Utility of Fetal Echocardiography with Acute Maternal Hyperoxygenation Testing in Assessment of Complex Congenital Heart Defects
Abstract
:1. Background
1.1. Fetal Circulation and Transition at the Time of Birth
1.2. Historical Perspective on Maternal Hyperoxygenation Testing
2. Clinical Maternal Hyperoxygenation Protocol
3. Expected Findings with Maternal Hyperoxygenation Specific to CHD Lesions
3.1. Hypoplastic Left Heart Syndrome (HLHS)
3.2. Total Anomalous Pulmonary Venous Return (TAPVR)
3.3. D-Transposition of the Great Arteries with Restrictive Atrial Septum
3.4. Severe Ebstein Anomaly of the Tricuspid Valve
3.5. Pulmonary Hypoplasia
4. Maternal and Fetal Safety with Hyperoxygenation
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scaronamánek, M.; Slavík, Z.; Zbořilová, B.; Hroboňová, V.; Voříšková, M.; Skovranek, J. Prevalence, treatment, and outcome of heart disease in live-born children: A prospective analysis of 91,823 live-born children. Pediatr. Cardiol. 1989, 10, 205–211. [Google Scholar] [CrossRef]
- Bound, J.P.; Logan, W.F. Incidence of congenital heart disease in Blackpool 1957–1971. Br. Heart J. 1977, 39, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Stümpflen, I.; Stümpflen, A.; Wimmer, M.; Bernaschek, G. Effect of detailed fetal echocardiography as part of routine prenatal ultrasonographic screening on detection of congenital heart disease. Lancet 1996, 348, 854–857. [Google Scholar] [CrossRef]
- Yagel, S.; Weissman, A.; Rotstein, Z.; Manor, M.; Hegesh, J.; Anteby, E.; Lipitz, S.; Achiron, R. Congenital heart defects: Natural course and in utero development. Circulation 1997, 96, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Nelle, M.; Raio, L.; Pavlovic, M.; Carrel, T.; Surbek, D.; Meyer-Wittkopf, M. Prenatal diagnosis and treatment planning of congenital heart defects-possibilities and limits. World J. Pediatr. 2009, 5, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Donofrio, M.T.; Skurow-Todd, K.; Berger, J.T.; McCarter, R.; Fulgium, A.; Krishnan, A.; Sable, C.A. Risk-Stratified Postnatal Care of Newborns with Congenital Heart Disease Determined by Fetal Echocardiography. J. Am. Soc. Echocardiogr. 2015, 28, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Donofrio, M.T.; Levy, R.J.; Schuette, J.J.; Skurow-Todd, K.; Sten, M.-B.; Stallings, C.; Pike, J.I.; Krishnan, A.; Ratnayaka, K.; Sinha, P.; et al. Specialized Delivery Room Planning for Fetuses With Critical Congenital Heart Disease. Am. J. Cardiol. 2013, 111, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.D.; Aggarwal, N.; Fries, M.H.; Donofrio, M.T.; Iqbal, S.N. Neonatal and maternal outcomes of pregnancies with a fetal diagnosis of congenital heart disease using a standardized delivery room management protocol. J. Perinatol. 2019, 40, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Szwast, A.; Tian, Z.; McCann, M.; Donaghue, D.; Rychik, J. Vasoreactive Response to Maternal Hyperoxygenation in the Fetus With Hypoplastic Left Heart Syndrome. Circ. Cardiovasc. Imaging 2010, 3, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Co-Vu, J.; Lopez-Colon, D.; Vyas, H.V.; Weiner, N.; DeGroff, C. Maternal hyperoxygenation: A potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiography 2017, 34, 1822–1833. [Google Scholar] [CrossRef] [PubMed]
- Enzensberger, C.; Axt-Fliedner, R.; Degenhardt, J.; Kawecki, A.; Tenzer, A.; Kohl, T.; Krapp, M. Pulmonary Vasoreactivity to Materno-Fetal Hyperoxygenation Testing in Fetuses with Hypoplastic Left Heart. Ultraschall der Med. Eur. J. Ultrasound 2015, 37, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Schidlow, D.N.; Donofrio, M.T. Prenatal Maternal Hyperoxygenation Testing and Implications for Critical Care Delivery Planning among Fetuses with Congenital Heart Disease: Early Experience. Am. J. Perinatol. 2018, 35, 16–23. [Google Scholar] [PubMed]
