Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-inflammatory and Antitumoral Properties
Abstract
:1. Introduction
2. Antioxidant Activity
3. Anti-Inflammatory Activity
4. Anticancer Activity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morales, R. The History, Botany and Taxonomy of the Genus Thymus. In Thyme, the Genus Thymus; Stahl-Biskup, E., Sáez, F., Eds.; Taylor & Francis: London, UK, 2002; ISBN 0415284880. [Google Scholar]
- Pereira, O.R.; Cardoso, S.M. Overview on Mentha and Thymus Polyphenols. Curr. Anal. Chem. 2013, 9, 382–396. [Google Scholar] [CrossRef] [Green Version]
- Horwath, A.B.; Grayer, R.J.; Keith-Lucas, D.M.; Simmonds, M.S.J. Chemical characterisation of wild populations of Thymus from different climatic regions in southeast Spain. Biochem. Syst. Ecol. 2008, 36, 117–133. [Google Scholar] [CrossRef]
- Kindl, M.; Blažeković, B.; Bucar, F.; Vladimir-Knežević, S. Antioxidant and anticholinesterase potential of six thymus species. Evidence-based Complement. Altern. Med. 2015, 2015, 403950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iauk, L.; Acquaviva, R.; Mastrojeni, S.; Amodeo, A.; Pugliese, M.; Ragusa, M.; Loizzo, M.R.; Menichini, F.; Tundis, R. Antibacterial, antioxidant and hypoglycaemic effects of Thymus capitatus (L.) Hoffmanns. et Link leaves’ fractions. J. Enzyme Inhib. Med. Chem. 2015, 30, 360–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozkan, G.; Kamiloglu, S.; Ozdal, T.; Boyacioglu, D.; Capanoglu, E. Potential use of Turkish medicinal plants in the treatment of various diseases. Molecules 2016, 21, 257. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Kubatka, P.; Uramova, S.; Kello, M.; Kajo, K.; Samec, M.; Jasek, K.; Vybohova, D.; Liskova, A.; Mojzis, J.; Adamkov, M.; et al. Anticancer Activities of Thymus vulgaris L. in Experimental Breast Carcinoma In Vivo and In Vitro. Int. J. Mol. Sci. 2019, 20, 1749. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Grulova, D.; Scognamiglio, M.; Snoussi, M.; Feo, V. Studies on Chemical Composition, Antimicrobial and Antioxidant Activities of Five Thymus vulgaris L. Essential Oils. Molecules 2015, 20, 12016–12028. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Salgueiro, L.; Miguel, M.G.; Faleiro, M.L. Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities. Curr. Pharm. Des. 2008, 14, 3120–3140. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Lagouge, M.; Larsson, N.-G. The role of mitochondrial DNA mutations and free radicals in disease and ageing. J. Intern. Med. 2013, 273, 529–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Rodríguez, C.; Cuadrado, E.; Riestra-Ayora, J.; Sanz-Fernández, R. Polyphenols protect against age-associated apoptosis in female rat cochleae. Biogerontology 2018, 19, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Mangge, H. Antioxidants, inflammation and cardiovascular disease. World J. Cardiol. 2014, 6, 462–477. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev. 2016, 2016, 17–19. [Google Scholar] [CrossRef] [Green Version]
- Guillaumet-Adkins, A.; Yañez, Y.; Peris-Diaz, M.D.; Calabria, I.; Palanca-Ballester, C.; Sandoval, J. Epigenetics and Oxidative Stress in Aging. Oxid. Med. Cell. Longev. 2017, 2017, 9175806. [Google Scholar] [CrossRef]
- Catarino, M.D.; Talhin, O.; Rabahi, A.; Silva, A.M.S.; Cardoso, S.M. The Anti-inflammatory Potential of Flavonoids: Mechanistic Aspects. In Studies in Natural Products Chemistry; Atta-ur-Rahman, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 65–99. [Google Scholar]
- Goldsby, R.A.; Kindt, T.J.; Osborne, B.A.; Kuby, J. Leukocyte Migration and Inflammation. In Kuby Immunology, 6th ed.; W.H. Freeman and Company: New York, NY, USA, 2007; pp. 327–349. [Google Scholar]
- Bisht, R.; Bhattacharya, S.; Jaliwala, Y.A. COX and LOX inhibitory potential of Abroma augusta and Desmodium gangeticum. J. Phytopharm. 2014, 3, 168–175. [Google Scholar]
- Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J.P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis. 2003, 62, 501–509. [Google Scholar] [CrossRef]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, E.A.; Sikora, A.G.; Ekmekcioglu, S. Molecular pathways: Inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin. Cancer Res. 2013, 19, 5557–5563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, G.A.; Cheng, R.Y.S.; Ridnour, L.A.; Basudhar, D.; Somasundaram, V.; McVicar, D.W.; Monteiro, H.P.; Wink, D.A. Inducible Nitric Oxide Synthase in the Carcinogenesis of Gastrointestinal Cancers. Antioxid. Redox Signal. 2017, 26, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, X. The role of microRNAs in liver cancer progression. Br. J. Cancer 2011, 104, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.F.; Lu, Y.J.; Wang, Z.G. MicroRNAs and apoptosis: Implications in the molecular therapy of human disease. Clin. Exp. Pharmacol. Physiol. 2009, 36, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Laulier, C.; Lopez, B.S. The secret life of Bcl-2: Apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutat. Res. Rev. Mutat. Res. 2012, 751, 247–257. [Google Scholar] [CrossRef]
