Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review
Abstract
:1. Introduction
1.1. Background
1.2. Technology, Requirements and Parameters for Wearable Motion Analysis in Sports
1.2.1. Gyroscope, Accelerometer and Magnetic Sensors
1.2.2. Requirements for Measuring Human Movements in Sport
1.2.3. Sensor Derived Parameters
Temporal Parameters
Kinematic Parameters
Dynamic Parameters
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy
2.3. Review Process
3. Trends
3.1. Paper Selection and Identification
3.2. Journals and Years
3.3. Participants, Setting, Sport, Motor Task
- aerial movements (diving trampoline jumps, half-pipe snowboard, front/back somersaults)
- agility runs (change of direction, side-cuts, turning)
- bicycling (indoor or outdoor track, jumping)
- horse riding (trot, gallop, circles, change of directions)
- jumping (with and without counter movement, with one or two legs, drop landing, drop jump, stop jump, jump header, moving header, standing short\long jump, springboard)
- climbing
- swimming (starts, front crawl, backstroke, breaststroke, butterfly, freestyle, turns)
- roller skating and skateboarding
- rowing and paddling (single and double scull rowing, kayak propulsion)
- running (treadmill and over ground, distance and sprint running, hurdles)
- skiing and snowboarding (giant slalom, downhill, cross country runs, ski jumping, uphill ski mountaineering, roller skiing)
- wheelchair sprint and turns.
- tackling and sustaining physical collisions
- takedowns
- weightlifting, entailing the use of upper or lower limbs (snatch lift, back squat, pull/throw on bench press).
- kicks (soccer in step kick, karate front kick)
- trunk rotations (golf and baseball swing, ice hockey slap shot, baseball bat swing)
- overarm movements (tennis serve/volley/strokes, pitching, cricket bowling, javelin throwing, shot put) sidearm and underarm movements (air pistol shots, boxing straight punch, karate jabs/crosses/hooks/upper-cuts, fencing lunge and touche, bowling ball throw, golf putt).
3.4. Technique Analysis, Intensity Measures for Match Analysis, Motor Capacity Assessment, and Activity Classification
3.4.1. Technique Analysis (163 Papers)
Spatio–Temporal Parameters
Body Segment and Centre of Mass Kinematics
- performing the integration over a short time duration through proper segmentation of the task and using a priori information to reset the error at each cycle (running speed obtained from a shank sensor [328])
- assuming equal initial and final conditions for vertical velocity and position (during vertical jumping [220])
- subtracting the linear trend line over the analysed time period from the Euler angles [41]
- defining a body model and measuring body segment orientation with respect to a reference to obtain vertical and horizontal CoM displacements (with respect to the skis at take-off during ski jumping [88], with respect to the ground during a golf swing [238] and with respect to a Global Navigation Satellite System (GNSS) antenna placed over the head during alpine skiing [122])
- through data fusion with GPS based position estimates, which simultaneously compensates for short-term GPS outages (during outdoor activities such as snowboarding [333])
Body Orientation
Object orientation and kinematics
- bowling (ball velocity [180])
- cricket bowling (outward acceleration at ball release [288])
- ice hockey (puck velocity [309])
- fencing (foil speed during lounge and touche [329])
- gymnastics vaulting (springboard kinematics during jump on and take-off [187])
- javelin throw (javelin kinematics during the throw [270])
- kayaking (instantaneous boat velocity [169])
- shot-put (shot acceleration [139])
- softball (ball’s velocity at release [221])
- tennis (consistency of backhand, forehand, overhand swings [301])
- outdoor running (path incline [162])
- uphill mountaineering (ski slope orientation [121])
Dynamics and Power
Spectral Analysis
Technique Analysis Objectives
- pacing strategy, determination by stride/step/stroke rates assessment (detailed references in the spatio–temporal parameters section)
- evaluation of the adherence of a movement technique to appropriate normative data (performance model) for both injury management and performance enhancement [52]
- investigation into the effect on performance of varying the sports objects characteristics (e.g., effect of ball size on player reaction and racket acceleration during the tennis volley [59])
- use of technical information to match equipment with athlete, or in crew selection processes (kayaking [260])
- monitoring fatigue during running [295]
3.4.2. Match Analysis and Load Monitoring/Physical Demands Assessment (61 Papers)
- assessing the effect of playing position (American football [317], Australian Football [73,137,178], handball [210], netball [86,99], rugby [128,130], rugby sevens [296], soccer [152,277]), playing level (elite and sub elite: Australian Football [73], soccer [109,277]), numerical advantage (soccer [235]), playing time [311], playing standard (Australian Football [98], badminton [113], rugby [129,131]), and age group (tennis [163])
- assessing the effect of match score on activity profile and skill performance (Australian football [298])
- assessing the contribution of running to external load, through a correlation analysis of distance covered (field hockey [253])
- assessing the number of collisions and repeated high-intensity efforts [128]
- determining the best load assessment according to training mode (rugby [316])
- inferring information about internal load (soccer [144])
- assessing the impact of playing experience on internal load, as estimated through the external load [137]
3.4.3. Motor Capacity Assessment (51 Papers)
3.4.4. Activity Classification (19 Papers)
- the identification of different movement patterns through simple visual inspection (cross-country skiing [215])
- the identification/evaluation of techniques and styles/tricks [154,164,268], specific movement phases [114], and events (player tackles and collisions during rugby matches [176], putt detection and characterization for golf training progress [171], arm action and ball release performed by cricket fast bowlers during training and competition [227], eventually used for the detection of illegal events [195,322])
- automatic classification of training backgrounds and experience levels in runners [184].
3.5. Device Characteristics
4. Discussion
4.1. General Trends
4.2. Technological Advancements and Future Developments
4.3. Guidelines and Standards
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.; McBain, T.; Portas, M.; Spears, I. Measurement in sports biomechanics. Meas. Control 2012, 45, 182–186. [Google Scholar] [CrossRef]
- Li, R.T.; Kling, S.R.; Salata, M.J.; Cupp, S.A.; Sheehan, J.; Voos, J.E. Wearable performance devices in sports medicine. Sports Health 2016, 8, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Ohgi, Y.; James, D.A. Sensor fusion: Let’s enhance the performance of performance enhancement. Procedia Eng. 2012, 34, 795–800. [Google Scholar] [CrossRef]
- Mendes, J.J.A.; Vieira, M.E.M.; Pires, M.B.; Stevan, S.L. Sensor fusion and smart sensor in sports and biomedical applications. Sensors 2016, 16, 1569. [Google Scholar] [CrossRef] [PubMed]
- Baca, A. Innovative diagnostic methods in elite sport. Int. J. Perform. Anal. Sport 2017, 6, 148–156. [Google Scholar] [CrossRef]
- Knight, J.F.; Bristow, H.W.; Anastopoulou, S.; Baber, C.; Schwirtz, A.; Arvanitis, T.N. Uses of accelerometer data collected from a wearable system. Pers. Ubiquitous Comput. 2007, 11, 117–132. [Google Scholar] [CrossRef]
- Wagner, J.F. About Motion Measurement in Sports Based on Gyroscopes and Accelerometers—An Engineering Point of View. Gyroscopy Navig. 2018, 9, 1–18. [Google Scholar] [CrossRef]
- De Magalhaes, F.A.; Vannozzi, G.; Gatta, G.; Fantozzi, S. Wearable inertial sensors in swimming motion analysis: A systematic review. J. Sports Sci. 2015, 33, 732–745. [Google Scholar] [CrossRef] [PubMed]
- Callaway, A.; Cobb, J.; Jones, I. A comparison of video and accelerometer based approaches applied to performance monitoring in swimming. Int. J. Sports Sci. Coach. 2009, 4, 139–153. [Google Scholar] [CrossRef]
- Higginson, B.K. Methods of running gait analysis. Curr. Sports Med. Rep. 2009, 8, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Norris, M.; Anderson, R.; Kenny, I.C. Method analysis of accelerometers and gyroscopes in running gait: A systematic review. J. Sports Eng. Technol. 2014, 228, 3–15. [Google Scholar] [CrossRef]
- McMaster, D.T.; Gill, N.; Cronin, J.; McGuigan, M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014, 44, 603–623. [Google Scholar] [CrossRef] [PubMed]
- Dugan, E.L.; Doyle, T.L.A.; Humphries, B.; Hasson, C.J.; Newton, R.U. Determining the optimal load for jump squats: A review of methods and calculations. J. Strength Cond. Res. 2004, 18, 668–674. [Google Scholar] [CrossRef]
