Recent Formulation Advances and Therapeutic Usefulness of Orally Disintegrating Tablets (ODTs)
Abstract
:1. Introduction
2. Preparation of ODTs for Immediate Release Applications
3. ODTs Formulated for Sustained or Controlled Release Applications
4. Taste Masking in ODTs
5. Desired Physical Attributes of ODTs
6. Perspectives on Current and Future Challenges and Opportunities with ODT Dosage Forms
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- FDA. Guidance for Industry: Orally Disintegrating Tablets; Food and Drug Administration Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2008. [Google Scholar]
- FDA. Guidance for Industry: Size, Shape and Other Physical Attributes of Generic Tablets and Capsules; Food and Drug Administration Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2015. [Google Scholar]
- Shrewsbury, R. Compounded Tablets. In Applied Pharmaceutics in Contemporary Compounding, 2nd ed.; Shrewsbury, R., Ed.; Morton Publishing Company: Englewood, CO, USA, 2008; pp. 183–188. [Google Scholar]
- Alderborn, G. Tablets and Compaction. In Aulton’s Pharmaceutics, The Design and Manufacture of Medicines, 4th ed.; Aulton, M.E., Taylor, K.M., Eds.; Churchill Livingstone Elsevier: London, UK, 2013; pp. 504–549. [Google Scholar]
- Bramwell, B.L. Compliance to treatment in elderly dysphagic patients: Potential benefits of alternative dosage forms. Int. J. Pharm. Compd. 2013, 11, 498–505. [Google Scholar]
- Refaat, A.; Sokar, M.; Ismail, F.; Boraei, N. A dual strategy to improve psychotic patients’ compliance using sustained release quetiapine oral disintegrating tablets. Acta Pharm. 2016, 66, 515–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alyami, H.; Koner, J.; Dahmash, E.Z.; Bowen, J.; Terry, D.; Mohammed, A.R. Microparticle surface layering through dry coating: Impact of moisture content and process parameters on the properties of orally disintegrating tablets. J. Pharm. Pharmacol. 2016, 69, 807–822. [Google Scholar] [CrossRef] [PubMed]
- Klancke, J. Dissolution Testing of Orally Disintegrating Tablets. Dissolut. Technol. 2003, 10, 6–8. [Google Scholar] [CrossRef]
- Temer, A.C.; Teixeira, M.T.; Sá-Barreto, L.L.; Gratieri, T.; Gelfuso, G.M.; Silva, I.C.; Taveira, S.F.; Marreto, R.; Cunha-Filho, M. Subdivision of Tablets Containing Modified Delivery Technology: The Case of Orally Disintegrating Tablets. J. Pharm. Innov. 2018, 13, 261–269. [Google Scholar] [CrossRef]
- Cunha-Filho, M.; Gelfuso, G.M.; Gratieri, T. Subdivision of modified-release tablets: State-of-the-art and future perspectives. Ther. Deliv. 2020, 11, 285–287. [Google Scholar] [CrossRef]
- Preis, M. Orally Disintegrating Films and Mini-Tablets—Innovative Dosage Forms of Choice for Pediatric Use. AAPS PharmSciTech 2015, 16, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Gulsun, T.; Ozturk, N.; Kaynak, M.S.; Vural, I.; Sahin, S. Preparation and evaluation of furosemide containing orally disintegrating tablets by direct compression. Pharmazie 2017, 72, 389–394. [Google Scholar]
- Amelian, A.; Przybyslawska, M.; Wilczewska, A.Z.; Basa, A.; Winnicka, K. Preparation and characterization of orally disintegrating loratadine tablets manufactured with co-processed mixtures. Acta Pol. Pharm. Drug Res. 2016, 73, 453–460. [Google Scholar]
- Adeoye, O.; Alebiowu, G. Evaluation of coprocessed disintegrants produced from tapioca starch and mannitol in orally disintegrating paracetamol tablet. Acta Pol. Pharm. Drug Res. 2014, 71, 803–811. [Google Scholar]