- Esmaeili-Mahani, S.; Falahi, F.; Yaghoobi, M.M. Proapoptotic and antiproliferative effects of Thymus caramanicus on human breast cancer cell line (MCF-7) and its interaction with anticancer drug vincristine. Evidence-based Complement. Altern. Med. 2014, 2014, 893247. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-H.; Hsuan, K.-Y.; Chu, L.-Y.; Lee, C.-Y.; Tyan, Y.-C.; Chen, Z.-S.; Tsai, W.-C. Anticancer effects of Salvia miltiorrhiza alcohol extract on oral squamous carcinoma cells. Evidence-based Complement. Altern. Med. 2017, 2017. [Google Scholar] [CrossRef]
- Ye, Y.T.; Zhong, W.; Sun, P.; Wang, D.; Wang, C.; Hu, L.M.; Qian, J.Q. Apoptosis induced by the methanol extract of Salvia miltiorrhiza Bunge in non-small cell lung cancer through PTEN-mediated inhibition of PI3K/Akt pathway. J. Ethnopharmacol. 2017, 200, 107–116. [Google Scholar] [CrossRef]
- Aravindaram, K.; Yang, N.; Biotechnology, A. Anti-Inflammatory Plant Natural Products for Cancer Therapy. Rom. Biotechnol. Lett. 2010, 76, 1103–1117. [Google Scholar] [CrossRef] [Green Version]
- Cerella, C.; Sobolewski, C.; Dicato, M.; Diederich, M. Targeting COX-2 expression by natural compounds: A promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem. Pharmacol. 2010, 80, 1801–1815. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M.I. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol. 2013, 45, 2821–2831. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Tovar, I.; Sponza, S.; Asensio-S-Manzanera, M.C.; Novak, J. Contribution of the main polyphenols of Thymus mastichina subsp: mastichina to its antioxidant properties. Ind. Crops Prod. 2015, 66, 291–298. [Google Scholar] [CrossRef]
- Orłowska, M.; Pytlakowska, K.; Mrozek-Wilczkiewicz, A.; Musioł, R.; Waksmundzka-Hajnos, M.; Sajewicz, M.; Kowalska, T. A Comparison of Antioxidant, Antibacterial, and Anticancer Activity of the Selected Thyme Species by Means of Hierarchical Clustering and Principal Component Analysis. Acta Chromatogr. 2016, 28, 207–221. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Neto, R.T.; Silva, A.M.S.; Cardoso, S.M. Health-promoting effects of Thymus herba-barona, Thymus pseudolanuginosus, and Thymus caespititius decoctions. Int. J. Mol. Sci. 2017, 18, 1879. [Google Scholar] [CrossRef]
- Afonso, A.F.; Pereira, O.R.; Válega, M.; Silva, A.M.S.; Cardoso, S.M. Metabolites and biological activities of Thymus zygis, Thymus pulegioides, and Thymus fragrantissimus grown under organic cultivation. Molecules 2018, 23, 1514. [Google Scholar] [CrossRef] [Green Version]
- Galasso, S.; Pacifico, S.; Kretschmer, N.; Pan, S.P.; Marciano, S.; Piccolella, S.; Monaco, P.; Bauer, R. Influence of seasonal variation on Thymus longicaulis C. Presl chemical composition and its antioxidant and anti-inflammatory properties. Phytochemistry 2014, 107, 80–90. [Google Scholar] [CrossRef]
- Khouya, T.; Ramchoun, M.; Hmidani, A.; Amrani, S.; Harnafi, H.; Benlyas, M.; Zegzouti, Y.F.; Alem, C. Anti-inflammatory, anticoagulant and antioxidant effects of aqueous extracts from Moroccan thyme varieties. Asian Pac. J. Trop. Biomed. 2015, 5, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Ertas, A.; Boga, M.; Yilmaz, M.A.; Yesil, Y.; Tel, G.; Temel, H.; Hasimi, N.; Gazioglu, I.; Ozturk, M.; Ugurlu, P. A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Ind. Crops Prod. 2015, 67, 336–345. [Google Scholar] [CrossRef]
- Rezzoug, M.; Bakchiche, B.; Gherib, A.; Roberta, A.; Kilinçarslan, Ö.; Mammadov, R.; Bardaweel, S.K. Chemical composition and bioactivity of essential oils and Ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. from the Algerian Saharan Atlas. BMC Complement. Altern. Med. 2019, 19, 1–10. [Google Scholar]
- Righi, N.; Boumerfeg, S.; Fernandes, P.A.R.; Deghima, A.; Baali, F.; Coelho, E.; Cardoso, S.M.; Coimbra, M.A.; Baghiani, A. Thymus algeriensis Bioss & Reut: Relationship of phenolic compounds composition with in vitro/in vivo antioxidant and antibacterial activity. Food Res. Int. 2020, 136, 109500. [Google Scholar] [CrossRef] [PubMed]
- Jaouadi, R.; Cardoso, S.M.; Silva, A.M.S.; Ben Hadj Yahia, I.; Boussaid, M.; Zaouali, Y. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochem. Syst. Ecol. 2018, 77, 10–15. [Google Scholar] [CrossRef]
- Jaouadi, R.; Silva, A.M.S.; Boussaid, M.; Yahia, I.B.H.; Cardoso, S.M.; Zaouali, Y. Differentiation of phenolic composition among tunisian Thymus algeriensis boiss. Et reut. (Lamiaceae) populations: Correlation to bioactive activities. Antioxidants 2019, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Albano, S.M.; Miguel, M.G. Biological activities of extracts of plants grown in Portugal. Ind. Crops Prod. 2011, 33, 338–343. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P. Analysis of phenolic compounds in Greek plants of Lamiaceae family by HPLC. J. Appl. Res. Med. Aromat. Plants 2017, 6, 62–69. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Félix, L.M.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Polyphenol composition and biological activity of Thymus citriodorus and Thymus vulgaris: Comparison with endemic Iberian Thymus species. Food Chem. 2020, 331, 127362. [Google Scholar] [CrossRef] [PubMed]