- Aughey, R.J. Applications of GPS technologies to field sports. Int. J. Sports Physiol. Perform. 2011, 6, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.; Orr, R.; O’Connor, H.; West, C. Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Med. 2013, 43, 1025–1042. [Google Scholar] [CrossRef] [PubMed]
- Dellaserra, C.L.; Gao, Y.; Ransdell, L. Use of integrated technology in team sports: A review of opportunities, challenges, and future directions for athletes. J. Strength Cond. Res. 2014, 28, 556–573. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.T.U.; Scott, T.J.; Kelly, V.G. The validity and reliability of global positioning systems in team sport. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Waegli, A.; Skaloud, J. Optimization of two GPS/MEMS-IMU integration strategies with application to sports. GPS Solut. 2009, 13, 315–326. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability and Health (ICF); World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Sabatini, A.M. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 2011, 11, 1489–1525. [Google Scholar] [CrossRef] [PubMed]
- Luinge, H.J.; Veltink, P.H. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med. Biol. Eng. Comput. 2005, 43, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A.M. Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Med. Biol. Eng. Comput. 2005, 43, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Le Sage, T.; Bindel, A.; Conway, P.P.; Justham, L.M.; Slawson, S.E.; West, A.A. Embedded programming and real-time signal processing of swimming strokes. Sports Eng. 2011, 14, 1–14. [Google Scholar] [CrossRef]
- Hamill, J.; Caldwell, G.E.; Derrick, T.R. Reconstructing digital signals using Shannon’s sampling theorem. J. Appl. Biomech. 1997, 13, 226–238. [Google Scholar] [CrossRef]
- Woodman, O. An Introduction to Inertial Navigation; UCAM-CL-TR; University of Cambridge: Cambridge, UK, 2007. [Google Scholar]
- Camomilla, V.; Dumas, R.; Cappozzo, A. Human movement analysis: The soft tissue artefact issue. J. Biomech. 2017, 62, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Inoue, Y.; Shibata, K. Measurement of soft tissue deformation to improve the accuracy of a body-mounted motion sensor. J. Med. Devices 2009, 3, 35001. [Google Scholar] [CrossRef]
- Lafortune, M.A. Three-dimensional acceleration of the tibia during walking and running. J. Biomech. 1991, 24, 877–886. [Google Scholar] [CrossRef]
- Cereatti, A.; Bonci, T.; Akbarshahi, M.; Aminian, K.; Barré, A.; Begon, M.; Benoit, D.L.; Charbonnier, C.; Dal Maso, F.; Fantozzi, S.; et al. Standardization proposal of soft tissue artefact description for data sharing in human motion measurements. J. Biomech. 2017, 62, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Nokes, L.; Fairclough, J.A.; Mintowt-Czyz, W.J.; Mackie, I.; Williams, J. Vibration analysis of human tibia: The effect of soft tissue on the output from skin-mounted accelerometers. J. Biomed. Eng. 1984, 6, 223–226. [Google Scholar] [CrossRef]
- Forner-Cordero, A.; Mateu-Arce, M.; Forner-Cordero, I.; Alcántara, E.; Moreno, J.C.; Pons, J.L. Study of the motion artefacts of skin-mounted inertial sensors under different attachment conditions. Physiol. Meas. 2008, 29, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Decker, C.; Prasad, N.; Kawchuk, G.N. The reproducibility of signals from skin-mounted accelerometers following removal and replacement. Gait Posture 2011, 34, 432–434. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, E.; Yun, X.; Peterson, C. An investigation of the effects of magnetic variations on inertial/magnetic orientation sensors. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; pp. 1115–1122. [Google Scholar]
- Kalman, R. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, A. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar]
- Mahony, R.; Hamel, T.; Pflimlin, J. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. [Google Scholar] [CrossRef] [Green Version]
- Cereatti, A.; Della Croce, U.; Sabatini, A.M. Three-dimensional human kinematics estimation using magneto-inertial measurement units. In Hand Book of Human Motion; Müller, B., Wolf, S.I., Eds.; Springer: Berlin, Germany, 2017; pp. 1–24. [Google Scholar]
- Walker, J.A. Estimating velocities and accelerations of animal locomotion: A simulation experiment comparing numerical differentiation algorithms. J. Exp. Biol. 1998, 201, 981–995. [Google Scholar]
- Yuan, Q.; Chen, I. Localization and velocity tracking of human via 3 IMU sensors. Sens. Actuators A Phys. 2014, 212, 25–33. [Google Scholar] [CrossRef]
- Myklebust, H.; Gløersen, Ø.; Hallén, J. Validity of ski skating center-of-mass displacement measured by a single inertial measurement unit. J. Appl. Biomech. 2015, 31, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Faber, G.S.; Kingma, I.; van Dieën, J.H. Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors. J. Biomech. 2010, 43, 1432–1436. [Google Scholar] [CrossRef] [PubMed]
- Krüger, A.; McAlpine, P.; Borrani, F.; Edelmann-Nusser, J. Determination of three-dimensional joint loading within the lower extremities in snowboarding. J. Eng. Med. 2011, 226, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Cochrane Book Series; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Seshadri, D.R.; Drummond, C.; Craker, J.; Rowbottom, J.R.; Voos, J.E. Wearable devices for sports: New integrated technologies allow coaches, physicians, and trainers to better understand the physical demands of athletes in real time. IEEE Pulse 2017, 8, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, H.G.; Lee, J.; James, D.A. The inertial sensor: A base platform for wider adoption in sports science applications. J. Fit. Res. 2015, 4, 13–20. [Google Scholar]
- Armstrong, S. Wireless connectivity for health and sports monitoring: A review. Br. J. Sports Med. 2007, 41, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. Quantifying the physical demands of collision sports. J. Strength Cond. Res. 2013, 27, 2319–2322. [Google Scholar] [CrossRef] [PubMed]
- Mooney, R.; Corley, G.; Godfrey, A.; Quinlan, L.; ÓLaighin, G. Inertial sensor technology for elite swimming performance analysis: A systematic review. Sensors 2016, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P. Good practice rules for the assessment of the force-velocity relationship in isoinertial resistance exercises. Asian J. Sports Med. 2017, 8, e15590. [Google Scholar]
- Dadashi, F.; Millet, G.P.; Aminian, K. Inertial measurement unit and biomechanial analysis of swimming: An update. Swiss J. Sports Med. Sports Traumatol. 2013, 61, 28–33. [Google Scholar]
- Ahmadi, A.; Mitchell, E.; Richter, C.; Destelle, F.; Gowing, M.; O’Connor, N.E.; Moran, K. Towards automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2015, 2, 23–32. [Google Scholar] [CrossRef]
- Ahmadi, A.; Rowlands, D.D.; James, D.A. Development of inertial and novel marker-based techniques and analysis for upper arm rotational velocity measurements in tennis. Sports Eng. 2010, 12, 179–188. [Google Scholar] [CrossRef]
- Ahmadi, A.; Rowlands, D.; James, D.A. Towards a wearable device for skill assessment and skill acquisition of a tennis player during the first serve. Sports Eng. 2010, 2, 129–136. [Google Scholar] [CrossRef]
- Akins, J.S.; Heebner, N.R.; Lovalekar, M.; Sell, T.C. Reliability and validity of instrumented soccer equipment. J. Appl. Biomech. 2015, 31, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.P.; Hopkinson, T.L.; Wundersitz, D.W.T.; Serpell, B.G.; Mara, J.K.; Ball, N.B. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J. Strength Cond. Res. 2016, 30, 3007–3013. [Google Scholar] [CrossRef] [PubMed]
- Ammann, R.; Taube, W.; Wyss, T. Accuracy of PARTwear inertial sensor and Optojump optical measurement system for measuring ground contact time during running. J. Strength Cond. Res. 2016, 30, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Harrison, A.; Lyons, G.M. Accelerometry-based feedback—Can it improve movement consistency and performance in rowing? Sports Biomech. 2005, 4, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Andrew, D.P.S.; Chow, J.W.; Knudson, D.V.; Tillman, M.D. Effect of ball size on player reaction and racket acceleration during the tennis volley. J. Sci. Med. Sport 2003, 6, 102–112. [Google Scholar] [CrossRef]
- Atkinson, M.; Rosalie, S.; Netto, K. Physical demand of seven closed agility drills. Sports Biomech. 2016, 15, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Auvinet, B.; Gloria, E.; Renault, G.; Barrey, E. Runner’s stride analysis: Comparison of kinematic and kinetic analyses under field conditions. Sci. Sports 2002, 17, 92–94. [Google Scholar] [CrossRef]
- Avvenuti, M.; Cesarini, D.; Cimino, M.G.C.A. MARS, a multi-agent system for assessing rowers’ coordination via motion-based stigmergy. Sensors 2013, 13, 12218–12243. [Google Scholar] [CrossRef] [PubMed]