- Mardy, C.; Kaplinski, M.; Peng, L.; Blumenfeld, Y.J.; Kwiatkowski, D.M.; Tacy, T.A.; Maskatia, S.A. Maternal Hyperoxygenation Testing in Fetuses with Hypoplastic Left-Heart Syndrome: Association with Postnatal Atrial Septal Restriction. Fetal Diagn. Ther. 2021, 48, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Sadler, T.W. Langman’s Medical Embryology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2018; pp. 216–218. [Google Scholar]
- Friedman, A.H.; Fahey, J.T. The transition from fetal to neonatal circulation: Normal responses and implications for infants with heart disease. Semin. Perinatol. 1993, 17, 106–121. [Google Scholar] [PubMed]
- Bertolizio, G.; Arosio, G.; Frangipani, G.C.; D’Aquino, P. The study of pO2 and of acid-base equilibrium in the amniotic fluid during maternal hyperoxygenation. Ann. Di Ostet. Ginecol. Med. Perinat. 1966, 88, 301–306. [Google Scholar]
- Frangipani, G.C.; Samaja, B.A.; Spandrio, L.; Tampalini, L. Fetal lactacidemia and pyruvicemia in labor evaluated in micro-samples of blood. Preliminary findings. Minerva. Ginecol. 1969, 21, 1213–1216. [Google Scholar]
- Rizzo, G.; Arduini, D.; Romanini, C.; Mancuso, S. Effects of maternal hyperoxygenation on atrioventricular velocity waveforms in healthy and growth-retarded fetuses. Neonatology 1990, 58, 127–132. [Google Scholar] [CrossRef]
- Soregaroli, M.; Rizzo, G.; Danti, L.; Arduini, D.; Romanini, C. Effects of maternal hyperoxygenation on ductus venosus flow velocity waveforms in normal third-trimester fetuses. Ultrasound Obstet. Gynecol. 1993, 3, 115–119. [Google Scholar] [CrossRef]
- Almström, H.; Sonesson, S.E. Doppler echocardiographic assessment of fetal blood flow redistribution during maternal hyperoxygenation. Ultrasound Obstet. Gynecol. 1996, 8, 256–261. [Google Scholar] [CrossRef]
- Ramner, J.; Huhta, J.C.; Woof, D.C.; Debbs, R.H.; Cohen, J.; Weiner, S. Maternal hyperoxygenation decreases human fetal pulmonary vascular impedance during the last trimester of pregnancy. a randomized study. Acta Diabetol. Lat. 1997, 176, S173. [Google Scholar]
- Rasanen, J.; Wood, D.C.; Debbs, R.H.; Cohen, J.; Weiner, S.; Huhta, J.C. Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy: A randomized study. Circulation 1998, 97, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, A.B.; A Heymann, M.; Rudolph, A.M. Gestational changes in pulmonary vascular responses in fetal lambs in utero. Circ. Res. 1976, 39, 536–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarkowska-Szaniawska, A.; Janiak, K.; Foryś, S.; Słodki, M.; Respondek-Liberska, M. Maternal hyperoxygenation test in prediction of fetal lung hypoplasia—Preliminary report. Ginekol. Polska. 2011, 82, 834–839. [Google Scholar]
- Channing, A.; Szwast, A.; Natarajan, S.; Degenhardt, K.; Tian, Z.; Rychik, J. Maternal hyperoxygenation improves left heart filling in fetuses with atrial septal aneurysm causing impediment to left ventricular inflow. Ultrasound Obstet. Gynecol. 2015, 45, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Rychik, J.; McCann, M.; Soffer, D.; Black, T.; Li, H.; Tian, Z. OC13.03: Maternal hyperoxygenation during fetal Doppler echocardiography provides physiological insight in congenital heart disease. Ultrasound Obstet. Gynecol. 2018, 52, 30–31. [Google Scholar] [CrossRef] [Green Version]