- Pereira, O.R.; Macias, R.I.R.; Perez, M.J.; Marin, J.J.G.; Cardoso, S.M. Protective effects of phenolic constituents from Cytisus multiflorus, Lamium album L. and Thymus citriodorus on liver cells. J. Funct. Foods 2013, 5, 1170–1179. [Google Scholar] [CrossRef]
- Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C.F.R. Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT Food Sci. Technol. 2010, 43, 544–550. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Chemical characterization and bioactivity of extracts from Thymus mastichina: A thymus with a distinct salvianolic acid composition. Antioxidants 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, Â.S.F.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Lipophilic and hydrophilic antioxidants, lipid peroxidation inhibition and radical scavenging activity of two Lamiaceae food plants. Eur. J. Lipid Sci. Technol. 2010, 112, 1115–1121. [Google Scholar] [CrossRef]
- Ustuner, O.; Anlas, C.; Bakirel, T.; Ustun-alkan, F.; Sigirci, B.D.; Ak, S.; Akpulat, H.A.; Donmez, C.; Koca-caliskan, U. In Vitro Evaluation of Antioxidant, Anti-Inflammatory, Antimicrobial and Wound Healing Potential of Thymus Sipyleus Boiss. Subsp. Rosulans (Borbas) Jalas. Molecules 2019, 24, 3353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmi, N.; Scognamiglio, M.; Pacifico, S.; Mekhoukhe, A.; Madani, K.; Fiorentino, A.; Monaco, P. 1H NMR based metabolic profiling of eleven Algerian aromatic plants and evaluation of their antioxidant and cytotoxic properties. Food Res. Int. 2015, 76, 334–341. [Google Scholar] [CrossRef]
- El-Boshy, M.E.; Refaat, B.; Qasem, A.H.; Khan, A.; Ghaith, M.; Almasmoum, H.; Mahbub, A.; Almaimani, R.A. The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. Environ. Sci. Pollut. Res. 2019, 26, 22736–22746. [Google Scholar] [CrossRef]
- Kozics, K.; Klusová, V.; Srančíková, A.; Mučaji, P.; Slameňová, D.; Hunáková, Ľ.; Kusznierewicz, B.; Horváthová, E. Effects of Salvia officinalis and Thymus vulgaris on oxidant-induced DNA damage and antioxidant status in HepG2 cells. Food Chem. 2013, 141, 2198–2206. [Google Scholar] [CrossRef]
- Silva, A.M.; Martins-Gomes, C.; Souto, E.B.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M. Thymus zygis subsp. zygis an endemic portuguese plant: Phytochemical profiling, antioxidant, anti-proliferative and anti-inflammatory activities. Antioxidants 2020, 9, 482. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Schäfer, J.; Félix, L.M.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Thymus pulegioides L. as a rich source of antioxidant, anti-proliferative and neuroprotective phenolic compounds. Food Funct. 2018, 9, 3617–3629. [Google Scholar] [CrossRef]
- Hmidani, A.; Dine, E.; Bouhlali, T.; Khouya, T.; Ramchoun, M. Antioxidant, anti-inflammatory and anticoagulant activities of three Thymus species grown in southeastern Morocco. Futur. J. Pharm. Sci. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Khouya, T.; Ramchoun, M.; Hmidani, A.; El moualij, B.; Amrani, S.; Harnafi, H.; Benlyas, M.; Zegzouti, Y.F.; Nazih, E.H.; Ouguerram, K.; et al. Acute toxicity and antiproliferative and procoagulant activities of fractions derived from Thymus satureioides of the Moroccan High Atlas. South African J. Bot. 2019, 121, 568–576. [Google Scholar] [CrossRef]
- Debnath, T.; Kim, D.H.; Lim, B.O. Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 2013, 18, 7253–7270. [Google Scholar] [CrossRef]
- Lopez-Lazaro, M. Distribution and Biological Activities of the Flavonoid Luteolin. Mini-Reviews Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Lopez, N.; Gutierrez-Grijalva, E.P.; Ambriz-Perez, D.L.; Basilio Heredia, J. Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. Int. J. Mol. Sci. 2016, 17, 921. [Google Scholar] [CrossRef]
- Azab, A.; Nassar, A.; Azab, A.N. Anti-inflammatory activity of natural products. Molecules 2016, 21, 1321. [Google Scholar] [CrossRef]
- Sobeh, M.; Rezq, S.; Cheurfa, M.; Abdelfattah, M.A.O.; Rashied, R.M.H.; El-Shazly, A.M.; Yasri, A.; Wink, M.; Mahmoud, M.F. Thymus algeriensis and Thymus fontanesii: Chemical composition, in vivo antiinflammatory, pain killing and antipyretic activities: A comprehensive comparison. Biomolecules 2020, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Martins-Gomes, C.; Taghouti, M.; Schäfer, J.; Bunzel, M.; Silva, A.M.; Nunes, F.M. Chemical characterization and bioactive properties of decoctions and hydroethanolic extracts of Thymus carnosus Boiss. J. Funct. Foods 2018, 43, 154–164. [Google Scholar] [CrossRef]
- Taşkın, T.; Çam, M.E.; Taşkın, D.; Rayaman, E. In vitro and In vivo biological activities and phenolic characterization of Thymus praecox subsp. skorpilii var. skorpilii. J. Food Meas. Charact. 2019, 13, 536–544. [Google Scholar] [CrossRef]
