions of consumers’ perceived risk and their influences on online consumers’ purchasing behavior. Commun. Inf. Sci. Manag. Eng. 2012, 2, 8–14. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Afthanorhan, W.M.A.W. A Comparison of Partial Least Square Structural Equation Modeling (PLS-SEM) and Covariance Based Structural Equation Modeling (CB-SEM) for Confirmatory Factor Analysis. Int. J. Eng. Sci. Innov. Technol. 2013, 2, 198–205. [Google Scholar]
- Brislin, R.W. Back-Translation for Cross-Cultural Research. J. Cross-Cult. Psychol. 1970, 1, 185–216. [Google Scholar] [CrossRef]
- Javadi, M.H.M.; Dolatabadi, H.R.; Nourbakhsh, M.; Poursaeedi, A.; Asadollahi, A.R. An analysis of factors affecting on online shopping behavior of consumers. Int. J. Mark. Stud. 2012, 4, 81–89. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Vernuccio, M.; Pagani, M.; Barbarossa, C.; Pastore, A. Antecedents of brand love in online network-based communities. A social identity perspective. J. Prod. Brand Manag. 2015, 24, 706–719. [Google Scholar] [CrossRef]
Authors | FR | PPR | TCR | PR | PsyR | SR | DR | ASR |
---|---|---|---|---|---|---|---|---|
Kumar and Bajaj [26] | √ | √ | √ | |||||
Erdil [27] | √ | √ | √ | √ | √ | |||
Tanadi et al. [28] | √ | √ | √ | √ | ||||
Aghekyan Simonian et al. [29] | √ | √ | √ | |||||
Zhang et al. [30] | √ | √ | √ | |||||
Zheng at al. [24] | √ | √ | √ | √ | √ | √ | √ | |
Arif et al. [13] | √ | √ | √ | √ | √ | √ | √ |
Variable | Sources |
---|---|
Financial Risk, Product Performance Risk | Kumar and Bajaj [26] |
Time or Convenience Risk | Ariff et al. [13], Zhang et al [30], Javadi et al. [34] |
Privacy Risk | Kumar and Bajaj [26], Ariff et al. [13] |
Psychological Risk | Kumar and Bajaj [26], Ariff et al. [13] |
Social Risk | Ariff et al. [13], Zhang et al. [30] |
Delivery Risk | Ariff et al. [13], Zhang et al. [30], Javadi et al. [34] |
After-Sale Risk | Zhang et al. [30] |
Online Purchasing Behaviour | Zhang et al. [30] |
N | % | N | % | ||||
---|---|---|---|---|---|---|---|
Age | Ethnicity | ||||||
20 years to 29 years old | 307 | 93.0 | Malay | 193 | 58.5 | ||
30 years to 39 years old | 23 | 7 | Chinese | 114 | 34.5 | ||
Total | 330 | 100.0 | Others | 23 | 7 | ||
Total | 330 | 100.0 | |||||
Occupation | |||||||
Government Sector | 17 | 5.2 | Gender | ||||
Private Sector | 107 | 32.4 | Male | 109 | 33.0 | ||
Self-employed | 18 | 5.5 | Female | 221 | 67.0 | ||
Students | 176 | 53.3 | Total | 330 | 100.0 | ||
Unemployed | 12 | 3.6 | |||||
Total | 330 | 100.0 | Education | ||||
SPM | 43 | 13.0 | |||||
Gender | STPM | 18 | 5.5 | ||||
Male | 109 | 33.0 | Diploma | 39 | 11.8 | ||
Female | 221 | 67.0 | Bachelor’s degree | 207 | 62.7 | ||
Total | 330 | 100.0 | Master’s degree | 19 | 5.8 | ||
Others | 4 | 1.2 | |||||
Total | 330 | 100 |
Variables | Items | CA | DG rho | CR | AVE | VIF |
---|---|---|---|---|---|---|
After-Sale Risk | 3 | 0.891 | 0.897 | 0.932 | 0.821 | 2.104 |
Delivery Risk | 3 | 0.892 | 0.894 | 0.933 | 0.823 | 2.006 |