- Sarfraz, R.M.; Khan, H.U.; Mahmood, A.; Ahmad, M.; Maheen, S.; Sher, M. Formulation and Evaluation of Mouth Disintegrating Tablets of Atenolol and Atorvastatin. Indian J. Pharm. Sci. 2015, 77, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, Z.; Tang, H.; Ren, W.; Gao, X.; Sun, Y.; Zhao, Q.X.; Wang, F.; Liu, J. Development and optimization of levodopa and benzylhydrazine orally disintegrating tablets by direct compression and response surface methodology. Drug Dev. Ind. Pharm. 2020, 46, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Tawfeek, H.M.; Faisal, W.; Soliman, G.M. Enalapril maleate orally disintegrating tablets: Tableting and in vivo evaluation in hypertensive rats. Pharm. Dev. Technol. 2017, 23, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, H.; Taheri, A.; Homayouni, A. Design, optimization and evaluation of orally disintegrating tablet of meloxicam using its menthol based solid dispersions. Curr. Drug Deliv. 2016, 13, 1–9. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Suzuki, T.; Suga, Y.; Shimada, T.; Sai, Y. Examination of Aggregate Formation upon Simultaneous Dissolution of Methacrylic Acid Copolymer LD Enteric Coating Agent, Pharmaceutical Additives, and Zwitterionic Ingredients. Biol. Pharm. Bull. 2020, 43, 682–687. [Google Scholar] [CrossRef]
- Jang, D.-J.; Bae, S.K.; Oh, E. Coated dextrin microcapsules of amlodipine incorporable into orally disintegrating tablets for geriatric patients. Biomed. Pharmacother. 2014, 68, 1117–1124. [Google Scholar] [CrossRef]
- Patel, V.; Sarai, J. Synergistic Effect of Hydrotrope and Surfactant on Solubility and Dissolution of Atorvastatin Calcium: Screening Factorial Design Followed by Ratio Optimization. Indian J. Pharm. Sci. 2015, 76, 483–494. [Google Scholar]
- Sano, S.; Iwao, Y.; Kimura, S.; Noguchi, S.; Itai, S. Impact of active ingredients on the swelling properties of orally disintegrating tablets prepared by microwave treatment. Int. J. Pharm. 2014, 468, 234–242. [Google Scholar] [CrossRef]
- Tanaka, H.; Iwao, Y.; Izumikawa, M.; Sano, S.; Ishida, H.; Noguchi, S.; Itai, S. Preparation of Orally Disintegrating Tablets Containing Powdered Tea Leaves with Enriched Levels of Bioactive Compounds by Means of Microwave Irradiation Technique. Chem. Pharm. Bull. 2016, 64, 1288–1297. [Google Scholar] [CrossRef] [Green Version]
- Kande, K.V.; Kotak, D.J.; Degani, M.; Kirsanov, D.O.; Legin, A.; Devarajan, P.V. Microwave-Assisted Development of Orally Disintegrating Tablets by Direct Compression. AAPS PharmSciTech 2016, 18, 2055–2066. [Google Scholar] [CrossRef]
- Lai, F.; Pini, E.; Corrias, F.; Perricci, J.; Manconi, M.; Fadda, A.M.; Sinico, C. Formulation strategy and evaluation of nanocrystal piroxicam orally disintegrating tablets manufacturing by freeze-drying. Int. J. Pharm. 2014, 467, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Okuda, Y.; Okamoto, Y.; Irisawa, Y.; Okimoto, K.; Osawa, T.; Yamashita, S. Formulation Design for Orally Disintegrating Tablets Containing Enteric-Coated Particles. Chem. Pharm. Bull. 2014, 62, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Hu, S.; Sun, C.C. Expedited Development of Diphenhydramine Orally Disintegrating Tablet through Integrated Crystal and Particle Engineering. Mol. Pharm. 2017, 14, 3399–3408. [Google Scholar] [CrossRef] [PubMed]