- Chohan, M.; Naughton, D.P.; Jones, L.; Opara, E.I. An investigation of the relationship between the anti-inflammatory activity, polyphenolic content, and antioxidant activities of cooked and in vitro digested culinary herbs. Oxid. Med. Cell. Longev. 2012, 2012, 627843. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, J.R.; de Jesus Viegas, D.; Martins, A.P.R.; Carvalho, C.A.T.; Soares, C.P.; Camargo, S.E.A.; Jorge, A.O.C.; de Oliveira, L.D. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch. Oral Biol. 2017, 82, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Chen, J.; Hu, Y.; Lu, W.; Zhang, X.; Wang, R.; Chu, K. Rosmarinic Acid Mitigates Lipopolysaccharide-Induced Neuroinflammatory Responses through the Inhibition of TLR4 and CD14 Expression and NF-kappaB and NLRP3 Inflammasome Activation. Inflammation 2018, 41, 732–740. [Google Scholar] [CrossRef]
- Thammason, H.; Khetkam, P.; Pabuprapap, W.; Suksamrarn, A.; Kunthalert, D. Ethyl rosmarinate inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in alveolar macrophages. Eur. J. Pharmacol. 2018, 824, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Tuñón, M.J.; García-Mediavilla, M.V.; Sánchez-Campos, S.; González-Gallego, J. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Curr. Drug Metab. 2009, 10, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Chen, G.; Liu, M.; Ye, X.; Pan, Y.; Ge, J.; Mao, Y.; Wang, H.; Wang, J.; Xie, S. Anti-inflammatory effects of luteolin on experimental autoimmune thyroiditis in mice. Exp. Ther. Med. 2016, 12, 4049–4054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, K.; Ma, X.; Guo, S.; Zhang, T.; Zhao, G.; Wu, H.; Wang, X.; Deng, G. Anti-inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Induced Mastitis in Mice. Inflammation 2018, 41, 437–448. [Google Scholar] [CrossRef]
- Joe, Y.; Zheng, M.; Kim, H.J.; Kim, S.; Uddin, M.J.; Park, C.; Ryu, D.G.; Kang, S.S.; Ryoo, S.; Ryter, S.W.; et al. Salvianolic acid B exerts vasoprotective effects through the modulation of heme oxygenase-1 and arginase activities. J. Pharmacol. Exp. Ther. 2012, 341, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Eddouks, M.; Chattopadhyay, D.; Zeggwagh, N.A. Animal models as tools to investigate antidiabetic and anti-inflammatory plants. Evidence-based Complement. Altern. Med. 2012, 2012, 142087. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Ayoobi, F.; Aghaei, A.; Rahmani, M.; Taghipour, Z. Biomedicine & Pharmacotherapy Beneficial effects of Thymus vulgaris extract in experimental autoimmune encephalomyelitis: Clinical, histological and cytokine alterations. Biomed. Pharmacother. 2019, 109, 2100–2108. [Google Scholar] [CrossRef]
- Xin, S.; Yan, H.; Ma, J.; Sun, Q.; Shen, L. Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice. Med. Sci. Monit. 2016, 22, 5173–5180. [Google Scholar] [CrossRef] [Green Version]
- Gamaro, G.D.; Suyenaga, E.; Borsoi, M.; Lermen, J.; Pereira, P.; Ardenghi, P. Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats. ISRN Pharmacol. 2011, 2011, 451682. [Google Scholar] [CrossRef] [Green Version]
- Rahbardar, M.G.; Amin, B.; Mehri, S.; Mirnajafi-Zadeh, S.J.; Hosseinzadeh, H. Rosmarinic acid attenuates development and existing pain in a rat model of neuropathic pain: An evidence of anti-oxidative and anti-inflammatory effects. Phytomedicine 2018, 40, 59–67. [Google Scholar] [CrossRef]
- Jin, B.R.; Chung, K.S.; Cheon, S.Y.; Lee, M.; Hwang, S.; Noh Hwang, S.; Rhee, K.J.; An, H.J. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Charalabopoulos, A.; Davakis, S.; Lambropoulou, M.; Papalois, A.; Simopoulos, C.; Tsaroucha, A. Apigenin Exerts Anti-inflammatory Effects in an Experimental Model of Acute Pancreatitis by Down-regulating TNF-α. In Vivo 2019, 33, 1133–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrington, D.; Lall, N. Anticancer activity of certain herbs and spices on the cervical epithelial carcinoma (HeLa) cell line. Evidence-based Complement. Altern. Med. 2012, 2012, 564927. [Google Scholar] [CrossRef] [Green Version]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Gordo, J.; Máximo, P.; Cabrita, E.; Lourenço, A.; Oliva, A.; Almeida, J.; Filipe, M.; Cruz, P.; Barcia, R.; Santos, M.; et al. Thymus mastichina: Chemical Constituents and their Anti-cancer Activity. Nat. Prod. Commun. 2012, 7, 1491–1494. [Google Scholar] [CrossRef] [PubMed]
- Berdowska, I.; Zieliński, B.; Fecka, I.; Kulbacka, J.; Saczko, J.; Gamian, A. Cytotoxic impact of phenolics from Lamiaceae species on human breast cancer cells. Food Chem. 2013, 141, 1313–1321. [Google Scholar] [CrossRef]
- Fatma, G.; Issam, S.; Rawya, S.; Najla, H.; Ahmed, L. Antioxidant Potential of Four Species of Natural Product and Therapeutic Strategies for Cancer through Suppression of Viability in the Human Multiple Myeloma Cell Line U266. Biomed. Environ. Sci. 2019, 32, 22–33. [Google Scholar] [CrossRef]
- Desta, K.T.; Kim, G.S.; El-Aty, A.M.A.; Raha, S.; Kim, M.B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H.C.; Shim, J.H.; et al. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC–ESI–MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1053, 1–8. [Google Scholar] [CrossRef]