Financial Risk | 3 | 0.680 | 0.728 | 0.816 | 0.597 | 1.657 |
Privacy Risk | 4 | 0.945 | 0.946 | 0.960 | 0.858 | 2.078 |
Product Performance Risk | 4 | 0.850 | 0.854 | 0.899 | 0.690 | 2.320 |
Psychological Risk | 3 | 0.761 | 0.763 | 0.862 | 0.676 | 2.332 |
Social Risk | 3 | 0.894 | 0.895 | 0.934 | 0.825 | 2.392 |
Time or Convenience Risk | 4 | 0.809 | 0.821 | 0.874 | 0.635 | 2.025 |
Online Purchasing Behaviour | 5 | 0.905 | 0.906 | 0.930 | 0.727 | - |
ASR | DER | FIR | PRR | PPR | PSR | SOR | TCR | OPB | ||
---|---|---|---|---|---|---|---|---|---|---|
ASR-1 | 0.894 | 0.535 | 0.322 | 0.567 | 0.481 | 0.401 | 0.406 | 0.514 | −0.486 | |
ASR-2 | 0.910 | 0.571 | 0.354 | 0.534 | 0.527 | 0.422 | 0.428 | 0.480 | −0.522 | |
ASR-3 | 0.915 | 0.565 | 0.278 | 0.525 | 0.474 | 0.424 | 0.398 | 0.486 | −0.574 | |
DER-1 | 0.502 | 0.922 | 0.273 | 0.427 | 0.507 | 0.460 | 0.467 | 0.390 | −0.391 | |
DER-2 | 0.600 | 0.929 | 0.289 | 0.559 | 0.518 | 0.419 | 0.436 | 0.435 | −0.424 | |
DER-3 | 0.569 | 0.869 | 0.213 | 0.463 | 0.514 | 0.467 | 0.390 | 0.327 | −0.391 | |
FIR-1 | 0.210 | 0.213 | 0.785 | 0.256 | 0.248 | 0.333 | 0.455 | 0.273 | −0.285 | |
FIR-2 | 0.305 | 0.266 | 0.700 | 0.454 | 0.320 | 0.218 | 0.341 | 0.394 | −0.274 | |
FIR-3 | 0.293 | 0.204 | 0.828 | 0.394 | 0.281 | 0.427 | 0.474 | 0.412 | −0.463 | |
PRR-1 | 0.440 | 0.485 | 0.399 | 0.781 | 0.497 | 0.372 | 0.436 | 0.446 | −0.424 | |
PRR-2 | 0.434 | 0.401 | 0.379 | 0.830 | 0.469 | 0.288 | 0.291 | 0.475 | −0.398 | |
PRR-3 | 0.536 | 0.430 | 0.397 | 0.857 | 0.478 | 0.383 | 0.307 | 0.570 | −0.403 | |
PRR-4 | 0.562 | 0.456 | 0.402 | 0.853 | 0.464 | 0.446 | 0.399 | 0.553 | −0.475 | |
PPR-1 | 0.491 | 0.554 | 0.355 | 0.560 | 0.928 | 0.511 | 0.380 | 0.479 | −0.486 | |
PPR-2 | 0.519 | 0.568 | 0.349 | 0.555 | 0.955 | 0.508 | 0.406 | 0.510 | −0.507 | |
PPR-3 | 0.486 | 0.471 | 0.306 | 0.460 | 0.910 | 0.484 | 0.381 | 0.431 | −0.457 | |
PPR-4 | 0.519 | 0.499 | 0.324 | 0.547 | 0.911 | 0.537 | 0.448 | 0.512 | −0.502 | |
PSR-1 | 0.392 | 0.429 | 0.358 | 0.432 | 0.470 | 0.775 | 0.473 | 0.519 | −0.519 | |
PSR-2 | 0.302 | 0.362 | 0.356 | 0.280 | 0.415 | 0.840 | 0.606 | 0.341 | −0.412 | |
PSR-3 | 0.421 | 0.415 | 0.370 | 0.382 | 0.464 | 0.850 | 0.635 | 0.370 | −0.498 | |
SOR-1 | 0.430 | 0.469 | 0.497 | 0.433 | 0.399 | 0.648 | 0.904 | 0.508 | −0.524 | |
SOR-2 | 0.401 | 0.418 | 0.509 | 0.398 | 0.416 | 0.606 | 0.915 | 0.439 | −0.499 | |
SOR-3 | 0.402 | 0.406 | 0.504 | 0.352 | 0.376 | 0.632 | 0.906 | 0.410 | −0.501 | |
TCR-1 | 0.429 | 0.289 | 0.262 | 0.489 | 0.435 | 0.371 | 0.340 | 0.725 | −0.340 | |
TCR-2 | 0.329 | 0.272 | 0.359 | 0.428 | 0.334 | 0.442 | 0.420 | 0.823 | −0.437 | |
TCR-3 | 0.362 | 0.315 | 0.430 | 0.466 | 0.366 | 0.381 | 0.362 | 0.815 | −0.418 | |
TCR-4 | 0.596 | 0.457 | 0.429 | 0.579 | 0.527 | 0.419 | 0.454 | 0.821 | −0.491 | |
OPB-1 | −0.586 | −0.535 | −0.334 | −0.508 | −0.547 | −0.529 | −0.500 | −0.537 | 0.782 | |
OPB-2 | −0.480 | −0.335 | −0.422 | −0.461 | −0.500 | −0.525 | −0.541 | −0.446 | 0.856 | |
