Porphyry Copper: Revisiting Mineral Resource Assessment Predictions for the Andes
Abstract
:1. Introduction
2. Background: Porphyry Copper Assessment of the Andes
3. Porphyry Copper Discoveries in the Andes (2005–2020)
3.1. Data Sources
3.2. Analysis
4. Discussion
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, D.A.; Menzie, W.D. Quantitative Mineral Resource Assessments—An Integrated Approach; Oxford University Press: New York, NY, USA, 2010; p. 219. [Google Scholar]
- Johnson, K.M.; Hammarstrom, J.M.; Zientek, M.L.; Dicken, C.L. Estimate of undiscovered copper resources of the world, 2013. U.S. Geol. Surv. Fact Sheet 2014, 3004, 2014. [Google Scholar] [CrossRef] [Green Version]
- Dicken, C.L.; Dunlap Pamela Parks, H.L.; Hammarstrom, J.M.; Zientek, M.L. Spatial Database for A Global Assessment of Undiscovered Copper Resources; Scientific Investigations Report 2010–5090–Z; U.S. Geological Survey: Reston, VA, USA, 2016; p. 29. [Google Scholar] [CrossRef] [Green Version]
- Hammarstrom, J.M.; Zientek, M.L.; Parks, H.L.; Dicken, C.L.; The, U.S. Geological Survey Global Copper Mineral Resource Assessment Team. Assessment of Undiscovered Copper Resources of the World, 2015 (ver.1.1, 24 May 2019); Scientific Investigations Report 2018–5160; U.S. Geological Survey: Reston, VA, USA, 2019; 619p. [Google Scholar] [CrossRef]
- John, D.A.; Ayuso, R.A.; Barton, M.D.; Blakely, R.J.; Bodnar, R.J.; Dilles, J.H.; Gray Floyd Graybeal, F.T.; Mars, J.C.; McPhee, D.K.; Seal, R.R.; et al. Porphyry Copper Deposit Model, Chap. B of Mineral Deposit Models for Resource Assessment: U.S. Geological Survey Scientific Investigations Report 2010–5070–B; U.S. Geological Survey: Denver, CO, USA, 2010; 169p. Available online: https://pubs.usgs.gov/sir/2010/5070/b (accessed on 15 March 2022).
- Sikka, D.G.; Nehru, C.E. Review of Precambrian porphyry Cu ± Mo ± Au deposits with special reference to Malanjkhand porphyry copper deposit, Madhya Pradesh, India. J. Geol. Soc. India 1997, 49, 239–288. [Google Scholar]
- Roth, E.; Groves, D.E.; Anderson, G.; Daley, L.; Staley, R. Primary mineralization at the Boddington mine, Western Australia: An Archean porphyry Cu-Au-Mo deposit. In Brazil Gold 91, The Economic Geology, Geochemistry and Genesis of Gold Deposits; Ladeira, E.A., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1991; pp. 481–488. [Google Scholar]
- Cunningham, C.G.; Zappettini, E.O.; Vivallo, S.; Waldo Celada, C.M.; Quispe Jorge Singer, D.A.; Briskey, J.A.; Sutphin, D.M.; Gajardo, M.M.; Diaz, A.; Portigliati, C.; et al. Quantitative Mineral Resource Assessment of Copper, Molybdenum, Gold, and Silver in Undiscovered Porphyry Copper Deposits in the Andes Mountains of South America; U.S. Geological Survey Open-File Report 2008–1253; U.S. Geological Survey: Reston, VA, USA, 2008; 282p. Available online: https://pubs.usgs.gov/of/2008/1253/ (accessed on 15 March 2022).
- Schulz, K.J.; Briskey, J.A. The Global Mineral Resource Assessment Project: U.S. Geological Survey Fact Sheet 53-03, U.S. Geological Survey: Reston, VA, USA 2003, p. 4. Available online: https://pubs.usgs.gov/fs/fs053-03/ (accessed on 1 March 2022).