- Cox, K.L.; Morris, S.A.; Tacy, T.; Long, J.; Becker, J.; Schoppe, L.; Zhang, J.; Maskatia, S.A. Impact of Maternal Hyperoxygenation on Myocardial Deformation and Loading Conditions in Fetuses with and without Left Heart Hypoplasia. J. Am. Soc. Echocardiogr. 2022, 35, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Michelfelder, E.; Gomez, C.; Border, W.; Gottliebson, W.; Franklin, C. Predictive Value of Fetal Pulmonary Venous Flow Patterns in Identifying the Need for Atrial Septoplasty in the Newborn With Hypoplastic Left Ventricle. Circulation 2005, 112, 2974–2979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chintala, K.; Tian, Z.; Du, W.; Donaghue, D.; Rychik, J. Fetal pulmonary venous Doppler patterns in hypoplastic left heart syndrome: Relationship to atrial septal restriction. Heart 2008, 94, 1446–1449. [Google Scholar] [CrossRef]
- Divanović, A.; Hor, K.; Cnota, J.; Hirsch, R.; Kinsel-Ziter, M.; Michelfelder, E. Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: Clinical experience using pulmonary venous Doppler analysis. J. Thorac. Cardiovasc. Surg. 2011, 141, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Domadia, S.; Kumar, S.R.; Votava-Smith, J.K.; Pruetz, J.D. Neonatal Outcomes in Total Anomalous Pulmonary Venous Return: The Role of Prenatal Diagnosis and Pulmonary Venous Obstruction. Pediatr. Cardiol. 2018, 39, 1346–1354. [Google Scholar] [CrossRef]
- Buca, D.; Winberg, P.; Rizzo, G.; Khalil, A.; Liberati, M.; Makatsariya, A.; Greco, F.; Nappi, L.; Acharya, G.; D’Antonio, F. Prenatal risk factors for urgent atrial septostomy at birth in fetuses with transposition of the great arteries: A systematic review and meta-analysis. J. Matern. Neonatal Med. 2020, 35, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Slodki, M.; Axt-Fliedner, R.; Zych-Krekora, K.; Wolter, A.; Kawecki, A.; Enzensberger, C.; Gulczynska, E.; Respondek-Liberska, M.; International Prenatal Cardiology Collaboration Gruop. New method to predict need for Rashkind procedure in fetuses with dextro-transposition of the great arteries. Ultrasound Obstet. Gynecol. 2018, 51, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Freud, L.R.; McElhinney, D.B.; Kalish, B.T.; Escobar-Diaz, M.C.; Komarlu, R.; Puchalski, M.D.; Jaeggi, E.T.; Szwast, A.L.; Freire, G.; Levasseur, S.M.; et al. Risk Factors for Mortality and Circulatory Outcome Among Neonates Prenatally Diagnosed With Ebstein Anomaly or Tricuspid Valve Dysplasia: A Multicenter Study. J. Am. Heart Assoc. 2020, 9, e016684. [Google Scholar] [CrossRef] [PubMed]
- Sathanandam, S.K.; Philip, R.; Gamboa, D.; Van Bergen, A.; Ilbawi, M.N.; Knott-Craig, C.; Waller, B.R.; Javois, A.J.; Cuneo, B.F. Management of hypoplastic left heart syndrome with intact atrial septum: A two-centre experience. Cardiol. Young 2015, 26, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Vlahos, A.; Lock, J.; McElhinney, D.; Van Der Velde, M. Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: Outcome after neonatal transcatheter atrial septostomy. ACC Curr. J. Rev. 2004, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Better, D.J.; Apfel, H.D.; Zidere, V.; Allan, L.D. Pattern of pulmonary venous blood flow in the hypoplastic left heart syndrome in the fetus. Heart 1999, 81, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taketazu, M.; Barrea, C.; Smallhorn, J.F.; Wilson, G.J.; Hornberger, L.K. Intrauterine pulmonary venous flow and restrictive foramen ovale in fetal hypoplastic left heart syndrome. J. Am. Coll. Cardiol. 2004, 43, 1902–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jouannic, J.-M.; Gavard, L.; Fermont, L.; Le Bidois, J.; Parat, S.; Vouhé, P.R.; Dumez, Y.; Sidi, D.; Bonnet, D. Sensitivity and Specificity of Prenatal Features of Physiological Shunts to Predict Neonatal Clinical Status in Transposition of the Great Arteries. Circulation 2004, 110, 1743–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, H.; Glick, L.; Lougheed, J.; Grattan, M.; Mondal, T.; Thakur, V.; Schwartz, S.M.; Jaeggi, E. Prenatal Diagnosis of Transposition of the Great Arteries Reduces Postnatal Mortality: A Population-Based Study. Can. J. Cardiol. 