OPB-3 | −0.524 | −0.391 | −0.372 | −0.433 | −0.444 | −0.467 | −0.433 | −0.458 | 0.892 | |
OPB-4 | −0.470 | −0.346 | −0.421 | −0.404 | −0.382 | −0.489 | −0.454 | −0.422 | 0.873 | |
OPB-5 | v0.409 | −0.255 | −0.431 | −0.367 | −0.351 | −0.478 | −0.443 | −0.403 | 0.855 | |
Fornell–Larcker Criterion | ||||||||||
ASR | 0.906 | |||||||||
DER | 0.615 | 0.907 | ||||||||
FIR | 0.350 | 0.286 | 0.773 | |||||||
PRR | 0.545 | 0.566 | 0.361 | 0.926 | ||||||
PPR | 0.597 | 0.535 | 0.475 | 0.574 | 0.831 | |||||
PSR | 0.459 | 0.494 | 0.441 | 0.551 | 0.452 | 0.822 | ||||
SOR | 0.453 | 0.475 | 0.554 | 0.437 | 0.435 | 0.692 | 0.908 | |||
TCR | 0.543 | 0.425 | 0.472 | 0.523 | 0.617 | 0.507 | 0.499 | 0.797 | ||
OPB | −0.584 | −0.444 | −0.464 | −0.528 | −0.514 | −0.586 | −0.559 | −0.536 | 0.852 | |
Heterotrait–Monotrait Ratio | ||||||||||
ASR | ||||||||||
DER | 0.688 | |||||||||
FIR | 0.446 | 0.374 | ||||||||
PRR | 0.594 | 0.616 | 0.451 | |||||||
PPR | 0.684 | 0.611 | 0.619 | 0.639 | ||||||
PSR | 0.548 | 0.595 | 0.577 | 0.644 | 0.546 | |||||
SOR | 0.507 | 0.531 | 0.695 | 0.474 | 0.494 | 0.841 | ||||
TCR | 0.635 | 0.491 | 0.613 | 0.595 | 0.741 | 0.634 | 0.580 | |||
OPB | 0.643 | 0.486 | 0.556 | 0.564 | 0.578 | 0.694 | 0.618 | 0.614 |
Coefficient | t-Value | p-Value | ƒ2 | Decision | |
---|---|---|---|---|---|
Age → OPB | −0.163 | 3.995 | 0.000 | 0.056 | Accept |
Education → OPB | −0.026 | 0.683 | 0.247 | 0.001 | Reject |
After-Sale Risk → OPB | −0.299 | 5.141 | 0.000 | 0.095 | Accept |
Delivery Risk → OPB | 0.068 | 1.024 | 0.153 | 0.005 | Reject |
Financial Risk → OPB | −0.101 | 2.057 | 0.020 | 0.014 | Accept |
Privacy Risk → OPB | −0.161 | 1.591 | 0.056 | 0.028 | Reject |
Product Performance Risk → OPB | −0.049 | 0.788 | 0.215 | 0.002 | Reject |
Psychological Risk → OPB | −0.198 | 3.069 | 0.001 | 0.038 | Accept |
Social Risk → OPB | −0.130 | 2.011 | 0.022 | 0.016 | Accept |
Time or Convenience Risk → OPB | −0.080 | 1.478 | 0.070 | 0.007 | Reject |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawi, N.C.; Al Mamun, A.; Hamsani, N.H.B.; Muhayiddin, M.N.b. Effect of Consumer Demographics and Risk Factors on Online Purchase Behaviour in Malaysia. Societies 2019, 9, 10. https://doi.org/10.3390/soc9010010
Nawi NC, Al Mamun A, Hamsani NHB, Muhayiddin MNb. Effect of Consumer Demographics and Risk Factors on Online Purchase Behaviour in Malaysia. Societies. 2019; 9(1):10. https://doi.org/10.3390/soc9010010
Chicago/Turabian StyleNawi, Noorshella Che, Abdullah Al Mamun, Nurul Hasliana Binti Hamsani, and Mohd Nazri bin Muhayiddin. 2019. "Effect of Consumer Demographics and Risk Factors on Online Purchase Behaviour in Malaysia" Societies 9, no. 1: 10. https://doi.org/10.3390/soc9010010
APA StyleNawi, N. C., Al Mamun, A., Hamsani, N. H. B., & Muhayiddin, M. N. b. (2019). Effect of Consumer Demographics and Risk Factors on Online Purchase Behaviour in Malaysia. Societies, 9(1), 10. https://doi.org/10.3390/soc9010010