- Bächlin, M.; Tröster, G. Swimming performance and technique evaluation with wearable acceleration sensors. Pervasive Mob. Comput. 2012, 8, 68–81. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Kuzdub, M.; Poveda-Ortiz, P.; Campo-Vecino, J. Del Validity and reliability of the PUSH wearable device to measure movement velocity during the back squat exercise. J. Strength Cond. Res. 2016, 30, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; Tejero-Gonzalez, C.M.; Del Campo-Vecino, J.; Alonso-Curiel, D. The effects of a maximal power training cycle on the strength, maximum power, vertical jump height and acceleration of high-level 400-meter hurdlers. J. Hum. Kinet. 2013, 36, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.; Midgley, A.W.; Towlson, C.; Garrett, A.; Portas, M.; Lovell, R. Within-match PlayerLoad patterns during a simulated soccer match: Potential implications for unit positioning and fatigue management. Int. J. Sports Physiol. Perform. 2016, 11, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.; Midgley, A.; Lovell, R. PlayerLoad™: Reliability, convergent validity, and influence of unit position during treadmill running. Int. J. Sports Physiol. Perform. 2014, 9, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Beanland, E.; Main, L.C.; Aisbett, B.; Gastin, P.; Netto, K. Validation of GPS and accelerometer technology in swimming. J. Sci. Med. Sport 2014, 17, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, E.; Guillon, P.; Camomilla, V.; Pillet, H.; Skalli, W.; Cappozzo, A. Trunk inclination estimate during the sprint start using an inertial measurement unit: A validation study. J. Appl. Biomech. 2013, 29, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Bergamini, E.; Picerno, P.; Pillet, H.; Natta, F.; Thoreux, P.; Camomilla, V. Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit. J. Biomech. 2012, 45, 1123–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamini, E.; Morelli, F.; Marchetti, F.; Vannozzi, G.; Polidori, L.; Paradisi, F.; Traballesi, M.; Cappozzo, A.; Delussu, A.S. Wheelchair propulsion biomechanics in junior basketball players: A method for the evaluation of the efficacy of a specific training program. BioMed Res. Int. 2015, 2015, 275965. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, E.M.R.; Elvin, N.G.; Elvin, A.A.; Arnoczky, S.P. Peak impact accelerations during track and treadmill running. J. Appl. Biomech. 2013, 29, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.J.; Ball, K.; Aughey, R.J. Quantifying external load in australian football matches and training using accelerometers. Int. J. Sports Physiol. Perform. 2013, 8, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.J.; Ball, K.; Aughey, R.J. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int. J. Sports Physiol. Perform. 2011, 6, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.; Walmsley, A.; Page, W. Fusion motion capture: A prototype system using inertial measurement units and GPS for the biomechanical analysis of ski racing. Sports Technol. 2008, 1, 17–28. [Google Scholar] [CrossRef]
- Brown, N.; Bichler, S.; Alt, W. Detecting repetitions and time features in resistance training using triaxial accelerometry. Sports Technol. 2015, 8, 35–43. [Google Scholar] [CrossRef]
- Buchheit, M.; Morin, J. Assessing stride variables and vertical stiffness with GPS embedded accelerometers preliminary insights for the monitoring of neuromuscular fatigue on the field. J. Sports Sci. Med. 2015, 14, 698–701. [Google Scholar] [PubMed]
- Buddhadev, H.H.; Vingren, J.L.; Duplanty, A.A.; Hill, D.W. Mechanisms underlying the reduced performance measures from using equipment with a counterbalance weight system. J. Strength Cond. Res. 2012, 26, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Buśko, K.; Staniak, Z.; Szark-Eckardt, M.; Nikolaidis, P.T.; Mazur-Rózycka, J.; Łach, P.; Michalski, R.; Gajewski, J.; Górski, M. Measuring the force of punches and kicks among combat sport athletes using a modified punching bag with an embedded accelerometer. Acta Bioeng. Biomech. 2016, 18, 47–54. [Google Scholar] [PubMed]
- Callaway, A.J. Measuring kinematic variables in front crawl swimming using accelerometers: A validation study. Sensors 2015, 15, 11363–11386. [Google Scholar] [CrossRef] [PubMed]
- Callaway, A.J.; Cobb, J.E. Linear acceleration measurement utilizing inter-instrument synchronization: A comparison between accelerometers and motion-based tracking approaches. Meas. Phys. Educ. Exerc. Sci. 2012, 16, 151–163. [Google Scholar] [CrossRef]
- Caruso, J.F.; Olson, N.M.; Taylor, S.T.; McLagan, J.R.; Shepherd, C.M.; Borgsmiller, J.A.; Mason, M.L.; Riner, R.R.; Gilliland, L.; Grisewold, S. Front squat data reproducibility collected with a triple-axis accelerometer. J. Strength Cond. Res. 2012, 26, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Casartelli, N.; Müller, R.; Maffiuletti, N.A. Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height. J. Strength Cond. Res. 2010, 24, 3186–3193. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Ganzetti, M.; Ditroilo, M.; Giovannelli, M.; Rocchetti, A.; Mazi, V. Concurrent validity of vertical jump performance assessment systems. J. Strength Cond. Res. 2013, 27, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Chakravorti, N.; Le Sage, T.; Slawson, S.E.; Conway, P.P.; West, A.A. Design and implementation of an integrated performance monitoring tool for swimming to extract stroke information at real time. IEEE Trans. Hum.-Mach. Syst. 2013, 43, 199–213. [Google Scholar] [CrossRef]
- Chandler, P.T.; Pinder, S.J.; Curran, J.D.; Gabbett, T.J. Physical demands of training and competition in collegiate netball players. J. Strength Cond. Res. 2014, 28, 2732–2737. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.F.; Laymon, A.S.; Wilhite, D.P.; McKenzie, J.M.; Tanner, D.A.; Stager, J.M. Ground contact time as an indicator of metabolic cost in elite distance runners. Med. Sci. Sports Exerc. 2012, 44, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Chardonnens, J.; Favre, J.; Cuendet, F.; Gremion, G.; Aminian, K. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system. J. Sports Sci. 2014, 32, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Chardonnens, J.; Favre, J.; Cuendet, F.; Gremion, G.; Aminian, K. Characterization of lower-limbs inter-segment coordination during the take-off extension in ski jumping. Hum. Mov. Sci. 2013, 32, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Chardonnens, J.; Favre, J.; Cuendet, F.; Gremion, G.; Aminian, K. A system to measure the kinematics during the entire ski jump sequence using inertial sensors. J. Biomech. 2013, 46, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Chardonnens, J.; Favre, J.; Le Callennec, B.; Cuendet, F.; Gremion, G.; Aminian, K. Automatic measurement of key ski jumping phases and temporal events with a wearable system. J. Sports Sci. 2012, 30, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Charlton, P.C.; Kenneally-Dabrowski, C.; Sheppard, J.; Spratford, W. A simple method for quantifying jump loads in volleyball athletes. J. Sci. Med. Sport 2017, 20, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Choukou, M.A.; Laffaye, G.; Taiar, R. Reliability and validity of an accele-rometric system for assessing vertical jumping performance. Biol. Sport 2014, 31, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.J.C.; Fuss, F.K.; Subic, A. Activity identification and classification in wheelchair rugby using fractal dimensions. Sports Eng. 2017, 20, 1–15. [Google Scholar] [CrossRef]
- Cockcroft, J.; Muller, J.; Scheffer, C. Robust tracking of bicycle crank angles using magneto-inertial sensors, domain constraints and functional frame alignment techniques. J. Sports Eng. Technol. 2016, 1–10. [Google Scholar] [CrossRef]
- Cockcroft, J.; Muller, J.H.; Scheffer, C. A novel complimentary filter for tracking hip angles during cycling using wireless inertial sensors and dynamic acceleration estimation. IEEE Sens. J. 2014, 14, 2864–2871. [Google Scholar] [CrossRef]
- Comstock, B.A.; Solomon-Hill, G.; Flanagan, S.D.; Earp, J.E.; Luk, H.-Y.; Dobbins, K.A.; Dunn-Lewis, C.; Fragala, M.S.; Ho, J.-Y.; Hatfield, D.L.; et al. Validity of the Myotest® in measuring force and power production in the squat and bench press. J. Strength Cond. Res. 2011, 25, 2293–2297. [Google Scholar] [CrossRef] [PubMed]