- Robinson, G.R., Jr.; Menzie, W.D. Economic Filters for Evaluating Porphyry Copper Deposit Resource Assessments Using Grade-Tonnage Deposit Models, with Examples from the U.S. Geological Survey Global Mineral Resource Assessment (ver. 1.2, March 2014): U.S. Geological Survey Scientific Investigations Report 2010–5090–H, U.S.; Geological Survey: Reston, VA, USA, 2012; p. 21. Available online: https://pubs.usgs.gov/sir/2010/5090/h/ (accessed on 15 March 2022).
- Singer, D.A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenew. Resour. 1993, 2, 69–81. [Google Scholar] [CrossRef]
- Root, H.D.; Menzie, D.W.; Scott, A.W. Computer Monte Carlo simulation in quantitative resource estimation. Nonrenew. Resour. 1992, 1, 125–138. [Google Scholar] [CrossRef]
- Singer, D.A.; Berger, V.I.; Moring, B.C. Porphyry Copper Deposits of the World—Database, Map, and Grade and Tonnage Models: U.S. Geological Survey Open-File Report 2005-1060, U.S.; Geological Survey: Menlo Park, CA, USA, 2005. Available online: https://pubs.usgs.gov/of/2005/1060 (accessed on 15 March 2022).
- Rubenstein, N.A.; Zappettini, E.O.; Gómez, A.L.R. Porphyry Cu deposits in the Central Andes of Argentina—An overview. J. South Am. Earth Sci. 2021, 12, 103543. [Google Scholar] [CrossRef]
- Singer, D.A.; Berger, V.I.; Moring, B.C. Porphyry Copper Deposits of the World—Database, Map, and Grade and Tonnage Models, 2008: U.S. Geological Survey Open-File Report 2008–1155, p. 45 U.S.; Geological Survey: Menlo Park, CA, USA, 2008. Available online: https://pubs.usgs.gov/of/2008/1155/ (accessed on 15 March 2022).
- Porter GeoConsultancy (PORTERGEO)—Database. Available online: http://portergeo.com.au/database/index.asp (accessed on 3 May 2022).
- Mudd, G.M.; Jowitt, S.M. Growing global copper resources, reserves and production: Discovery is not the only control on supply. Econ. Geol. 2018, 113, 1235–1267. [Google Scholar] [CrossRef]
- Hammarstrom, J.M. Porphyry Copper Deposits and Prospects of the Andes Mountains of South America; U.S. Geological Survey data release; U.S. Geological Survey: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Canadian Institute of Mining, Metallurgy, and Petroleum. CIM Definition Standards for Mineral Resources & Mineral Reserves: CIM Standing Committee on Reserve Definitions, 10. p. 2014. Available online: https://mrmr.cim.org/media/1128/cim-definition-standards_2014.pdf (accessed on 1 March 2022).
- Soto-Vireut, Y. The Mineral Industry of Chile, in Area Reports—International—Latin America and Canada. U.S. Geological Survey Minerals Yearbook 2017–2018, v. III, 7.1–7.18. 2022. Available online: https://pubs.usgs.gov/myb/vol3/2017-18/myb3-2017-18-chile.pdf (accessed on 18 April 2022).
- Kuntz, G.; Krawcyzk, A.; Boyko, K.; Muir, W. NI [Canadian National Instrument] 43–101 Technical Report and Preliminary Economic Assessment, San Matías Copper-Silver-Gold Project, Colombia, Prepared for Cordoba Minerals Corp. 2019, p. 422. Available online: https://www.cordobaminerals.com/assets/docs/2019-07-29-san-matias-pea.pdf (accessed on 15 September 2021).
- Manco, J.D.; Leal-Mejía, H.; Hart, C.J.R.; Foster, C.; Boyd, G.; Creaser, R. Re-Os, U-Pb Geochronology in Cu-Au Mineralization at the San Matías Copper-Gold-Silver Project (SMP), Northern Colombia. In Proceedings of the Poster Presentation SEG Conference, Keystone, CO, USA, 22–25 September 2018. [Google Scholar]
- Restrepo, J.J.; Toussaint, J.F. Terranes and continental accretion in the Colombian Andes. Episodes 1988, 11, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.; Montes, N.E. Geological Map of Colombia 2020. Scale Scale 1:1 000 000. Servicio Geológico Colombiano, 2 sheets. Bogotá. 2020. Available online: https://www2.sgc.gov.co/MGC/Paginas/gmc_1M2020.aspx# (accessed on 15 March 2022).