2020, 36, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Masci, M.; Pasquini, L.; Alsaied, T.; Di Chiara, L.; Formigari, R.; Galletti, L.; Campanale, C.M.; Romiti, A.; Bonito, M.; Bagolan, P.; et al. Reliability of Fetal Echocardiography in Predicting Postnatal Critical Hypoxia in Patients with Transposition of Great Arteries and Intact Ventricular Septum. Pediatr. Cardiol. 2021, 42, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Hornberger, L.K.; Sahn, D.J.; Kleinman, C.S.; Copel, J.A.; Reed, K.L. Tricuspid valve disease with significant tricuspid insufficiency in the fetus: Diagnosis and outcome. J. Am. Coll. Cardiol. 1991, 17, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freud, L.R.; Escobar-Diaz, M.C.; Kalish, B.T.; Komarlu, R.; Puchalski, M.D.; Jaeggi, E.T.; Szwast, A.L.; Freire, G.; Levasseur, S.M.; Tworetzky, W.; et al. Outcomes and Predictors of Perinatal Mortality in Fetuses With Ebstein Anomaly or Tricuspid Valve Dysplasia in the Current Era: A Multicenter Study. Circulation 2015, 132, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Selamet Tierney, E.S.; McElhinney, D.B.; Freud, L.R.; Tworetzky, W.; Cuneo, B.F.; Escobar-Diaz, M.C.; Ikemba, C.; Kalish, B.T.; Komarlu, R.; Moon-Grady, A.J.; et al. Assessment of Progressive Pathophysiology After Early Prenatal Diagnosis of the Ebstein Anomaly or Tricuspid Valve Dysplasia. Am. J. Cardiol. 2017, 119, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Broth, R.E.; Wood, D.C.; Rasanen, J.; Sabogal, J.C.; Komwilaisak, R.; Weiner, S.; Berghella, V. Prenatal prediction of lethal pulmonary hypoplasia: The hyperoxygenation test for pulmonary artery reactivity. Am. J. Obst. Gynecol. 2002, 187, 940–945. [Google Scholar] [CrossRef]
- Polvi, H.J.; Pirhonen, J.P.; Erkkola, R.U. The hemodynamic effects of maternal hypo and hyperoxygenation in healthy term pregnancies. Obstet. Gynecol. 1995, 86, 795–799. [Google Scholar] [CrossRef]
Published Studies Author/Year | Fetal Characteristics of the Study Cohort | Fetal Cardiac Diagnoses | MH Protocol | Findings |
---|---|---|---|---|
Rasanen et al. [22] 1998 | 20 early GA (20–26 weeks) 20 late GA (31–36 weeks) | Healthy fetuses | 60% humidified FiO2 for 5 min of MH 5 min of recovery | ↓ PI in BPA ↑ PI in DA ↓ Foramen ovale flow -Changes are seen only in late GA and not in early GA fetuses -All changes returned to baseline after 10 min of recovery |
Szwast et al. [9] 2010 | 30.1 ± 4.5 weeks GA controls 29.6 ± 5.0 | 43 HLHS 27 controls | 100% FiO2 for 10 min via nonrebreather mask at 8 L/min effectively providing 60% inhaled FiO2 5 min of recovery | Reduced pulmonary vasoreactivity (<10% reduction in PI in BPA) correlated with the need for BAS after birth. -No untoward effects seen with MH |
Zarkowska-Szaniawska et al. [24] 2011 | late gestation | 40 fetuses with cardiomegaly and lung hypoplasia | 60% FiO2 for 15 min | Pulmonary vasoreactivity with MH (>10% reduction in PI in the PA branch) was associated with survival after birth. |
Channing et al. [25] 2015 | 35 ± 3 weeks GA | 12 fetuses with an atrial septal aneurysm affecting LV filling and aortic arch flow | 100% FiO2 for 10 min via nonrebreather mask at 8L/min effectively providing 60% inhaled FiO2 5 min of recovery | MH altered the atrial septal position (↓ atrial septal excursion), improved LV filling, and normalized aortic flow by increasing pulmonary venous return. -Helpful in differentiating small LV due to atrial septal aneurysm vs. true LV hypoplasia or coarctation of the aorta |