- Duangjit, S.; Kraisit, P. Optimization of orodispersible and conventional tablets using simplex lattice design: Relationship among excipients and banana extract. Carbohydr. Polym. 2018, 193, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Allahham, N.; Fina, F.; Marcuta, C.; Kraschew, L.; Mohr, W.; Gaisford, S.; Basit, A.W.; Goyanes, A. Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron. Pharmaceutics 2020, 12, 110. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.N.; Tran, P.H.; Tran, T.T. Development of the modified Occimum gratissimum seeds for orally disintegrating tablets. Recent Pat. Drug Deliv. Formul. 2019, 13, 1. [Google Scholar] [CrossRef]
- Vanbillemont, B.; Everaert, H.; De Beer, T. New advances in the characterization of lyophilised orally disintegrating tablets. Int. J. Pharm. 2020, 579, 119153. [Google Scholar] [CrossRef]
- Stark, J.G.; Engelking, D.; McMahen, R.; Sikes, C.R. Pharmacokinetics of a Novel Amphetamine Extended-Release Orally Disintegrating Tablet in Children with Attention-Deficit/Hyperactivity Disorder. J. Child Adolesc. Psychopharmacol. 2017, 27, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Childress, A.; Newcorn, J.; Stark, J.G.; McMahen, R.; Tengler, M.; Sikes, C.R. A Single-Dose, Single-Period Pharmacokinetic Assessment of an Extended-Release Orally Disintegrating Tablet of Methylphenidate in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. J. Child Adolesc. Psychopharmacol. 2016, 26, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Elwerfalli, A.M.; Al-Kinani, A.A.; Alany, R.G.; Elshaer, A. Nano-engineering chitosan particles to sustain the release of promethazine from orodispersables. Carbohydr. Polym. 2015, 131, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Elwerfalli, A.; Ghanchi, Z.; Rashid, F.; Alany, R.; Elshaer, A. New Generation of Orally Disintegrating Tablets for Sustained Drug Release: A Propitious Outlook. Curr. Drug Deliv. 2015, 12, 652–667. [Google Scholar] [CrossRef] [PubMed]
- Howden, C.W. Update on Dual Delayed-Release PPI Formulations. Gastroenterol. Hepatol. 2010, 6, 417–419. [Google Scholar]
- Kukulka, M.; Nudurupati, S.; Perez, M.C. Bioavailability, safety, and pharmacodynamics of delayed-release dexlansoprazole administered as two 30 mg orally disintegrating tablets or one 60 mg capsule. Ther. Adv. Gastroenterol. 2016, 9, 770–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldfield, E.C.; Parekh, P.J.; Johnson, D.A. Dexlansoprazole: Delayed-release orally disintegrating tablets for the treatment of heartburn associated with non-erosive gastroesophageal reflux disease and the maintenance of erosive esophagitis. Expert Rev. Gastroenterol. Hepatol. 2016, 10, 1083–1089. [Google Scholar] [CrossRef]
- Cho, C.-H.; Min, J.-H.; Hwang, K.-M.; Park, E.-S. Development of sustained-release microparticles containing tamsulosin HCl for orally disintegrating tablet using melt-adsorption method. Drug Deliv. Transl. Res. 2018, 8, 552–564. [Google Scholar] [CrossRef]
- Shiino, K.; Oshima, T.; Sonoda, R.; Kimura, S.-I.; Itai, S.; Iwao, Y. Controlled-Release Fine Particles Prepared by Melt Adsorption for Orally Disintegrating Tablets. Chem. Pharm. Bull. 2019, 67, 1152–1159. [Google Scholar] [CrossRef] [Green Version]