- Tapias, J.G.; Monter Ramírea, N.E.; Schobbenhaus, C. Geological Map of South America at A Scale of 1.5 M. 2019. Available online: https://www2.sgc.gov.co/MGC/Paginas/gmsa5M2019.aspx (accessed on 22 April 2022).
- Carranza, E.J.M. From predictive mapping of mineral prospectivity to quantitative estimation of number of undiscovered prospects. Resour. Geol. 2010, 61, 30–51. [Google Scholar] [CrossRef]
- Ellefsen, K.J. Probability Calculations for Three-Part Mineral Resource Assessments; U.S. Geological Survey Techniques and Methods; U.S. Geological Survey: Denver, CO, USA, 2017; p. 14. [Google Scholar] [CrossRef] [Green Version]
- Ellefsen, K.J. User’s Guide for MapMark4—An R Package for the Probability Calculations in Three-Part Mineral Resource Assessments; U.S. Geological Survey Techniques and Methods; U.S. Geological Survey: Denver, CO, USA, 2017; p. 23. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.L.; Robinson, G.R., Jr. Resource Assessment Economic Filter (RAEF)—A Graphical User Interface Supporting Implementation of Simple Engineering Mine Cost Analyses of Quantitative Mineral Resource Assessment Simulations; U.S. Geological Survey Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2019; p. 18. [Google Scholar] [CrossRef] [Green Version]
- Singer, D.A.; Zientek, M. Mineral Deposit Discovery Order and Three-Part Quantitative Assessments. Ore Geol. Rev. 2021, 139, 104566. Available online: https://www.sciencedirect.com/science/article/pii/S0169136821005928?via%3Dihub (accessed on 20 April 2022). [CrossRef]
- Granitto, M.; Emsbo, P.; Hofstra, A.H.; Orkild-Norton, A.R.; Bennett, M.M.; Azain, J.S.; Koenig, A.E.; Karl, N.A. Global Geochemical Database for Critical Minerals in Archived Mine Samples; U.S. Geological Survey data release; U.S. Geological Survey: Denver, CO, USA, 2020. [Google Scholar] [CrossRef]
- Granitto, M.; Schmidt, D.E.; Karl, N.A.; Khoury, R.M. National Geochemical Database on Ore Deposits: Legacy Data; U.S. Geological Survey data release; U.S. Geological Survey: Denver, CO, USA, 2021. [Google Scholar] [CrossRef]
- Huston, D.L. Critical Commodities in Australia—An Assessment of Extraction Potential from Ores. Record 2017/014. Geoscience Australia, Canberra. 2017. Available online: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/108007 (accessed on 20 April 2022).