Enzenberger et al. [11] 2016 | >26 weeks GA | 22 HLHS | 100% FiO2 for 10 min | ↑ PI in pulmonary veinous Doppler associated with unobstructed atrial septum |
Schidlow et al. [12] 2018 | >32 weeks GA | 2 Ebstein 2 TAPVR 4 HLHS 4 d-TGA | 100% FiO2 for 10 min at 10L/min effectively providing 60% inhaled FiO2 15 min recovery | Reduced pulmonary vasoreactivity (<20% reduction in PI in PA branches) + cardiac anatomic variables based on the lesion assessed |
Rychik et al. [26] 2018 (Abstract only) | 35.5 ± 2.4 weeks GA | 114 HLHS fetus | 100% FiO2 for 10 min via nonrebreather mask at 8L/min effectively providing 60% inhaled FiO2 5 min of recovery | No change in Umbilical artery PI (placental resistance unchanged) ↑ cerebral resistance ↓ pulmonary resistance ↑ Ductus arteriosus PI (↑ retrograde flow) No ductal constriction No change in ventricular performance |
Mardy et al. [13] 2021 | ~34 weeks GA | 27 HLHS fetuses | 100% FiO2 for 10 min via nonrebreather mask at 8 L/min effectively providing 60% inhaled FiO2 at 8L/min | Poor sensitivity with BPA PI Pulmonary Vein F/R VTI < 6.5, 100% Sensitivity and PPV in predicting emergent atrial septoplasty |
Cox et al. [27] 2022 | 31.0 ± 4.0 weeks for HLHS 27.8 ± 5.1 weeks for controls | 9 HLHS 9 controls | 100% FiO2 for 10 min via nonrebreather mask at 8 L 10 min recovery | ↓ LV strain and strain rate (due to ↑ in cerebral vascular resistance) ↑RV strain and strain rate (due to ↓ in pulmonary vascular resistance) ↓ Pulmonary artery PI Most findings did not return to baseline after recovery. |
Diagnosis | Baseline Fetal Echocardiogram Findings Suggestive of Hemodynamic Instability after Birth | Expected Changes with MH Performed in the Third Trimester Suggestive of Hemodynamic Instability after Birth | Delivery Room Recommendations |
---|---|---|---|
HLHS and variants with severely restrictive or intact atrial septum | Pulmonary vein Doppler [6]
| Reduced pulmonary vasoreactivity
|
|
TAPVR with significant Obstruction | Pulmonary vein Doppler [6]
| Mean gradient in the vertical vein after MH correlates with the severity of TAPVR obstruction seen postnatally [12] |
|
D-TGA and variants with a restrictive atrial septum and prenatal ductal constriction | Abnormal foramen ovale [6,32,33]:
| Reduced pulmonary vasoreactivity
|
|
Severe Ebstein anomaly of the tricuspid valve | Pulmonary vasoreactivity with MH > 20% reduction in PI* in the branch PAs and increased cardiac output across the pulmonary valve can predict antegrade flow from the RV to the PA postnatally. The absence of these reassuring findings would be concerning for postnatal hemodynamic instability. |
| |
Cardiomegaly and lung hypoplasia | Increased cardiothoracic ratio and concerns for significant lung hypoplasia | Poor pulmonary vasoreactivity with MH (<10% reduction in PI in the branch PAs) associated with non-survivors after birth |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.R.; Madan, N.; Jone, P.-N.; Donofrio, M.T. Utility of Fetal Echocardiography with Acute Maternal Hyperoxygenation Testing in Assessment of Complex Congenital Heart Defects. Children 2023, 10, 281. https://doi.org/10.3390/children10020281
Patel SR, Madan N, Jone P-N, Donofrio MT. Utility of Fetal Echocardiography with Acute Maternal Hyperoxygenation Testing in Assessment of Complex Congenital Heart Defects. Children. 2023; 10(2):281. https://doi.org/10.3390/children10020281
Chicago/Turabian StylePatel, Sheetal R., Nitin Madan, Pei-Ni Jone, and Mary T. Donofrio. 2023. "Utility of Fetal Echocardiography with Acute Maternal Hyperoxygenation Testing in Assessment of Complex Congenital Heart Defects" Children 10, no. 2: 281. https://doi.org/10.3390/children10020281