- Cormack, S.J.; Mooney, M.G.; Morgan, W.; McGuigan, M.R. Influence of neuromuscular fatigue on accelerometer load in elite Australian football players. Int. J. Sports Physiol. Perform. 2013, 8, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Cormack, S.J.; Smith, R.L.; Mooney, M.M.; Young, W.B.; O’Brien, B.J. Accelerometer load as a measure of activity profile in different standards of netball match play. Int. J. Sports Physiol. Perform. 2014, 9, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Crewther, B.T.; Cunningham, D.J.; Cook, C.; Owen, N. Validating two systems for estimating force and power. Int. J. Sports Med. 2011, 32, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.; Orr, R. Analysis of physical collisions in elite national rugby league match play. Int. J. Sports Physiol. Perform. 2015, 10, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Cunniffe, B.; Proctor, W.; Baker, J.S.; Davies, B. An evaluation of the physiological demands of elite rugby union using global positioning system tracking software. J. Strength Cond. Res. 2009, 23, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.V.C.; de Moura Simim, M.A.; Marocolo, M.; Franchini, E.; da Mota, G.R. Optimal load for the peak power and maximal strength of the upper body in Brazilian Jiu-Jitsu athletes. J. Strength Cond. Res. 2015, 29, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, F.; Millet, G.P.; Aminian, K. A Bayesian approach for pervasive estimation of breaststroke velocity using a wearable IMU. Pervasive Mob. Comput. 2015, 19, 37–46. [Google Scholar] [CrossRef]
- Dadashi, F.; Millet, G.P.; Aminian, K. Gaussian process framework for pervasive estimation of swimming velocity with body-worn IMU. Electron. Lett. 2013, 49, 44–45. [Google Scholar] [CrossRef]
- Dadashi, F.; Crettenand, F.; Millet, G.P.; Aminian, K. Front-crawl instantaneous velocity estimation using a wearable inertial measurement unit. Sensors 2012, 12, 12927–12939. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, F.; Crettenand, F.; Millet, G.P.; Seifert, L.; Komar, J.; Aminian, K. Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. J. Sports Sci. 2013, 31, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, F.; Millet, G.P.; Aminian, K. Front-crawl stroke descriptors variability assessment for skill characterization. J. Sports Sci. 2016, 34, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Dalen, T.; Ingebrigtsen, J.; Ettema, G.; Hjelde, G.H.; Wisløff, U. Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. J. Strength Cond. Res. 2016, 30, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Davey, N.; Anderson, M.; James, D.A. Validation trial of an accelerometer-based sensor platform for swimming. Sports Technol. 2008, 1, 202–207. [Google Scholar] [CrossRef]
- Davies, M.J.; Young, W.; Farrow, D.; Bahnert, A. Comparison of small-sided games on agility demands in elite australian football. Int. J. Sports Physiol. Perform. 2013, 8, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Portillo, J.; Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Areces, F. Caffeinated energy drinks improve high-speed running in elite field hockey players. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Dieu, O.; Vanhelst, J.; Bui-Xuân, G.; Blondeau, T.; Fardy, P.S.; Mikulovic, J. Relationship between tactics and energy expenditure according to level of experience in badminton. Percept. Mot. Skills 2014, 119, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Dovgalecs, V.; Boulanger, J.; Seifert, L.; Orth, D.; Hérault, R.; Coeurjolly, J.F.; Davids, K. Movement phase detection in climbing. Sports Technol. 2014, 7, 174–182. [Google Scholar] [CrossRef]
- Dowling, A.V.; Favre, J.; Andriacchi, T.P. A wearable system to assess risk for anterior cruciate ligament injury during jump landing: Measurements of temporal events, jump height, and sagittal plane kinematics. J. Biomech. Eng. 2011, 133, 071008. [Google Scholar] [CrossRef] [PubMed]
- Dubus, G. Evaluation of four models for the sonification of elite rowing. J. Multimodal User Interfaces 2012, 5, 143–156. [Google Scholar] [CrossRef]
- Elvin, N.G.; Elvin, A.A.; Arnoczky, S.P. Correlation between ground reaction force and tibial acceleration in vertical jumping. J. Appl. Biomech. 2007, 23, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Enders, H.; von Tscharner, V.; Nigg, B.M. The effects of preferred and non-preferred running strike patterns on tissue vibration properties. J. Sci. Med. Sport 2014, 17, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, S.; Giovanardi, A.; de Magalhaes, F.A.; Di Michele, R.; Cortesi, M.; Gatta, G. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J. Sports Sci. 2016, 34, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Fasel, B.; Favre, J.; Chardonnens, J.; Gremion, G.; Aminian, K. An inertial sensor-based system for spatio-temporal analysis in classic cross-country skiing diagonal technique. J. Biomech. 2015, 48, 3199–3205. [Google Scholar] [CrossRef] [PubMed]
- Fasel, B.; Praz, C.; Kayser, B.; Aminian, K. Measuring spatio-temporal parameters of uphill ski-mountaineering with ski-fixed inertial sensors. J. Biomech. 2016, 49, 3052–3055. [Google Scholar] [CrossRef] [PubMed]
- Fasel, B.; Spörri, J.; Gilgien, M.; Boffi, G.; Chardonnens, J.; Müller, E.; Aminian, K. Three-dimensional body and centre of mass kinematics in alpine ski racing using differential GNSS and inertial sensors. Remote Sens. 2016, 8, 671. [Google Scholar] [CrossRef]
- Flores, F.J.; Sedano, S.; de Benito, A.M.; Redondo, J.C. Validity and reliability of a 3-axis accelerometer for measuring weightlifting movements. Int. J. Sports Sci. Coach. 2016, 11, 872–879. [Google Scholar] [CrossRef]
- Fulton, S.K.; Pyne, D.B.; Burkett, B. Quantifying freestyle kick-count and kick-rate patterns in Paralympic swimming. J. Sports Sci. 2009, 27, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Fulton, S.K.; Pyne, D.B.; Burkett, B. Optimizing kick rate and amplitude for Paralympic swimmers via net force measures. J. Sports Sci. 2011, 29, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Fulton, S.K.; Pyne, D.B.; Burkett, B. Validity and reliability of kick count and rate in freestyle using inertial sensor technology. J. Sports Sci. 2009, 27, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.; Gahan, C. Repeated high-intensity effort activity in relation to tries scored and conceded during rugby league match-play. Int. J. Sports Physiol. Perform. 2016, 11, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. Relationship between accelerometer load, collisions, and repeated high-intensity effort activity in rugby league players. J. Strength Cond. Res. 2015, 29, 3424–3431. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. Influence of the opposing team on the physical demands of elite rugby league match play. J. Strength Cond. Res. 2013, 27, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. Sprinting patterns of national rugby league competition. J. Strength Cond. Res. 2012, 26, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. Influence of playing standard on the physical demands of junior rugby league tournament match-play. J. Sci. Med. Sport 2014, 17, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Influence of wrestling on the physiological and skill demands of small-sided games. J. Strength Cond. Res. 2012, 26, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Physical collisions and injury in professional rugby league match-play. J. Sci. Med. Sport 2011, 14, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Physical demands of professional rugby league training and competition using microtechnology. J. Sci. Med. Sport 2012, 15, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Abernethy, B.; Jenkins, D.G. Influence of field size on the physiological and skill demands of small-sided games in junior and senior rugby league players. J. Strength Cond. Res. 2012, 26, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Gageler, W.H.; Wearing, S.; James, D.A.; Grove, K. Automatic jump detection method for athlete monitoring and performance in volleyball. Int. J. Perform. Anal. Sport 2015, 15, 284–296. [Google Scholar] [CrossRef]
- Gallo, T.; Cormack, S.; Gabbett, T.; Williams, M.; Lorenzen, C. Characteristics impacting on session rating of perceived exertion training load in Australian footballers. J. Sports Sci. 2015, 33, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Gandy, E.A.; Bondi, A.; Hogg, R.; Pigott, T.M.C. A preliminary investigation of the use of inertial sensing technology for the measurement of hip rotation asymmetry in horse riders. Sports Technol. 2014, 7, 79–88. [Google Scholar] [CrossRef]
- Gao, Z.; Song, B.; Liu, M.; Song, G.; Sun, W.; Ge, Y. Design and application of a multidimensional acceleration sensor for coaching of shot-put athletes. Sens. Actuators A Phys. 2009, 149, 213–220. [Google Scholar] [CrossRef]
- García-Pérez, J.A.; Pérez-Soriano, P.; Llana Belloch, S.; Lucas-Cuevas, A.G.; Sánchez-Zuriaga, D.; Lucas-Cuevas, Á.G.; Sánchez-Zuriaga, D. Effects of treadmill running and fatigue on impact acceleration in distance running. Sports Biomech. 2014, 13, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Gašic, T.; Bubanj, S.; Živković, M.; Stanković, R.; Bubanj, R.; Obradović, B. Difference in the explosive strength of upper extremities between athletes in relation to their sport activity, type of engagement in sport and gender. Sport Sci. 2011, 4, 63–67. [Google Scholar]
- Gastin, P.B.; Mclean, O.C.; Breed, R.V.P.; Spittle, M. Tackle and impact detection in elite Australian football using wearable microsensor technology. J. Sports Sci. 2014, 32, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Gastin, P.B.; McLean, O.; Spittle, M.; Breed, R.V.P. Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. J. Sci. Med. Sport 2013, 16, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, P.; Iaia, F.M.; Strudwick, A.J.; Hawkins, R.D.; Alberti, G.; Atkinson, G.; Gregson, W. Factors influencing perception of effort (session-RPE) during elite soccer training. Int. J. Sports Physiol. Perform. 2015, 10, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Gescheit, D.T.; Cormack, S.J.; Reid, M.; Duffield, R. Consecutive days of prolonged tennis match play: Performance, physical, and perceptual responses in trained players. Int. J. Sports Physiol. Perform. 2015, 10, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, H.; Jafari, R. Coordination analysis of human movements with body sensor networks: A signal processing model to evaluate baseball swings. IEEE Sens. J. 2011, 11, 603–610. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Loseu, V.; Jafari, R. Wearable coach for sport training: A quantitative model to evaluate wrist-rotation in golf. J. Ambient Intell. Smart Environ. 2009, 1, 173–184. [Google Scholar]
- Giandolini, M.; Poupard, T.; Gimenez, P.; Horvais, N.; Millet, G.Y.; Morin, J.B.; Samozino, P. A simple field method to identify foot strike pattern during running. J. Biomech. 2014, 47, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Gindre, C.; Lussiana, T.; Hebert-Losier, K.; Morin, J.B. Reliability and validity of the Myotest® for measuring running stride kinematics. J. Sports Sci. 2016, 34, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Giroux, C.; Rabita, G.; Chollet, D.; Guilhem, G. What is the best method for assessing lower limb force-velocity relationship? Int. J. Sports Med. 2014, 36, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Piriz, P.T.; Sanchez, E.T.; Manrique, D.C.; Gonzalez, E.P. Reliability and comparability of the accelerometer and the linear position measuring device in resistance training. J. Strength Cond. Res. 2012, 27, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.V.; Figueira, B.E.; Maçãs, V.; Sampaio, J. Effect of player position on movement behaviour, physical and physiological performances during an 11-a-side football game. J. Sports Sci. 2014, 32, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Gouttebarge, V.; Wolfard, R.; Griek, N.; De Ruiter, C.J.; Boschman, J.S.; VanDieën, J.H. Reproducibility and validity of the myotest for measuring step frequency and ground contact time in recreational runners. J. Hum. Kinet. 2015, 45, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Groh, B.H.; Flaschka, J.; Wirth, M.; Kautz, T.; Fleckenstein, M.; Eskofier, B.M. Wearable real-time skateboard trick visualization and its community perception. IEEE Comput. Graph. Appl. 2016, 36, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Gullstrand, L.; Halvorsen, K.; Tinmark, F.; Eriksson, M.; Nilsson, J. Measurements of vertical displacement in running, a methodological comparison. Gait Posture 2009, 30, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Hagem, R.M.; O’Keefe, S.G.; Fickenscher, T.; Thiel, D.V. Self contained adaptable optical wireless communications system for stroke rate during swimming. IEEE Sens. J. 2013, 13, 3144–3151. [Google Scholar] [CrossRef]
- Hamill, J.; Derrick, T.R.; Holt, K.G. Shock attenuation and stride frequency during running. Hum. Mov. Sci. 1995, 14, 45–60. [Google Scholar] [CrossRef]
- Hang, Y.S.; Lippert, F.G.; Spolek, G.A.; Frankel, V.H.; Harrington, R.M. Biomechanical study of the pitching elbow. Int. Orthop. 1979, 3, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.W.; Mackintosh, C.G.; Martin, D.T.; Hahn, A.G.; James, D.A. Automated scoring for elite half-pipe snowboard competition: Important sporting development or techno distraction? Sports Technol. 2009, 1, 277–290. [Google Scholar] [CrossRef]
- Hausswirth, C.; Le Meur, Y.; Couturier, A.; Bernard, T.; Brisswalter, J. Accuracy and repeatability of the Polar® RS800sd to evaluate stride rate and running speed. Int. J. Sports Med. 2009, 30, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Helten, T.; Brock, H.; Muller, M.; Seidel, H.P. Classification of trampoline jumps using inertial sensors. Sports Eng. 2011, 14, 155–164. [Google Scholar] [CrossRef]
- Herren, R.; Sparti, A.; Aminian, K.; Schutz, Y. The prediction of speed and incline in outdoor running in humans using accelerometry. Med. Sci. Sports Exerc. 1999, 31, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, M.; Baumgart, C.; Freiwald, J. Do running activities of adolescent and adult tennis players differ during play? Int. J. Sport Nutr. Exerc. Metab. 2011, 11, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Hou, P. The study on swimming exercises based on 3D accelerometer data analysis. Int. J. Adv. Comput. Technol. 2012, 4, 239–245. [Google Scholar]
- Hurst, H.T.; Atkins, S.; Kirk, C. Reliability of a portable accelerometer for measuring workload during mixed martial arts. J. Athl. Enhanc. 2014, 3, 5. [Google Scholar]
- Innocenti, B.; Facchielli, D.; Torti, S.; Verza, A. Analysis of biomechanical quantitites during a squat jump: Evaluation of a performance index. J. Strength Cond. Res. 2006, 20, 709–715. [Google Scholar] [PubMed]
- Jaitner, T.; Schmidt, M.; Nolte, K.; Rheinlander, C.; Wille, S.; Wehn, N. Vertical jump diagnosis for multiple athletes using a wearable inertial sensor unit. Sports Technol. 2015, 8, 51–57. [Google Scholar] [CrossRef]
- James, D.A.; Leadbetter, R.I.; Neeli, M.R.; Burkett, B.J.; Thiel, D.V.; Lee, J.B. An integrated swimming monitoring system for the biomechanical analysis of swimming strokes. Sports Technol. 2011, 4, 141–150. [Google Scholar] [CrossRef]
- Janssen, I.; Sachlikidis, A. Validity and reliability of intra-stroke kayak velocity and acceleration using a GPS-based accelerometer. Sports Biomech. 2010, 9, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Jarning, J.M.; Mok, K.M.; Hansen, B.H.; Bahr, R. Application of a tri-axial accelerometer to estimate jump frequency in volleyball. Sports Biomech. 2015, 14, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Jensen, U.; Schmidt, M.; Hennig, M.; Dassler, F.A.; Jaitner, T.; Eskofier, B.M. An IMU-based mobile system for golf putt analysis. Sports Eng. 2015, 18, 123–133. [Google Scholar] [CrossRef]
- Jidovtseff, B.; Croisier, J.; Lhermerout, C. The concept of iso-inertial assessment: Reproducibility analysis and descriptive data. Isokinet. Exerc. Sci. 2006, 14, 53–62. [Google Scholar]
- Jones, I.C.; Miller, D.I. Influence of fulcrum position on springboard response and takeoff performance in the running approach. J. Appl. Biomech. 1996, 12, 383–408. [Google Scholar] [CrossRef]
- Kawabata, M.; Goto, K.; Fukusaki, C.; Sasaki, K.; Hihara, E.; Mizushina, T.; Ishii, N. Acceleration patterns in the lower and upper trunk during running. J. Sports Sci. 2013, 31, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Keaney, E.; Withers, S.; Parker-Simmons, S.; Gastin, P.; Netto, K. The training load of aerial skiing. Int. J. Perform. Anal. Sport 2016, 16, 726–736. [Google Scholar] [CrossRef]
- Kelly, D.; Coughlan, G.F.; Green, B.S.; Caulfield, B. Automatic detection of collisions in elite level rugby union using a wearable sensing device. Sports Eng. 2012, 15, 81–92. [Google Scholar] [CrossRef]
- Kelly, P.; Conaire, C.O.; O’Connor, N.E.; Hodgins, J. Motion synthesis for sports using unobtrusive lightweight body-worn and environment sensing. Comput. Graph. Forum 2013, 32, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Kempton, T.; Sullivan, C.; Bilsborough, J.C.; Cordy, J.; Coutts, A.J. Match-to-match variation in physical activity and technical skill measures in professional Australian Football. J. Sci. Med. Sport 2015, 18, 109–113. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Hough, J.; McGinnis, R.; Perkins, N.C. A new technology for resolving the dynamics of a swinging bat. Sports Eng. 2012, 15, 41–52. [Google Scholar] [CrossRef]
- King, K.; Perkins, N.C.; Churchill, H.; McGinnis, R.; Doss, R.; Hickland, R. Bowling ball dynamics revealed by miniature wireless MEMS inertial measurement unit. Sports Eng. 2011, 13, 95–104. [Google Scholar] [CrossRef]
- King, K.; Yoon, S.W.; Perkins, N.C.; Najafi, K. Wireless MEMS inertial sensor system for golf swing dynamics. Sens. Actuators A Phys. 2008, 141, 619–630. [Google Scholar] [CrossRef]
- Kirk, C.; Hurst, H.T.; Atkins, S. Measuring the workload of mixed martial arts using accelerometry, time motion analysis and lactate. Int. J. Perform. Anal. Sport 2015, 15, 359–370. [Google Scholar] [CrossRef]
- Kirk, C.; Hurst, H.; Atkins, S. Comparison of the training loads of mixed martial arts techniques in isolated training and open sparring. J. Combat Sports Martial Arts 2015, 6, 15–20. [Google Scholar] [CrossRef]
- Kobsar, D.; Osis, S.T.; Hettinga, B.A.; Ferber, R. Classification accuracy of a single tri-axial accelerometer for training background and experience level in runners. J. Biomech. 2014, 47, 2508–2511. [Google Scholar] [CrossRef] [PubMed]
- Koda, H.; Sagawa, K.; Kuroshima, K.; Tsukamoto, T.; Urita, K.; Ishibashi, Y. 3D measurement of forearm and upper arm during throwing motion using body mounted sensor. J. Adv. Mech. Des. Syst. Manuf. 2010, 4, 167–178. [Google Scholar] [CrossRef]
- Koshida, S.; Urabe, Y.; Miyashita, K.; Iwai, K.; Kagimori, A. Muscular outputs during dynamic bench press under stable versus unstable conditions. J. Strength Cond. Res. 2008, 22, 1584–1588. [Google Scholar] [CrossRef] [PubMed]
- Križaj, D.; Čuk, I. Can miniature accelerometers attached to the gymnastics springboard be used for take-off analysis? Sci. Gymnast. J. 2015, 7, 69–80. [Google Scholar]
- Krüger, A.; Edelmann-Nusser, J. Biomechanical analysis in freestyle snowboarding: Application of a full-body inertial measurement system and a bilateral insole measurement system. Sports Technol. 2009, 2, 17–23. [Google Scholar] [CrossRef]
- Krüger, A.; Edelmann-Nusser, J. Application of a full body inertial measurement system in alpine skiing: A comparison with an optical video based system. J. Appl. Biomech. 2010, 26, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Laffaye, G.; Collin, J.M.; Levernier, G.; Padulo, J. Upper-limb power test in rock-climbing. Int. J. Sports Med. 2014, 35, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Le Bris, R.; Billat, V.; Auvinet, B.; Chaleil, D.; Hamard, L.; Barrey, E. Effect of fatigue on stride pattern continuously measured by an accelerometric gait recorder in middle distance runners. J. Sports Med. Phys. Fit. 2006, 46, 227–231. [Google Scholar]
- Le Sage, T.; Conway, P.; Cossor, J.; Slawson, S.; West, A. A wireless sensor system for monitoring the performance of a swimmer’s tumble turn. J. Sports Eng. Technol. 2013, 227, 161–171. [Google Scholar] [CrossRef]
- Le Sage, T.; Conway, P.; Slawson, S.; West, A. Development of a wireless sensor network for use as an automated system for monitoring swimming starts. J. Sports Eng. Technol. 2013, 227, 184–195. [Google Scholar] [CrossRef]
- Lee, J.B.; Mellifont, R.B.; Burkett, B.J. The use of a single inertial sensor to identify stride, step, and stance durations of running gait. J. Sci. Med. Sport 2010, 13, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Mellifont, R.B.; Burkett, B.J.; James, D.A. Detection of illegal race walking: A tool to assist coaching and judging. Sensors 2013, 13, 16065–16074. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Sutter, K.J.; Askew, C.D.; Burkett, B.J. Identifying symmetry in running gait using a single inertial sensor. J. Sci. Med. Sport 2010, 13, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Leadbetter, R.; Ohgi, Y.; Thiel, D.; Burkett, B.; James, D.A. Quantifying and assessing biomechanical differences in swim turn using wearable sensors. Sports Technol. 2011, 4, 128–133. [Google Scholar] [CrossRef]
- Leite, M.A.; Sasaki, J.E.; Lourenço, C.L.M.; Zanetti, H.R.; Cruz, L.G.; da Mota, G.R.; Mendes, E.L. Medicine ball throw test predicts arm power in rugby sevens players. Rev. Bras. Cineantropometria Desempenho Hum. 2016, 18, 166–176. [Google Scholar] [CrossRef]
- Lesinski, M.; Muehlbauer, T.; Granacher, U. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players. BMC Sports Sci. Med. Rehabil. 2016, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.P.; Sung, W.H.; Kuo, T.B.J.; Chen, J.J. Development and application of gravity acceleration measurement in running kinematic analysis. ICIC Express Lett. 2015, 9, 1349–1354. [Google Scholar]
- Lin, S.-P.; Sung, W.-H.; Kuo, F.-C.; Kuo, T.B.J.; Chen, J.-J. Impact of center-of-mass acceleration on the performance of ultramarathon runners. J. Hum. Kinet. 2014, 44, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, T.R.; Noakes, T.D.; McGregor, S.J. Effect of treadmill versus overground running on the structure of variability of stride timing. Percept. Mot. Skills 2014, 118, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, T.R.; Yaggie, J.A.; McGregor, S.J. A wireless accelerometer node for reliable and valid measurement of lumbar accelerations during treadmill running. Sports Biomech. 2016, 15, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Little, C.; Lee, J.B.J.J.B.; James, D.A.; Davison, K. An evaluation of inertial sensor technology in the discrimination of human gait. J. Sports Sci. 2013, 31, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Llosa, J.; Vilajosana, I.; Vilajosana, X.; Navarro, N.; Suriach, E.; Marqus, J.M. REMOTE, a wireless sensor network based system to monitor rowing performance. Sensors 2009, 9, 7069–7082. [Google Scholar] [CrossRef] [PubMed]
- Lomond, K.V.; Turcotte, R.A.; Pearsall, D.J. Three-dimensional analysis of blade contact in an ice hockey slap shot, in relation to player skill. Sports Eng. 2007, 10, 87–100. [Google Scholar] [CrossRef]
- Losnegard, T.; Myklebust, H.; Skattebo, O.; Stadheim, H.K.; Sandbakk, Ø.; Hallén, J. The influence of pole length on performance, O2 cost, and kinematics in double poling. Int. J. Sports Physiol. Perform. 2017, 12, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Lovell, T.W.J.; Sirotic, A.C.; Impellizzeri, F.M.; Coutts, A.J. Factors affecting perception of effort (session rating of perceived exertion) during rugby league training. Int. J. Sports Physiol. Perform. 2013, 8, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Lowery, R.P.; Joy, J.M.; Brown, L.E.; Oliveira de Souza, E.; Wistocki, D.R.; Davis, G.S.; Naimo, M.A.; Zito, G.A.; Wilson, J.M. Effects of static stretching on 1-mile uphill run performance. J. Strength Cond. Res. 2014, 28, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Luteberget, L.S.; Spencer, M. High-intensity events in international women’s team handball matches. Int. J. Sports Physiol. Perform. 2017, 12, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Macdermid, P.W.; Fink, P.W.; Stannard, S.R. Transference of 3D accelerations during cross country mountain biking. J. Biomech. 2014, 47, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Macdermid, P.W.; Fink, P.W.; Stannard, S.R. The effects of vibrations experienced during road vs off-road cycling. Int. J. Sports Med. 2015, 36, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Magnúsdóttir, Á.; Þorgilsson, B.; Karlsson, B. Comparing three devices for jump height measurement in a heterogeneous group of subjects. J. Strength Cond. Res. 2014, 28, 2837–2844. [Google Scholar] [CrossRef] [PubMed]
- Marin-Perianu, R.; Marin-Perianu, M.; Havinga, P.; Taylor, S.; Begg, R.; Palaniswami, M.; Rouffet, D. A performance analysis of a wireless body-area network monitoring system for professional cycling. Pers. Ubiquitous Comput. 2013, 17, 197–209. [Google Scholar] [CrossRef]
- Marsland, F.; Lyons, K.; Anson, J.; Waddington, G.; Macintosh, C.; Chapman, D. Identification of cross-country skiing movement patterns using micro-sensors. Sensors 2012, 12, 5047–5066. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.S.; Rhodes, J.M.; Goosey-Tolfrey, V.L. Validity and reliability of an inertial sensor for wheelchair court sports performance. J. Appl. Biomech. 2014, 30, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Mattes, K.; Schaffert, N. New measuring and on water coaching device for rowing. J. Hum. Sport Exerc. 2010, 5, 226–239. [Google Scholar] [CrossRef]
- Mauch, M.; Rennbahn, P.A.; nat Hans-Joachim Rist, R.; Xaver Kaelin, M. Reliability and validity of two measurement systems in the quantification of jump performance. Schweiz. Z. Sportmed. Sporttraumatol. 2014, 62, 57–63. [Google Scholar]
- McCurdy, K.W.; Walker, J.L.; Langford, G.A.; Kutz, M.R.; Guerrero, J.M.; McMillan, J. The relationship between kinematic determinants of jump and sprint performance in division I women soccer players. J. Strength Cond. Res. 2010, 24, 3200–3208. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, R.S.; Cain, S.M.; Davidson, S.P.; Vitali, R.V.; Perkins, N.C.; McLean, S.G. Quantifying the effects of load carriage and fatigue under load on sacral kinematics during countermovement vertical jump with IMU-based method. Sports Eng. 2016, 19, 21–34. [Google Scholar] [CrossRef]
- McGinnis, R.S.; Perkins, N.C. A highly miniaturized, wireless inertial measurement unit for characterizing the dynamics of pitched baseballs and softballs. Sensors 2012, 12, 11933–11945. [Google Scholar] [CrossRef]
- McGrath, D.; Greene, B.R.; O’Donovan, K.J.; Caulfield, B. Gyroscope-based assessment of temporal gait parameters during treadmill walking and running. Sports Eng. 2012, 15, 207–213. [Google Scholar] [CrossRef]
- McGregor, S.J.; Busa, M.A.; Skufca, J.; Yaggie, J.A.; Bollt, E.M. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners. Chaos 2009, 19, 26109. [Google Scholar] [CrossRef] [PubMed]
- McGregor, S.J.; Busa, M.A.; Yagie, J.A.; Bollt, E.M. High resolution MEMS accelerometers to estimate VO2 and compare running mechanics between highly trained inter-collegiate and untrained runners. PLoS ONE 2009, 4, e7355. [Google Scholar] [CrossRef] [PubMed]
- McLellan, C.P.; Lovell, D.I. Neuromuscular responses to impact and collision during elite rugby league match play. J. Strength Cond. Res. 2012, 26, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- McLellan, C.P.; Lovell, D.I.; Gass, G.C. Performance analysis of elite rugby league match play using global positioning systems. J. Strength Cond. Res. 2011, 25, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- McNamara, D.J.; Gabbett, T.J.; Chapman, P.; Naughton, G.; Farhart, P. The validity of microsensors to automatically detect bowling events and counts in cricket fast bowlers. Int. J. Sports Physiol. Perform. 2015, 10, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Meamarbashi, A.; Hossaini, S.R.A. Application of novel inertial technique to compare the kinematics and kinetics of the legs in the soccer instep kick. J. Hum. Kinet. 2010, 23, 5–13. [Google Scholar] [CrossRef]
- Mercer, J.A.; Devita, P.; Derrick, T.R.; Bates, B.T. Individual effects of stride length and frequency on shock attenuation during running. Med. Sci. Sports Exerc. 2003, 35, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Mercer, J.A.; Vance, J.; Hreljac, A.; Hamill, J. Relationship between shock attenuation and stride length during running at different velocities. Eur. J. Appl. Physiol. 2002, 87, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Michahelles, F.; Schiele, B. Sensing and monitoring professional skiers. IEEE Pervasive Comput. 2005, 4, 40–46. [Google Scholar] [CrossRef]
- Mitchell, E.; Monaghan, D.; O’Connor, N.E. Classification of sporting activities using smartphone accelerometers. Sensors 2013, 13, 5317–5337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnet, T.; Decatoire, A.; Lacouture, P. Comparison of algorithms to determine jump height and flight time from body mounted accelerometers. Sports Eng. 2014, 17, 249–259. [Google Scholar] [CrossRef]
- Montgomery, P.G.; Pyne, D.B.; Minahan, C.L. The physical and physiological demands of basketball training and competition. Int. J. Sports Physiol. Perform. 2010, 5, 75–86. [Google Scholar] [PubMed]
- Moreira, G.P.; de Oliveira, C.I.J.; Greco, P.J. Numerical superiority changes the physical demands of soccer players during small-sided games. Rev. Bras. Cineantropometria Desempenho Hum. 2015, 17, 269–279. [Google Scholar]
- Myers, D. Relationship of anthropometric measurements and body composition to upper-body power in baseball players. Mo. J. Health Phys. Educ. Recreat. Dance 2012, 22, 5–11. [Google Scholar]
- Myklebust, H.; Losnegard, T.; Hallén, J. Differences in V1 and V2 ski skating techniques described by accelerometers. Scand. J. Med. Sci. Sports 2014, 24, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Najafi, B.; Lee-Eng, J.; Wrobel, J.S.; Goebel, R. Estimation of center of mass trajectory using wearable sensors during golf swing. J. Sports Sci. Med. 2015, 14, 354–363. [Google Scholar] [PubMed]
- Nakano, G.; Iino, Y.; Imura, A.; Kojima, T. Transfer of momentum from different arm segments to a light movable target during a straight punch thrown by expert boxers. J. Sports Sci. 2014, 32, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, N.J.; Robinson, M.A.; Eusterwiemann, E.; Drust, B.; Lisboa, P.J.; Vanrenterghem, J. The relationship between whole-body external loading and body-worn accelerometry during team-sport movements. Int. J. Sports Physiol. Perform. 2017, 12, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, N.J.; Kersting, U.; Lake, M. Using accelerometry to quantify deceleration during a high-intensity soccer turning manoeuvre. J. Sports Sci. 2014, 32, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Neville, J.G.; Rowlands, D.D.; Lee, J.B.; James, D.A. A model for comparing over-ground running speed and accelerometer derived step rate in elite level athletes. IEEE Sens. J. 2016, 16, 185–191. [Google Scholar] [CrossRef]
- Norris, M.; Kenny, I.C.; Anderson, R. Comparison of accelerometry stride time calculation methods. J. Biomech. 2016, 49, 3031–3034. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; Anning, J.H.; Scharfenberg, J.M. The reliability of three devices used for measuring vertical jump height. J. Strength Cond. Res. 2011, 25, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Connor, S.O.; McCaffrey, N.; Whyte, E.; Moran, K. The novel use of a SenseCam and accelerometer to validate training load and training information in a self-recall training diary. J. Sports Sci. 2016, 34, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Ohgi, Y.; Ichikawa, H.; Homma, M.; Miyaji, C. Stroke phase discrimination in breaststroke swimming using a tri-axial acceleration sensor device. Sports Eng. 2003, 6, 113–123. [Google Scholar] [CrossRef]
- Ohgi, Y.; Ichikawa, H.; Miyaji, C. Microcomputer-based acceleration sensor device for swimming stroke monitoring. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2002, 45, 960–966. [Google Scholar] [CrossRef]
- Omkar, S.N.; Vanjare, A.M.; Suhith, H.; Kumar, G.S. Motion analysis for short and long jump. Int. J. Perform. Anal. Sport 2012, 12, 132–143. [Google Scholar] [CrossRef]
- Page, R.; Marrin, K.; Brogden, C.; Greig, M. Biomechanical and physiological response to a contemporary soccer match-play simulation. J. Strength Cond. Res. 2015, 29, 2860–2866. [Google Scholar] [CrossRef] [PubMed]
- Pansiot, J.; Zhang, Z.; Lo, B.; Yang, G. WISDOM: Wheelchair inertial sensors for displacement and orientation monitoring. Meas. Sci. Technol. 2011, 22, 105801. [Google Scholar] [CrossRef]
- Picerno, P.; Camomilla, V.; Capranica, L. Countermovement jump performance assessment using a wearable 3D inertial measurement unit. J. Sports Sci. 2011, 29, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Iannetta, D.; Comotto, S.; Donati, M.; Pecoraro, F.; Zok, M.; Tollis, G.; Figura, M.; Varalda, C.; Di Muzio, D.; et al. 1RM prediction: A novel methodology based on the force-velocity and load-velocity relationships. Eur. J. Appl. Physiol. 2016, 116, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Polgaze, T.; Dawson, B.; Hiscock, D.J.; Peeling, P. A comparative analysis of acceleromter and time motion data in elite mens hockey training and competition. Int. J. Sports Physiol. Perform. 2015, 10, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Praz, C.; Fasel, B.; Vuistiner, P.; Aminian, K.; Kayser, B. Optimal slopes and speeds in uphill ski mountaineering: A laboratory study. Eur. J. Appl. Physiol. 2016, 116, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Praz, C.; Fasel, B.; Vuistiner, P.; Aminian, K.; Kayser, B. Optimal slopes and speeds in uphill ski mountaineering: A field study. Eur. J. Appl. Physiol. 2016, 116, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Pruyn, E.C.; Watsford, M.L.; Murphy, A.J. Differences in lower-body stiffness between levels of netball competition. J. Strength Cond. Res. 2015, 29, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Requena, B.; Garcia, I.; Requena, F.; Bressel, E.; Saez-Saez de Villarreal, E.; Cronin, J. Association between traditional standing vertical jumps and a soccer-specific vertical jump. Eur. J. Sport Sci. 2014, 14, S398–S405. [Google Scholar] [CrossRef] [PubMed]
- Requena, B.; Requena, F.; García, I.; de Villarreal, E.S.S.; Pääsuke, M. Reliability and validity of a wireless microelectromechanicals based system (KeimoveTM) for measuring vertical jumping performance. J. Sports Sci. Med. 2012, 11, 115–122. [Google Scholar] [PubMed]
- Ritchie, D.; Hopkins, W.G.; Buchheit, M.; Cordy, J.; Bartlett, J.D. Quantification of training and competition load across a season in an elite Australian Football club. Int. J. Sports Physiol. Perform. 2016, 11, 474–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.G.; Holt, L.E.; Pelham, T.W.; Furneaux, K. Accelerometry measurements of sprint kayaks: The coaches’ new tool. Int. J. Coach. Sci. 2011, 5, 45–56. [Google Scholar]
- Rontu, J.P.; Hannula, M.I.; Leskinen, S.; Linnamo, V.; Salmi, J.A. One-repetition maximum bench press performance estimated with a new accelerometer method. J. Strength Cond. Res. 2010, 24, 2018–2025. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.V.; Stone, M.R.; Eston, R.G. Influence of speed and step frequency during walking and running on motion sensor output. Med. Sci. Sports Exerc. 2007, 39, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, D.D.; James, D.A.; Lee, J.B. Visualization of wearable sensor data during swimming for performance analysis. Sports Technol. 2013, 6, 130–136. [Google Scholar] [CrossRef]
- Rowlands, D.D.; James, D.A.; Thiel, D. Bowler analysis in cricket using centre of mass inertial monitoring. Sports Technol. 2009, 2, 39–42. [Google Scholar] [CrossRef]
- Ruben, R.M.; Molinari, M.A.; Bibbee, C.A.; Childress, M.A.; Harman, M.S.; Reed, K.P.; Haff, G.G. The acute effects of an ascending squat protocol on performance during horizontal plyometric jumps. J. Strength Cond. Res. 2010, 24, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Sadi, F.; Klukas, R. New jump trajectory determination method using low-cost MEMS sensor fusion and augmented observations for GPS/INS integration. GPS Solut. 2013, 17, 139–152. [Google Scholar] [CrossRef]
- Sagawa, K.; Abo, S.; Tsukamoto, T.; Kondo, I. Forearm trajectory measurement during pitching motion using an elbow-mounted sensor. J. Adv. Mech. Des. Syst. Manuf. 2009, 3, 299–311. [Google Scholar] [CrossRef]
- Sakurai, Y.; Zenya, F.; Ishige, Y. Automated identification and evaluation of subtechniques in classical-style roller skiing. J. Sports Sci. Med. 2014, 13, 651–657. [Google Scholar] [PubMed]
- Saponara, S. Wearable biometric performance measurement system for combat sports. IEEE Trans. Instrum. Meas. 2017, 66, 2545–2555. [Google Scholar] [CrossRef]
- Sarkka, O.; Nieminen, T.; Suuriniemi, S.; Kettunen, L. Augmented inertial measurements for analysis of javelin throwing mechanics. Sports Eng. 2016, 19, 219–227. [Google Scholar] [CrossRef]
- Sato, K.; Sands, W.A.; Stone, M.H. The reliability of accelerometry to measure weightlifting performance. Sports Biomech. 2012, 11, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Smith, S.L.; Sands, W.A. Validation of an accelerometer for measuring sport performance. J. Strength Cond. Res. 2009, 23, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Sbriccoli, P.; Camomilla, V.; Di Mario, A.; Quinzi, F.; Figura, F.; Felici, F. Neuromuscular control adaptations in elite athletes: The case of top level karateka. Eur. J. Appl. Physiol. 2010, 108, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, A.T.; Wen, N.; Tucker, P.S.; Dalbo, V.J. The relationships between Internal and external training load models during basketball. J. Strength Cond. Res. 2014, 28, 2397–2405. [Google Scholar] [CrossRef] [PubMed]
- Schaffert, N.; Mattes, K. Designing an acoustic feedback system for on-water rowing training. Int. J. Comput. Sci. Sport 2011, 10, 71–76. [Google Scholar]
- Schütte, K.H.; Maas, E.A.; Exadaktylos, V.; Berckmans, D.; Venter, R.E.; Vanwanseele, B. Wireless tri-axial trunk accelerometry detects deviations in dynamic center of mass motion due to running-induced fatigue. PLoS ONE 2015, 10, e0141957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, B.R.; Lockie, R.G.; Knight, T.J.; Clark, A.C.; De Jonge, X.A.K.J. A comparison of methods to quantify the in-season training load of professional soccer players. Int. J. Sports Physiol. Perform. 2013, 8, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Seifert, L.; Dovgalecs, V.; Boulanger, J.; Orth, D.; Hérault, R.; Davids, K. Full-body movement pattern recognition in climbing. Sports Technol. 2014, 7, 166–173. [Google Scholar] [CrossRef]
- Seifert, L.; Orth, D.; Boulanger, J.; Dovgalecs, V.; Hérault, R.; Davids, K. Climbing skill and complexity of climbing wall design: Assessment of jerk as a novel indicator of performance fluency. J. Appl. Biomech. 2014, 30, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Seifert, L.; Wattebled, L.; Orth, D.; L’Hermette, M.; Boulanger, J.; Davids, K. Skill transfer specificity shapes perception and action under varying environmental constraints. Hum. Mov. Sci. 2016, 48, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Setuain, I.; Martinikorena, J.; Gonzalez-Izal, M.; Martinez-Ramirez, A.; Gómez, M.; Alfaro-Adrián, J.; Izquierdo, M. Vertical jumping biomechanical evaluation through the use of an inertial sensor-based technology. J. Sports Sci. 2016, 34, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.B.; Wada, T.; Rowlands, D.; James, D.A. A novel AHRS inertial sensor-based algorithm for wheelchair propulsion performance analysis. Algorithms 2016, 9, 55. [Google Scholar] [CrossRef]
- Sinclair, J.; Toth, J.; Hobbs, S.J. The influence of energy return and minimalist footwear on the kinetics and kinematics of depth jumping in relation to conventional trainers. Kinesiology 2015, 47, 11–18. [Google Scholar]
- Siska, L.; Brodáni, J.; Stefanovský, M.; Todorov, S. Basic reliability parameters of a boxing punch. J. Phys. Educ. Sport 2016, 16, 241–244. [Google Scholar]
- Slawson, S.E.; Justham, L.M.; Conway, P.P.; Le-Sage, T.; West, A.A. Characterizing the swimming tumble turn using acceleration data. J. Sports Eng. Technol. 2012, 226, 3–15. [Google Scholar] [CrossRef]
- Sleivert, G.; Taingahue, M. The relationship between maximal jump-squat power and sprint acceleration in athletes. Eur. J. Appl. Physiol. 2004, 91, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Loschner, C. Biomechanics feedback for rowing. J. Sports Sci. 2002, 20, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Spratford, W.; Portus, M.; Wixted, A.; Leadbetter, R.; James, D.A. Peak outward acceleration and ball release in cricket. J. Sports Sci. 2015, 33, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Squadrone, R.; Rodano, R.; Preatoni, E. Comparison of velocity and power output data derived from an inertial based system and an optical encoder during squat lifts in a weight room setting. J. Sports Med. Phys. Fit. 2012, 52, 40–46. [Google Scholar]
- Stamm, A.; James, D.A.; Thiel, D.V. Velocity profiling using inertial sensors for freestyle swimming. Sports Eng. 2013, 16, 1–11. [Google Scholar] [CrossRef]
- Staniak, Z.; Buśko, K.; Górski, M.; Pastuszak, A. Accelerometer profile of motion of the pelvic girdle in breaststroke swimming. J. Hum. Kinet. 2016, 52, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Starrs, P.; Chohan, A.; Fewtrell, D.; Richards, J.; Selfe, J. Biomechanical differences between experienced and inexperienced wheelchair users during sport. Prosthet. Orthot. Int. 2012, 36, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Stetter, B.J.; Buckeridge, E.; Von Tscharner, V.; Nigg, S.R.; Nigg, B.M. A novel approach to determine strides, ice contact, and swing phases during ice hockey skating using a single accelerometer. J. Appl. Biomech. 2016, 32, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Stickford, A.S.L.; Chapman, R.F.; Johnston, J.D.; Stager, J.M. Lower-leg compression, running mechanics, and economy in trained distance runners. Int. J. Sports Physiol. Perform. 2015, 10, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Strohrmann, C.; Harms, H.; Kappeler-setz, C.; Tr, G. Monitoring kinematic changes with fatigue in running using body-worn sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Arenas, C.; López, G.; Requena, B.; Terrill, O.; Mendez-Villanueva, A. Positional differences in match running performance and physical collisions in men rugby sevens. Int. J. Sports Physiol. Perform. 2014, 9, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Portillo, J.; Pareja-Blanco, F.; De Villareal, E.S.; Sánchez-Medina, L.; Munguía-Izquierdo, D. Match-play activity profile in elite women’s rugby union players. J. Strength Cond. Res. 2014, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.; Bilsborough, J.C.; Cianciosi, M.; Hocking, J.; Cordy, J.; Coutts, A.J. Match score affects activity profile and skill performance in professional Australian Football players. J. Sci. Med. Sport 2014, 17, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.; Bilsborough, J.C.; Cianciosi, M.; Hocking, J.; Cordy, J.T.; Coutts, A.J. Factors affecting match performance in professional australian football. Int. J. Sports Physiol. Perform. 2014, 9, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Supej, M. 3D measurements of alpine skiing with an inertial sensor motion capture suit and GNSS RTK system. J. Sports Sci. 2010, 28, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Li, K.F. A multimedia tennis instruction system: Tracking and classifying swing motions. Int. J. Space Based Situated Comput. 2013, 3, 155–168. [Google Scholar] [CrossRef]
- Tan, H.; Wilson, A.M.; Lowe, J. Measurement of stride parameters using a wearable GPS and inertial measurement unit. J. Biomech. 2008, 41, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-T.; Zhang, W.-Y.; Huang, C.-C.; Young, M.-S.; Hwang, I.-S. Postural tremor and control of the upper limb in air pistol shooters. J. Sports Sci. 2008, 26, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Thomas, O.; Sunehag, P.; Dror, G.; