sensors-logo

Journal Browser

Journal Browser

Enzymatic Biosensors

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Biosensors".

Deadline for manuscript submissions: closed (31 January 2013) | Viewed by 84277

Special Issue Editor


E-Mail
Guest Editor
Department of Chemistry and Biomolecular Science, 214 Science Center, Clarkson University, Potsdam, NY 13699-5810, USA
Interests: enzymatic sensors; affinity sensors; bioelectronics; bionanotechnology; biosensors; bioelectrochemistry

Special Issue Information

Dear Colleagues,

The glucose biosensor, a device that changed the lives of millions affected by diabetes, is a one remarkable example of enzyme-based biosensor technology. Enzyme sensors are a major part of biosensorics - technology, which currently represents a mature analogue to instrumental analytical techniques in areas of clinical diagnostics and is the leading technology in point-of-care analysis.

Enzyme biosensors employ the affinity and selectivity of catalytically active proteins, towards their target molecules. Typically, (enzyme,usually immobilized on/within the surface of transducer - acts as a catalyst when interacting with the analyte, represented by its substrate, inhibitor, co-substrate or co-factor, while the enzyme itself remains unchanged. The transducer converts the effect created by the interaction of enzyme with the analyte, usually into an electrical signal. Depending on the assay type, two fundamental classes of enzyme sensors can be distinguished. First, the enzyme detects the presence of a substrate, or co-substrate/co-factor. This is then, by way of a transducer, used to monitor the increase of enzymatic activity. A typical example is a glucose biosensor. The second group is based on the detection of inhibitors in the presence of a substrate. With this system the decrease of signal (caused by enzyme inhibition) is monitored. The most common example of this approach is the detection of organophosphate compounds used as pesticides or warfare nerve agents. The mode of signal transduction can be electrochemical, optical, resonant (acoustic), thermal etc. The major advantage of all of these approaches is the high sensitivity and specificity of the biorecognition of a single selected analyte.

There have been significant improvements in the field of enzymatic biosensors; the usage of new, genetically engineered enzymes has allowed for improved performance characteristics of current biosensors for the detection of established analytes (glucose, pesticides etc….). Advancement has been the utilization of genetically modified enzymes to detect novel markers. An additional group of improvements is the usage of “non-traditional” transducer materials, e.g. carbon nanotubes (CNT), or different conductive polymers. Remarkable structural and electrical property advancements have enabled new options mainly in the area of electrochemical sensing technologies.

Developments are not always based on novel materials, but also on new, original approaches. One example, of such an innovation is the recently emerging field of biomolecular computing (Biocomputing). This is where enzymatic sensing systems are used to perform various computing operations that mimic processes typical of electronic computing devices. Such approaches, with their sophisticated biomolecular design, have resulted in reversible, reconfigurable, and resettable “bio-logic” sensing architectures (gates) for processing chemical information. This is especially useful in enzymatic biosensor applications where, until now, the use of biosensor or bioassay arrays have been required for a simultaneous analysis of several different species

The technology of enzymatic biosensors offers a potent combination of performance and analytical features not available in any other bioanalytical system. The listing of just a few options in this overview can encourage future development, which could yield new generations of enzymatic biosensors for a wide range of applications in clinical, environmental or industrial diagnostics.

Dr. Jan Halámek
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:
282 KiB  
Article
Optimization of Hydrogen Peroxide Detection for a Methyl Mercaptan Biosensor
Sensors 2013, 13(4), 5028-5039; https://doi.org/10.3390/s130405028 - 15 Apr 2013
343 KiB  
Article
Carbon Based Electrodes Modified with Horseradish Peroxidase Immobilized in Conducting Polymers for Acetaminophen Analysis
Sensors 2013, 13(4), 4841-4854; https://doi.org/10.3390/s130404841 - 11 Apr 2013
688 KiB  
Review
Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review
Sensors 2013, 13(4), 4811-4840; https://doi.org/10.3390/s130404811 - 11 Apr 2013
880 KiB  
Article
Internal Calibration Förster Resonance Energy Transfer Assay: A Real-Time Approach for Determining Protease Kinetics
Sensors 2013, 13(4), 4553-4570; https://doi.org/10.3390/s130404553 - 8 Apr 2013
293 KiB  
Article
DNA-Based Sensor for Real-Time Measurement of the Enzymatic Activity of Human Topoisomerase I
Sensors 2013, 13(4), 4017-4028; https://doi.org/10.3390/s130404017 - 25 Mar 2013
931 KiB  
Article
Nanobiosensors Based on Chemically Modified AFM Probes: A Useful Tool for Metsulfuron-Methyl Detection
Sensors 2013, 13(2), 1477-1489; https://doi.org/10.3390/s130201477 - 24 Jan 2013
707 KiB  
Article
Indirect Determination of Mercury Ion by Inhibition of a Glucose Biosensor Based on ZnO Nanorods
Sensors 2012, 12(11), 15063-15077; https://doi.org/10.3390/s121115063 - 6 Nov 2012
480 KiB  
Article
Catalytic and Inhibitory Kinetic Behavior of Horseradish Peroxidase on the Electrode Surface
Sensors 2012, 12(11), 14556-14569; https://doi.org/10.3390/s121114556 - 29 Oct 2012
Back to TopTop