- Seal, R.R., II; Piatak, N.M. Environmental Attributes and Resource Potential of Mill Tailings from Diverse Mineral deposit types. In Proceedings of the International Mine Waste Association Conference, Lappeenranta, Finland, 25–30 June 2017; p. 7. [Google Scholar]
Key | Tract Number | Tract Age and Name | Number of Known Deposits in 2005 | Estimated Number of Undiscovered Deposits in 2005 | New Deposits since 2005 | Total Number of Deposits in 2020 |
---|---|---|---|---|---|---|
1 | 005pCu1001 | Colombia Paleocene–Eocene Acandi | 2 | 9.6 | 1 | 3 |
2 | 005pCu1002 | Colombia Jurassic California | 0 | 2.9 | 3 | 3 |
3 | 005pCu1003 | Colombia-Ecuador-Peru Jurassic San Carlos | 5 | 12 | 1 | 6 |
4 | 005pCu1004 | Colombia Cretaceous Infierno Chili | 0 | 2.2 | 0 | 0 |
5 | 005pCu1005 | Colombia-Ecuador Miocene Chaucha | 4 | 12 | 4 | 8 |
6 | 005pCu1006 | Peru-Ecuador middle–late Miocene La Granja | 12 | 15 | 0 | 12 |
7 | 005pCu1007 | Peru-Ecuador Cretaceous Almacen | 2 | 3.8 | 4 | 6 |
8 | 005pCu1008 | Chile-Peru Paleocene–Eocene Toquepala | 12 | 12 | 2 | 14 |
9 | 005pCu1009 | Peru Eocene–Oligocene Antapaccay | 6 | 5.4 | 3 | 9 |
10 | 005pCu1010a,b | Chile Eocene–Oligocene Chuquicamata | 10 | 6.0 | 8.0 | 18 |
11 | 005pCu1011 | Argentina Eocene–Oligocene Taca Taca Bajo | 1 | 1.3 | 1 | 2 |
12 | 005pCu1012 | Chile-Argentina Eocene-Oligocene La Fortuna | 1 | 4.5 | 0 | 1 |
13a | 005pCu1013a | Argentina-Chile Miocene–Pliocene Cerro Casale | 1 | 11 | 7 | 8 |
13b | 005pCu1013b | Argentina-Chile Miocene–Pliocene Los Pelambres | 2 | 6.4 | 6 | 8 |
13c | 005pCu1013c | Argentina-Chile Miocene–Pliocene | 0 | 2.2 | 2 | 2 |
13d | 005pCu1013d | Chile-Argentina Miocene coastal | 0 | 1.3 | 1 | 1 |
14a | 005pCu1014a | Argentina Miocene Paramillos | 2 | 6.0 | 0 | 2 |
14b | 005pCu1014b | Chile Miocene–Pliocene El Teniente | 2 | 1.9 | 1 | 3 |
14c | 005pCu1014c | Argentina Miocene–Pliocene Bajo de la Alumbrera | 3 | 5.1 | 1 | 4 |
14d | 005pCu1014d | Argentina Miocene–Pliocene Nevados de Famatina | 1 | 3.5 | 0 | 1 |
15 | 005pCu1015 | Argentina-Chile Late Cretaceous–middle Eocene Campana Mahuida | 1 | 4.3 | 0 | 1 |
16 | 005pCu1016ab | Argentina Permian San Jorge | 2 | 3.5 | 0 | 2 |
17 | 005pCu1017 | Chile Cretaceous Antucoya | 0 | 6.7 | 6 | 6 |
18 | 005pCu1018 | Chile Permian El Loa | 0 | 2.2 | 1 | 1 |
19 | 005pCu1019 | Argentina, Late Triassic to Middle Jurassic, Bajo de la Leona | 0 | 1.6 | 0 | 0 |
20 | 005pCu1020 | Chile-Argentina Cretaceous Turbio | 0 | 2.3 | 0 | 0 |
Totals | 69 | 145 | 51 | 120 |
Key | 2005 Discovered Cu | 2020 Discovered Cu | Resource Growth 2005 to 2020 | Cu in New Deposits 2005 to 2020 | 2005 Probabilistic Estimates of Undiscovered Cu | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
95 | 90 | 50 | 10 | Mean | Economic | Value Class | |||||
1 | 10.0 | 21.1 | 10.0 | 11.2 | 0.8 | 3.1 | 23.0 | 76.0 | 33.0 | 18.0 | high |
2 | 0 | 0 | 0 | 0 | 0 | 0.3 | 4.7 | 23.0 | 9.7 | 5.2 | medium |
3 | 9.0 | 15.4 | 14.4 | 1.0 | 3.1 | 7.1 | 31.0 | 85.0 | 40.0 | 20.0 | high |
4 | 0 | 0 | 0 | 0 | 0 | 0.2 | 3.3 | 19.0 | 7.7 | 4.4 | high |
5 | 4.1 | 16.2 | 10.1 | 6.1 | 3.2 | 7.4 | 30.0 | 81.0 | 39.0 | 21.0 | high |
6 | 46.7 | 59.1 | 59.1 | 0 | 5.8 | 11.0 | 39.0 | 100.0 | 49.0 | 24.0 | high |
7 | 0.6 | 5.2 | 0.7 | 4.6 | 0 | 0.3 | 6.8 | 33.0 | 14.0 | 7.7 | low |
8 | 55.4 | 117.5 | 114.7 | 2.8 | 4.0 | 7.9 | 33.0 | 92.0 | 43.0 | 27.0 | high |
9 | 12.7 | 37.2 | 24.8 | 12.4 | 0.8 | 2.1 | 11.0 | 44.0 | 19.0 | 9.9 | high |
10 | 252.0 | 855.5 | 483.4 | 372.1 | 22.0 | 46.0 | 190.0 | 400.0 | 210.0 | 170.0 | high |
11 | 3.0 | 11.8 | 2.9 | 0.2 | 0 | 0 | 1.0 | 10.0 | 4.2 | 2.6 | high |
12 | 3.0 | 11.5 | 11.5 | 0 | 0.2 | 1.1 | 8.5 | 34.0 | 15.0 | 10.0 | high |
13a | 2.9 | 22.5 | 4.2 | 18.3 | 1.8 | 4.2 | 25.0 | 89.0 | 38.0 | 20.0 | high |
13b | 25.6 | 89.7 | 54.0 | 35.7 | 0.8 | 2.6 | 14.0 | 50.0 | 22.0 | 12.0 | high |
13c | 0 | 3.6 | 0 | 3.6 | 0 | 0.2 | 3.3 | 18.0 | 7.7 | 4.0 | high |
13d | 0 | 1.0 | 0 | 1.0 | 0 | 0 | 1.0 | 11.0 | 4.5 | 2.5 | low |
14a | 2.1 | 2.1 | 2.1 | 0.0 | 0.3 | 1.1 | 11.0 | 50.0 | 21.0 | 11.0 | high |
14b | 148.6 | 277.2 | 267.5 | 9.7 | 0 | 7.6 | 49.0 | 150.0 | 69.0 | 56.0 | high |
14c | 12.3 | 16.5 | 15.9 | 0.6 | 0.8 | 2.2 | 11.0 | 38.0 | 17.0 | 8.9 | high |
14d | 1.1 | 1.1 | 1.1 | 0 | 0 | 0.3 | 6.1 | 29.0 | 12.0 | 6.3 | high |
15 | 1.0 | 1.0 | 1.0 | 0 | 0 | 0.2 | 5.9 | 40.0 | 15.0 | 8.6 | high |
16 | 1.9 | 1.3 | 1.3 | 0 | 0.2 | 0.8 | 6.2 | 27.0 | 12.0 | 6.6 | medium |
17 | 0 | 9.3 | 9.3 | 9.3 | 1.0 | 2.6 | 15.0 | 52.0 | 23.0 | 15.0 | high |
18 | 0 | 3.1 | 3.1 | 3.1 | 0 | 0.2 | 3.2 | 18.0 | 7.5 | 4.8 | high |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4 | 15.0 | 5.9 | 2.8 | very low |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 3.0 | 20.0 | 7.8 | 3.9 | very low |
Total | 590 | 1600 | 1100 | 490 | - | - | - | - | 750 | 480 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammarstrom, J.M. Porphyry Copper: Revisiting Mineral Resource Assessment Predictions for the Andes. Minerals 2022, 12, 856. https://doi.org/10.3390/min12070856
Hammarstrom JM. Porphyry Copper: Revisiting Mineral Resource Assessment Predictions for the Andes. Minerals. 2022; 12(7):856. https://doi.org/10.3390/min12070856
Chicago/Turabian StyleHammarstrom, Jane Marie. 2022. "Porphyry Copper: Revisiting Mineral Resource Assessment Predictions for the Andes" Minerals 12, no. 7: 856. https://doi.org/10.3390/min12070856
APA StyleHammarstrom, J. M. (2022). Porphyry Copper: Revisiting Mineral Resource Assessment Predictions for the Andes. Minerals, 12(7), 856. https://doi.org/10.3390/min12070856