- AlShehri, S.M.; Park, J.-B.; Alsulays, B.B.; Tiwari, R.; Almutairy, B.; Alshetaili, A.S.; Morott, J.; Shah, S.; Kulkarni, V.; Majumdar, S.; et al. Mefenamic acid taste-masked oral disintegrating tablets with enhanced solubility via molecular interaction produced by hot melt extrusion technology. J. Drug Deliv. Sci. Technol. 2015, 27, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Lou, H.; Liu, M.; Qu, W.; Hu, Z.; Brunson, E.; Johnson, J.; Almoazen, H. Evaluation of Chlorpheniramine Maleate microparticles in orally disintegrating film and orally disintegrating tablet for pediatrics. Drug Dev. Ind. Pharm. 2013, 40, 910–918. [Google Scholar] [CrossRef]
- Brniak, W.; Maślak, E.; Jachowicz, R. Orodispersible films and tablets with prednisolone microparticles. Eur. J. Pharm. Sci. 2015, 75, 81–90. [Google Scholar] [CrossRef]
- Cantor, S.L.; Khan, M.A.; Gupta, A. Development and optimization of taste-masked orally disintegrating tablets (ODTs) of clindamycin hydrochloride. Drug Dev. Ind. Pharm. 2014, 41, 1–9. [Google Scholar] [CrossRef]
- Ogata, T.; Tanaka, D.; Ozeki, T. Enhancing the solubility and masking the bitter taste of propiverine using crystalline complex formation. Drug Dev. Ind. Pharm. 2013, 40, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Matsui, R.; Uchida, S.; Namiki, N. Combination Effect of Physical and Gustatory Taste Masking for Propiverine Hydrochloride Orally Disintegrating Tablets on Palatability. Biol. Pharm. Bull. 2015, 38, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, S.-I.; Uchida, S.; Kanada, K.; Namiki, N. Effect of granule properties on rough mouth feel and palatability of orally disintegrating tablets. Int. J. Pharm. 2015, 484, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Bin Liew, K.; Tan, Y.T.F.; Peh, K.K. Taste-masked and affordable donepezil hydrochloride orally disintegrating tablet as promising solution for non-compliance in Alzheimer’s disease patients. Drug Dev. Ind. Pharm. 2014, 41, 583–593. [Google Scholar] [CrossRef] [PubMed]
- Pimparade, M.B.; Morott, J.T.; Park, J.-B.; Kulkarni, V.I.; Majumdar, S.; Murthy, S.N.; Lian, Z.; Pinto, E.; Bi, V.; Dürig, T.; et al. Development of taste masked caffeine citrate formulations utilizing hot melt extrusion technology and in vitro–in vivo evaluations. Int. J. Pharm. 2015, 487, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preis, M.; Grother, L.; Axe, P.; Breitkreutz, J.; Breitkreutz, J. In-vitro and in-vivo evaluation of taste-masked cetirizine hydrochloride formulated in oral lyophilisates. Int. J. Pharm. 2015, 491, 8–16. [Google Scholar] [CrossRef]
- Ge, Z.; Yang, M.; Wang, Y.; Shan, L.; Gao, C. Preparation and evaluation of orally disintegrating tablets of taste masked phencynonate HCl using ion-exchange resin. Drug Dev. Ind. Pharm. 2014, 41, 934–941. [Google Scholar] [CrossRef]
- Yoshida, M.; Hazekawa, M.; Haraguchi, T.; Uchida, T. Evaluation of the palatabilities in 10 different famotidine orally disintegrating tablets by combination of disintegration device and taste sensor. Drug Dev. Ind. Pharm. 2014, 41, 1387–1392. [Google Scholar] [CrossRef]
- Hesari, Z.; Shafiee, A.; Hooshfar, S.; Mobarra, N.; Mortazavi, S.A. Formulation and Taste Masking of Ranitidine Orally Disintegrating Tablet. Iran J. Pharm. Res. IJPR 2016, 15, 677–686. [Google Scholar]
- Sotoyama, M.; Uchida, S.; Tanaka, S.; Hakamata, A.; Odagiri, K.; Inui, N.; Watanabe, H.; Namiki, N. Citric Acid Suppresses the Bitter Taste of Olopatadine Hydrochloride Orally Disintegrating Tablets. Biol. Pharm. Bull. 2017, 40, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Hu, S.; Sun, C.C. Expedited development of a high dose orally disintegrating metformin tablet enabled by sweet salt formation with acesulfame. Int. J. Pharm. 2017, 532, 435–443. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, R.; Banbury, S.; Crowley, K.J. Orally Disintegrating Tablets. The Effect of Recent FDA Guidance on ODT Technologies and Applications. Pharm Tech. 2009, 5, 1–6. [Google Scholar]
- Ikeuchi-Takahashi, Y.; Ito, S.; Itokawa, A.; Ota, M.; Onuki, Y.; Hidaka, S.; Onishi, H. Preparation and evaluation of orally disintegrating tablets containing taste masked microparticles of acetaminophen. Pharmazie 2020, 75, 2–6. [Google Scholar] [PubMed]
- Conceição, J.; Adeoye, O.; Cabral-Marques, H.; Concheiro, A.; Alvarez-Lorenzo, C.; Lobo, J.M.S. Orodispersible Carbamazepine/Hydroxypropyl-β-Cyclodextrin Tablets Obtained by Direct Compression with Five-in-One Co-processed Excipients. AAPS PharmSciTech 2020, 21, 39. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Shan, X.; Chen, S.; Sun, X.; Song, P.; Zhao, R.; Hu, L. Preparation and evaluation of novel multi-channel orally disintegrating tablets. Eur. J. Pharm. Sci. 2020, 142, 105108. [Google Scholar] [CrossRef]
- Koner, J.S.; Rajabi-Siahboomi, A.R.; Missaghi, S.; Kirby, D.J.; Perrie, Y.; Ahmed, J.; Mohammed, A.R. Conceptualisation, Development, Fabrication and In Vivo Validation of a Novel Disintegration Tester for Orally Disintegrating Tablets. Sci. Rep. 2019, 9, 12467–12469. [Google Scholar] [CrossRef]
Challenges | Clinical Opportunities | Future of ODTs |
---|---|---|
Limited or very low aqueous solubility of new drugs or APIs (active pharmaceutical ingredients) may pose significant challenges when formulated as ODTs | ODTs can be formulated for marketed drugs which currently do not have a commercially available ODT dosage form (especially for pediatric and geriatric patients) | 3D printing technology advancements will advance the creation of personalized or patient specific ODTs |
ODTs of complex biological drugs (proteins, peptides etc.) because of their inherent unstable nature and degradation in the harsh environment of the GI tract would need to be overcome by developing ODT matrices that protect the drug | Rapid onset of action of ODT dosage forms make them ideal for acute and chronic pain purposes | Controlled or sustained release ODTs present unique opportunities for expanding the therapeutic benefits offered by ODTs |
Drug combination ODTs (bilayer ODTs) can result in financial savings for patients and also have the benefit of serving as personalized medicine | Research investigating (a) the use of novel materials for taste masking & (b) more relevant testing of ODT disintegration times & disintegration media will continue to evolve |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinwala, M. Recent Formulation Advances and Therapeutic Usefulness of Orally Disintegrating Tablets (ODTs). Pharmacy 2020, 8, 186. https://doi.org/10.3390/pharmacy8040186
Chinwala M. Recent Formulation Advances and Therapeutic Usefulness of Orally Disintegrating Tablets (ODTs). Pharmacy. 2020; 8(4):186. https://doi.org/10.3390/pharmacy8040186
Chicago/Turabian StyleChinwala, Maimoona. 2020. "Recent Formulation Advances and Therapeutic Usefulness of Orally Disintegrating Tablets (ODTs)" Pharmacy 8, no. 4: 186. https://doi.org/10.3390/pharmacy8040186
APA StyleChinwala, M. (2020). Recent Formulation Advances and Therapeutic Usefulness of Orally Disintegrating Tablets (ODTs). Pharmacy, 8(4), 186. https://doi.org/10.3390/pharmacy8040186