- Bozkurt, E.; Atmaca, H.; Kisim, A.; Uzunoglu, S.; Uslu, R.; Karaca, B. Effects of Thymus serpyllum Extract on Cell Proliferation, Apoptosis and Epigenetic Events in Human Breast Cancer Cells. Nutr. Cancer 2012, 64, 1245–1250. [Google Scholar] [CrossRef]
- Ramos, A.A.; Azqueta, A.; Pereira-Wilson, C.; Collins, A.R. Polyphenolic compounds from Salvia species protect cellular DNA from oxidation and stimulate DNA repair in cultured human cells. J. Agric. Food Chem. 2010, 58, 7465–7471. [Google Scholar] [CrossRef]
- Caprioli, G.; Maggi, F.; Bendif, H.; Miara, M.D.; Cinque, B.; Lizzi, A.R.; Brisdelli, F.; Celenza, G. Thymus lanceolatus ethanolic extract protects human cells from t-BHP induced oxidative damage. Food Funct. 2018, 9, 3665–3672. [Google Scholar] [CrossRef] [PubMed]
- Al-Menhali, A.; Al-Rumaihi, A.; Al-Mohammed, H.; Al-Mazrooey, H.; Al-Shamlan, M.; Al-Jassim, M.; Al-Korbi, N.; Hussein Eid, A. Thymus vulgaris (Thyme) Inhibits Proliferation, Adhesion, Migration, and Invasion of Human Colorectal Cancer Cells. J. Med. Food 2015, 18, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Pagani, A.; Pulze, L.; Albini, A.; Dallaglio, K.; Noonan, D.M.; Mortara, L. Orchestration of angiogenesis by immune cells. Front Oncol 2014, 4, 131. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, Q.; Al-Deeb, I.; Bader, A.; Hamam, F.; Saleh, K.; Abdulmajid, A. Anti-angiogenic activity of Middle East medicinal plants of the Lamiaceae family. Mol. Med. Rep. 2018, 18, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Jaksevicius, A.; Carew, M.; Mistry, C.; Modjtahedi, H.; Opara, E.I. Inhibitory effects of culinary herbs and spices on the growth of HCA-7 colorectal cancer cells and their COX-2 expression. Nutrients 2017, 9, 1051. [Google Scholar] [CrossRef] [Green Version]
- Ćebović, T.; Arsenijević, J.; Drobac, M.; Živković, J.; Šoštarić, I.; Maksimović, Z. Potential use of deodorised water extracts: Polyphenol-rich extract of Thymus pannonicus as a chemopreventive agent. J. Food Sci. Technol. 2018, 55, 560–567. [Google Scholar] [CrossRef] [Green Version]
Thymus Plants | Origin | Solvent Extraction (Major Components or TPC) | Results of Screen Assay | Ref |
---|---|---|---|---|
T. algeriensis | Algeria | EtOH (DHA, Rut, Epi) | DPPH (EC50, mg/mL) = 1.56 (EtOH), 1.68 (BHA), 0.002 (AA)/ABTS (EC50, mg/mL) = 1.74 (EtOH), 0.003 (Tlx), 0.001 (AA) | [45] |
Algeria | MeOH-H2O (RA, CaffeoylRA, Kaemp, Eri-Glc) | Plasma antioxidant capacity (DPPH, 800 mg/kg bw): 22% of Inhib (treated group)/6 % (non-treated group) Ferric reducing ability of plasma (FRAP, 800 mg/kg bw): 908 µM FeSO4 eq/mL (treated group)/405 µM FeSO4/mL (non-treated group) ↑ CAT activity; ↑ GSH levels (400 and 800 mg/kg bw); ↓ MDA levels (200 and 400 mg/kg bw) | [46] | |
Tunisia | MeOH (Carvacrol, RA, Tetramethyl-scutellarein, Kaemp-O-Hexu) | DPPH (EC50, μg/mL): 8.9–68.8/β-carot bleach (mg/mL): 0.03–1.81/FRAP (mmol Fe2+/L): 0.3–20.6 | [47,48] | |
T. atlanticus | Morocco | H2O (RA, CaffA, Quer) | DPPH (EC50, μg/mL) = 120 (H2O), 510 (Tlx)/FRAP (mmol Tlx/g extract) = 40.0 (H2O), 44.3 (Tlx) | [43] |
T. caespititius | Portugal | H2O (RA, Lut-O-Glr) | DPPH (EC50, μg/mL) = 13.8 (H2O), 6.90 (AA)/RP (EC50, μg/mL) = 39.3 (H2O), 16.30 (BHA)/β-carot bleach (EC50 μg/mL) = 6.1 (H2O), 0.4 (BHA) | [40] |
T. camphoratus | Portugal | DE, EA, n-but, H2O [TPC (GAE mg/mL) = 10.77 (DE), 10.21 (EA), 6.62 (n-but), 1.82 (H2O)] | DPPH (EC50 μg/mL): 3.1 (DE), 2.7 (EA), 6.4 (n-but), 3.2 (H2O)/O2- scav (EC50 μg/mL): 7.8 (DE), 11.0 (n-but), 9.5 (H2O) | [49] |
T. capitatus | Greece | 70% MeOH (RA, FA, Nar, Lut); H2O (RA, CaffA, Epi, Epig) | DPPH (mg TE/g DW): 56.2/ABTS (mg TE/g DW): 75.2/FRAP (mg TE/g DW): 76.1 | [50] |
T. carnosus | Portugal | DE, EA, n-but, H2O [TPC (GAE mg/mL) = 3.55 (DE), 5.97 (EA), 2.99 (n-but), 1.24 (H2O)] | DPPH (EC50 μg/mL): 4.0 (DE), 3.0 (EA), 5.2 (n-but), 3.6 (H2O)/O2- scav (EC50 μg/mL): 12.3 (DE), 8.9 (EA), 8.9 (n-but), 13.6 (H2O) | [49] |
T. citriodorus | Portugal | EtOH-H2O (RA, SA I, Lut-O-Hexu) H2O (RA, Lut-O-Hexu) | ABTS (EC50 mmol Tlx eq./g extract): 1.52 (EtOH-H2O); 1.21 (H2O)/OH scav (% inhib, 1 mg/mL): 37.97 (H2O) | [51] |
EtOH-H2O (RA, Lut-Glr Api-Glr) | Intracellular ROS formation on HepG2 cells (EtOH-H2O 50 μg/mL): ↓ 21% (at 5 μM potassium dichromate-stimulated cells); ↓ 20% (at 25 μM potassium dichromate-stimulated cells) | [52] | ||
T. fragrantissimus | Portugal | H2O (RA, Lut-O-Glr, CaffeoylRA) | DPPH (EC50, μg/mL) = 12.9 (H2O), 6.90 (AA)/RP (EC50, μg/mL) = 33.4 (H2O), 16.30 (BHA) | [41] |
T. herba-barona | Portugal | H2O (RA, Lut-O-Glr, CaffeoylRA, SA B) | DPPH (EC50, μg/mL) = 11.6 (H2O), 6.90 (AA)/RP (EC50, μg/mL) = 35.1 (H2O), 16.30 (BHA)/β-carot bleach (EC50 μg/mL) = > 26.7 (H2O), 0.4 (BHA) | [40] |
T. longicaulis | Croatia | EtOH (PC: THA = 5.41%; TFlav = 0.40%) | DPPH (EC50 μg/mL): 3.01 (EtOH), 0.66 (RA),0.73 (Lut), 1.67 (Tlx)/RP (EC50 μg/mL): 11.8 (EtOH), 2.67 (RA), 4.51 (Lut), 6.64 (Tlx)/TBARS (EC50 μg/mL): 34.3 (EtOH), 21.1 (RA), 2.03 (Lut) | [4] |
Italy | EtOH-H2O (RA, SA K, Lut-O-Hex, Quer-O-Hex) | DPPH (EC50, μg/mL): 9.5 (H2O-MeOH), 5.1 (Tlx)/ABTS (EC50, μg/mL): 9.5 (H2O-MeOH), 5.1 (Tlx)/RP (μM TE/g extract): 475 (H2O-MeOH)/ORAC (μM TE/g extract): 776.5 (H2O-MeOH) | [42] | |
T. mastichina | Portugal | DE, EA, n-but, H2O [TPC (GAE mg/mL) = 26.28 (DE), 19.50 (EA), 9.74 (n-but), 2.23 (H2O)] | DPPH (EC50 μg/mL): 2.7 (DE), 3.7 (EA), 4.0 (n-but), 3.9 (H2O)/O2- scav (EC50 μg/mL): 10.0 (DE), 4.9 (EA), 6.9 (n-but), 12.2 (H2O) | [49] |
MeOH, H2O [TPC (mg GAE/g) = 165.29; TF (mg CE/g) = 83.85] | DPPH (EC50 mg/mL): 0.69 (MeOH), 2.57 (H2O), 0.04 (Tlx)/RP (EC50 mg/mL): 0.23 (MeOH), 0.7 (H2O), 0.03 (Tlx)/β-carot bleach (EC50 mg/mL): 0.9 (MeOH), 0.003 (Tlx)/TBARS (EC50 mg/mL): 0.43 (MeOH), 0.004 (Tlx) | [53] | ||
Portugal | EtOH-H2O (RA, SA I) H2O (RA, SA I) | ABTS (EC50 mmol Tlx eq./g extract): 1.48 (EtOH-H2O); 0.96 (H2O)/OH scav (% inhib, 1 mg/mL): 43.22 (EtOH-H2O); 48.52 (H2O) | [54] | |
Spain | 50% MeOH (RA, CaffA, Lut, Lut-Glc) | DPPH (mg TE/g DW): 18–149/FRAP (mg TE/g dw): 30–154, different populations | [37] | |
T. nummularius | Turkey | MeOH (QA, RA, Lut, Kaemp) | DPPH (EC50 μg/mL): 5.73 (MeOH), 1.21 (RA), 47.1 (BHT), 19.6 (α-Toc)/ABTS (EC50 μg/mL): 7.1 (MeOH), 1.7 (RA), 10.9 (BHT)/β-carot bleach (EC50 μg/mL): 6.54 (MeOH), 12.1 (RA), 9.95 (BHT) | [44] |
T. praecox subsp. polytrichus, T. serpyllum subsp. serpyllum, T. striatus | Croatia | EtOH T. praecox [PC: THA = 54.39%; TFlav = 0.24%)/EtOH T. serpyllum (PC: THA = 4.36%; TFlav = 0.4%)/EtOH T. striatus (PC: THA = 3.35%; TFlav = 0.15%) | DPPH (EC50 μg/mL): 3.4 (T. praecox), 4.06 (T. striatus), 6.01 (T. serpyllum) 0.73 (Lut), 1.67 (Tlx)/RP (EC50 μg/mL): 15.1 (T. praecox), 14.7 (T. striatus), 14.5 (T. serpyllum), 2.67 (RA), 4.51 (Lut), 6.64 (Tlx)/TBARS (EC50 μg/mL): 78.7 (T. praecox), 63.0 (T. striatus), 80.0 (T. serpyllum), 21.1 (RA), 2.03 (Lut) | [4] |
T. pseudolanuginosus | Portugal | H2O (RA, Lut-O-Glr, SA B) | DPPH (EC50, μg/mL) = 10.9 (H2O), 6.90 (AA)/RP (EC50, μg/mL) = 32.2 (H2O), 16.30 (BHA)/β-carot bleach (EC50 μg/mL) = 2.4 (H2O), 0.4 (BHA) | [40] |
T. pulegioides | Croatia | EtOH (PC: THA = 6.17%; TFlav = 0.42%) | DPPH (EC50 μg/mL): 4.18 (EtOH), 0.66 (RA), 0.73 (Lut), 1.67 (Tlx)/RP (EC50 μg/mL): 11.4 (EtOH), 2.67 (RA), 4.51 (Lut), 6.64 (Tlx)/TBARS (EC50 μg/mL): 34.8 (EtOH), 21.1 (RA), 2.03 (Lut) | [4] |
Portugal | MeOH [TPC (mg GAE/g) = 210.49; TFlav (mg CE/g) = 128.24; TFlol (mg QE/g) = 126.74)] | DPPH (EC50 μg/mL): 680/RP (EC50 μg/mL): 490/β-carot bleach (EC50 μg/mL): 30/TBARS (EC50 μg/mL): 220 | [55] | |
Portugal | H2O (RA, Lut-O-Glr, CaffeoylRA) | DPPH (EC50, μg/mL) = 9.5 (H2O), 6.90 (AA)/RP (EC50, μg/mL) = 30.7 (H2O), 16.30 (BHA) | [41] | |
T. satureioides | Morocco | H2O (RA, CaffA, Quer) | DPPH (EC50, μg/mL) = 440 (H2O), 510 (Tlx)/FRAP (mmol Tlx/g extract) = 40.1 (H2O), 44.3 (Tlx) | [43] |
T. sipyleus Boiss. subsp. rosulans | Morocco | H2O [TPC (mg GAE/g) = 147.6 (decoction), 118.5 (infusion)] | DPPH (EC50, μg/mL) = 43.5 (decoction), 87.38 (infusion), 27.63 (AA) | [56] |
T. vulgaris | Algeria | MeOH-H2O (TPC (mg GAE/100g DW) = 81.5; RA, Flav) | DPPH (EC50 μg/mL): 1.78/ABTS (EC50 μg/mL): 0.69/OH scav (EC50 μg/mL): 0.24 | [57] |
Croatia | EtOH (PC: THA = 3.58%; TFlav = 0.24%) | DPPH (EC50 μg/mL): 5.6 (EtOH), 0.66 (RA),0.73 (Lut), 1.67 (Tlx)/RP (EC50 μg/mL): 14.1 (EtOH), 2.67 (RA), 4.51 (Lut), 6.64 (Tlx)/TBARS (EC50 μg/mL): 69.6 (EtOH), 21.1 (RA), 2.03 (Lut) | [4] | |
Egypt | EtOH [TPC (mg/g) = 212; TFlav (mg/g) = 85) | Protective antioxidant effects against lead intoxicated rats: ↓ GSH, GPx and CAT levels; ↑ MDA levels | [58] | |
Portugal | EtOH-H2O (RA, SA I, Lut-O-Hexu) H2O (RA, Lut-O-Hexu) | ABTS (EC50 mmol Tlx eq./g extract): 0.92 (EtOH-H2O); 0.79 (H2O)/OH scav (% inhib, 1 mg/mL): 9.58 (H2O) | [51] | |
Slovakia | H2O, MeOH (RA, SA K isomer, Lut-Hex, Eri-Glc) | DPPH (EC50, μg/mL): 44.7 (MeOH), 2.79 (Que)/ABTS (EC50 μg/mL): 13.8 (MeOH), 49.6 (H2O), 1.17 (Que) | [59] | |
T. zygis | Morocco | H2O (RA, CaffA, Quer) | DPPH (EC50, μg/mL): 440 (H2O), 510 (Tlx)/FRAP (mmol Tlx/g extract): 65.0 (H2O), 44.3 (Tlx) | [43] |
Portugal | H2O (RA, CaffeoylRA)] | DPPH (EC50, μg/mL) = 12.6 (H2O), 6.90 (AA)/RP (EC50, μg/mL) = 33.7 (H2O), 16.30 (BHA) | [41] | |
EtOH-H2O (RA, SA I, SA K) H2O (RA, Lut-O-Hex, Lut-O-Hexu) | ABTS (EC50 mmol Tlx eq./g extract): 1.08 (EtOH-H2O); 0.76 (H2O)/OH scav (% inhib, 1 mg/mL): 66.28 | [60] |
Plant Species | Origin | Solvent Extraction (Major Components or TPC) | Screen Assay | Effect | Ref |
---|---|---|---|---|---|
T. algeriensis | Algeria | MeOH-H2O (SA K, RA-Glc, Lut-Glr) | COX Inhib 5-LOX Inhib Carrageenan-Induced Hind-Paw Edema Model Carrageenan-Induced Leukocyte Migration (LeucM) | EC50 (μM) = COX-1: 12.4 (MeOH-H2O), 4.06 (dic); COX-2: 0.05 (MeOH-H2O), 0.06 (cel); 5-LOX: 2.7 (MeOH-H2O), 3.2 (zil) Paw Edema: MeOH-H2O (200 mg/kg) = ↓~15% LeucM: MeOH-H2O (600 mg/kg) = ↓62%; dic (20 mg/kg) = ↓39%; dexa (2 mg/kg) = ↓30% | [68] |
T. atlanticus | Morocco | H2O (RA, CaffA, Quer) | Croton oil-induced mice ear edema/Carrageenan-induced rat paw edema | At 900 µg/ear after 8 h: ↓ 84.6% (in comparison to ind)/At 50 mg/kg after 5 h: ↓ 9.5% (in comparison to ind) | [43] |
H2O (ND) | Inhib of denaturation of bovine serum albumin/Inhib of erythrocyte lysis | EC50 μg/mL: 122.9 (H2O), 86.07 (ind)/EC50 μg/mL: 93.28 (H2O), 97.83 (ind) | [62] | ||
T. caespititius | Portugal | H2O (RA, Lut-O-Glr) | 5-LOX inhib/NO scav | 5-LOX (EC50 μg/mL): 590.5 (H2O), 7.8 (AA)/NO● (EC50 μg/mL): 229.7 (H2O), 228.0 (AA) | [40] |
T. camphoratus, T. carnosus | Portugal | DE, EA, n-but [TPC (GAE mg/mL) = 10.77 (DE), 10.21 (EA), 6.62 (n-but)] | 5-LOX inhib | 5-LOX (EC50 μg/mL): 29.9 (DE), 27.4 (EA), 28.0 (n-but) (T. camphoratus); 23.5 (DE), 29.6 (EA), 18.3 (n-but) (T. carnosus) | [49] |
T. carnosus Boiss. | Portugal | H2O (SA A isomer, SA K) EtOH-H2O (SA A isomer, SA K, RA) | NO scav in LPS-induced macrophages | H2O (200 μg/mL) = ↓ 90% of control; EtOH-H2O (15 μg/mL) = ↓ 75% of control | [69] |
T. fontanesii | Algeria | MeOH-H2O (Carnosol, Salvigenin) | COX Inhib, 5-LOX Inhib/Carrageenan-Induced Hind-Paw Edema Model/Carrageenan-Induced Leukocyte Migration (LeucM) | EC50 (μM) = COX-1: 12.88 (MeOH-H2O), 4.06 (dic); COX-2: 0.04 (MeOH-H2O), 0.06 (cele); 5-LOX: 2.5 (MeOH-H2O), 3.2 (zil)/Paw Edema: MeOH-H2O (600 mg/kg) and dic (20 mg/kg) = ↓ 44%/LeucM: MeOH-H2O (600 mg/kg) = ↓ 52%; dic (20 mg/kg) = ↓ 39%; dexa (2 mg/kg) = ↓ 30% | [68] |
T. herba-barona | Portugal | H2O (RA, Lut-O-Glr, CaffeoylRA, SA B) | 5-LOX inhib/NO scav | 5-LOX (EC50 μg/mL): 840.8 (H2O), 7.8 (AA)/NO (EC50 μg/mL): 286.1 (H2O), 228.0 (AA) | [40] |
T. longicaulis | Italy | EtOH-H2O (RA, SA K, Lut-O-Hex, Quer-O-Hex) | COX-2 gene expression on THP-1 cells | At 50 µg/mL: ↓ 42% (extract collected in october) | [42] |
T. mastichina | Portugal | DE, EA, n-but [TPC (GAE mg/mL) = 10.77 (DE), 10.21 (EA), 6.62 (n-but)] | 5-LOX inhib | 5-LOX (EC50 μg/mL): 62.5 (DE), 53.1 (EA), 30.5 (n-but) | [49] |
T. praecox subsp. skorpilii var. skorpilii | Turkey | MeOH fraction (CA, Lut-O-Glc, 3-O-feruloylQA, Quer-O-Hex) | Carrageenan-induced paw edema | % inhib (MeOH f, 100 mg/kg) = 4.26% (1 h), 67.67% (2 h), 52.07% (3 h), 65.75% (4 h); % inhib (ind 5, mg/kg) = 34.04% (1 h), 88.65% (2 h), 82.89% (3 h), 88.63% (4 h) | [70] |
T. pseudolanuginosus | Portugal | H2O (RA, Lut-O-Glr, SA B) | 5-LOX inhib/NO scav | 5-LOX (EC50 μg/mL): 813.6 (H2O), 7.8 (AA)/NO (EC50 μg/mL): 298.98 (H2O), 228.0 (AA) | [40] |
T. satureioides | Morocco | H2O (ND) | Inhib of denaturation of bovine serum albumin/Inhib of erythrocyte lysis | EC50 μg/mL: 181.42 (H2O), 86.07 (ind)/ EC50 μg/mL: 204.41 (H2O), 97.83 (ind) | [62] |
H2O (RA, Lut-7-Glc, Hesp) | Croton oil-induced mice ear edema | At 900 µg/ear after 8 h: ↓ 29.7% (in comparison to ind) | [43] | ||
T. sipyleus Boiss. subsp. rosulans | Morocco | H2O [TPC (mg GAE/g) = 147.6 (decoction), 118.5 (infusion)] | Inhib of NO and TNF-α production in LPS-induced macrophages | At 50 μg/mL: ↓ NO: 50.86% (decoction) and 47.79% (infusion); ↓ TNFα: 49.76% (decoction) and 54.79% (infusion) | [56] |
T. vulgaris | United Kingdom | H2O [TPC (mg GAE/g herb) = ~20] | IL-8 release of PBLs prior to stimulation by TNFα and H2O2 | ↓IL-8 release in 35 and 37% upon stimulation of TNF-α and H2O2, respectively | [71] |
Brazil | PG (Thymol, Carvacrol, Linalool, Geranoil, Citral, Tannins, Organic acids, Flavonoids) | Cytokines production by LPS-induced RAW264.7 macrophages | IL-1β (pg/mL) = 28, 2, 2 at 25, 50 and 100 mg/mL extract, respectively; TNF-α (pg/mL) = 4466, 824, 12 at 25, 50 and 100 mg/mL extract, respectively | [72] | |
Egypt | EtOH [TPC (mg/g) = 212; TFlav (mg/g) = 85)] | Lead intoxicated rats | Protective effects against lead intoxicated rats: ↑ IL-1β, IL-6 and TNF-α levels; ↓ IL-10 and (IFN)-γ levels | [58] | |
T. zygis | Morocco | H2O (RA, CaffA, Lut-7-O-Glc) | Croton oil-induced mice ear edema/Carrageenan-induced rat paw edema | At 900 µg/ear after 8 h: ↓ 70% (in comparison to ind)/At 50 mg/kg after 5 h: ↓ 3.7% (in comparison to ind 10 mg/kg) | [43] |
H2O (ND) | Inhib of denaturation of bovine serum albumin/Inhib of erythrocyte lysis | EC50 μg/mL: 133.25 (H2O), 86.07 (ind)/EC50 μg/mL: 156.20 (H2O), 97.83 (ind) | [62] | ||
Portugal | EtOH-H2O (RA, SA I, SA K); H2O (RA, Lut-O-Glc, L-O-Hexu) | NO scav/Inhib of NO production in LPS-induced macrophages | NO scav (% inhib): 29.32 (H2O)/At 50 µg/mL: ~89% (EtOH), 48% (H2O-H2O) | [60] |
Plant Species | Origin | Solvent extraction (Major Components or TPC) | Screen Assay | Effect | Ref |
---|---|---|---|---|---|
T. algeriensis | NI | MeOH (GallicAc, VanillicAc) | CViab (MTT) on U266 cell line | CVI (%): ~15% | [90] |
T. caramanicus | Iran | EtOH-H2O (Carvacrol, Thymol, Borneol, Cymene) | CViab (MTT) on MCF-7 cells/Biochemical markers of apoptosis and cell proliferation (Western blot) | CVI (%) = MCF-7: 85% (EtOH-H2O), 85% (Vin), 65% (EtOH-H2O+Vin) after 40 µg/mL extract; MCF-7: 70% (EtOH-H2O), 85% (Vin), 50% (EtOH-H2O+Vin), after 80 µg/mL extract/Western blot = MCF-7 after 200 µg/mL extract: ↑ caspase 3, ↑ bax, ↓Bcl2, ↓ cyclin D1 | [30] |
T. carnosus Boiss. | Portugal | H2O (SA A isomer, SA K) EtOH-H2O (SA A isomer, SA K, RA) | CViab (Alamar Blue) on MCF-7, BT-474, RAW 264.7 | CVI (IC50 µg/mL, H2O) = MCF-7: 841.28 (24 h); 735.18 (48 h); BT-474: 533.87 (24 h); 603.86 (48 h); RAW 264.7: 603.07 (24 h); 223.22 (48 h); CVI (IC50 µg/mL, EtOH-H2O) = MCF-7: 86.87 (24 h); 74.37 (48 h); BT-474: 39.91 (24 h); 34.45 (48 h); RAW 264.7: 24.80 (24 h); 28.20 (48 h) | [69] |
T. citriodorus | Portugal | EtOH-H2O (RA, SA I, Lut-O-Hexu) H2O (RA, Lut-O-Hexu) | CViab (Alamar Blue) on Caco-2 and HepG2 | CVI (IC50 µg/mL, EtOH-H2O) = Caco-2: 128.2 (24 h); 114.6 (48 h); HepG2: > 500 (24 h); >500 (48 h); CVI (IC50 µg/mL, H2O) = Caco-2: 223.7 (24 h); 159.4 (48 h); HepG2: >500 (24 h); >500 (48 h) | [51] |
T. mastichina | Portugal | EtOH-H2O; H2O (RA, SA A isomer, Lut-Hex, Quer-Hex) | CViab (Alamar Blue) on Caco-2 and HepG2 cells | CVI (IC50 µg/mL, EtOH-H2O) = Caco-2: 71.18 (24 h); 51.30 (48 h); HepG2: 264.60 (24 h); 180.10 (48 h); CVI (IC50 µg/mL, H2O) = Caco-2: 220.60 (24 h); 95.65 (48 h); HepG2: >500 (24 h); 285.03 (48 h) | [54] |
T. pulegioides | Portugal | EtOH-H2O; H2O (RA, Lut-O-Hexu, Eri-O-Hexu, Chr-Hex) | CViab (Alamar Blue) on Caco-2 cells | CVI (IC50 µg/mL) = 82.25 (H2O); 105.44 (EtOH-H2O) | [61] |
T. satureioides | Morocco | H2O (RA, Lut-O-Glc) | CViab (MTT) on MCF-7 | CVI (IC50 µg/mL) = 37.5 ± 4.02 | [43] |
T. schimperi | Ethiopia | MeOH 70% (Lut, Lut-7-O-Glc, Lut-7-O-xy) | CViab (MTT) on AGS and HepG2 cells | CVI (IC50, µg/mL) = AGS: 88, after 50–100 µg/mL extract; HepG2: 326, after 200–400 µg/mL extract/CVI (%) = AGS: 38%, HepG2: 35% | [91] |
T. serpyllum (Ts), T. vulgaris (Tv) | Poland | Ts H2O (RA, CaffA, LAc, Lut-7-O-Glr, Lut-7-O-Rut, Eri-7-O-Rut) Tv H2O (RA, CaffA, Lut-7-O-Glr, Lut-7-O-Rut, Eri-7-O-Rut) | CViab (MTT) on MCF-7/Adr or wt cells | CVI (IC50, µg/mL) = MCF-7/Adr: 399 (Ts), 407 (Tv)/(IC50, mM) = MCF-7/Adr: 0.81 (RA), 1.26 (LAc), 1.81 (CaffA), 1.87 (Lut-7-O-Glr), 4.2 (Lut-7-O-Rut), 2.6 (Erd-7-O-Rut), 5.8 (Ab); MCF-7/wt: 0.74 (RA), 1.09 (Lut-7-O-Glr), 0.45 (LAc), 1.36 (CaffA), 18.2 (Lut-7-O-Rut), 1.71 (Eri-7-O-Rut), >1000 (Ab)CVI (%) = MCF-7/Adr: 60% (Ts, Tv), MCF-7/wt: 30% (Ts), 60% (Tv) at 500 mg/L extract/MCF-7/Adr: 86% (RA), 26% (Lut-7-O-Glr), MCF-7/wt: 92% (RA), 80% (LAc), 54% (Lut-7-O-Glr), at 1.25 mM | [89] |
T. serpyllum | Turkey | MeOH (ND) | CViab (XTT) on MCF-7 and MDA-MB-231 cells/DNA fragmentation/caspase 3/7 enzyme activity | CVI (%) MCF-7: ↓ 15, 32, 42.5%, and 71 at 10, 100, 500, and 1000 μg/mL of extract, respectively CVI (%) MDA-MB-231: ↓ 22, 33, 66, and 75 at 10, 100, 500, and 1000 μg/mL of extract, respectively DNA fragmentation of MDA-MB-231 cells: ↑ 16%, 30%, and 55% at 10, 100, 250, and 500 μg/mL extract Caspase 3/7 enzyme activity: ↑ 1.6-, 2.2-, 3-fold at 10, 250, 500 μg/mL | [92] |
T. vulgaris | Brazil | PG (Thymol, Carvacrol, Linalool, Geranoil, Citral, Tannins, Organic Acids, Flavonoids) | CViab (MTT, NR and CVA) on RAW 264.7, FMM-1, MCF-7 and HeLa cells | CVI, MTT (%) = RAW 264.7 and FMM-1: ↓ at 25, 50 and 100 mg/mL; MCF-7: ↓ at 50 and 100 mg/mL; HeLa cells: ↓ at 100 mg/mL extract CVI, NR (%) = RAW 264.7: ↓ at 50 and 100 mg/mL; FMM-1: ↓ no significant; MCF-7: ↓ at 25, 50 and 100 mg/mL; HeLa cells: ↓ at 50 and 100 mg/mL extract CVI, CVA (%): RAW 264.7: ↓ at 50 and 100 mg/mL; FMM-1: ↓ at 25, 50 and 100 mg/mL; MCF-7: ↓ at 100 mg/mL; HeLa cells: ↓ at 50 mg/mL extract | [72] |
Portugal | EtOH-H2O (RA, SA I, Lut-O-Hexu) H2O (RA, Lut-O-Hexu) | CViab (Alamar Blue) on Caco-2 and HepG2 cells | CVI (IC50 µg/mL, EtOH-H2O) = Caco-2: >500 (24 h); 442.45 (48 h); HepG2: 495.05 (24 h); 254.25 (48 h)/CVI (IC50 µg/mL, H2O) = Caco-2: >500 (24 h); 376.8 (48 h); HepG2: >500 (24 h); >500 (48 h) | [51] | |
Slovakia | EtOH (RA, SA K isomer, Lut-Hex, Api-Glr) | CViab (MTT), DNA damage (comet assay); enzymatic activity of tumor HepG2 cells | CVI (IC50, mg/mL) = 4.3/HepG2 DNA damage induced by H2O2 and DMNQ: ↓ after 0.5 mg/mL extracts, at 24 h/Enzymatic activity: ↑ GPx, ↓ SOD, after 1 and 0.5 mg/mL extracts | [59] | |
South Africa | Acet (ND) | CViab (XTT) on HeLa and non-tumor Vero cells | CVI (IC50, µg/mL) = HeLa: >200, 0.002 (AmD); Vero: 138, 0.027 (AmD) | [86] | |
T. zygis subsp. zygis | Portugal | EtOH-H2O (RA, SA I, SA K) | CViab (Alamar Blue) on Caco-2 and HepG2 cells | CVI (IC50 µg/mL) = Caco-2: 85.01 ± 15.10; HepG2: 82.19 ± 2.46 µg/mL | [60] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, A.F.; Pereira, O.R.; Cardoso, S.M. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-inflammatory and Antitumoral Properties. Antioxidants 2020, 9, 814. https://doi.org/10.3390/antiox9090814
Afonso AF, Pereira OR, Cardoso SM. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-inflammatory and Antitumoral Properties. Antioxidants. 2020; 9(9):814. https://doi.org/10.3390/antiox9090814
Chicago/Turabian StyleAfonso, Andrea F., Olívia R. Pereira, and Susana M. Cardoso. 2020. "Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-inflammatory and Antitumoral Properties" Antioxidants 9, no. 9: 814. https://doi.org/10.3390/antiox9090814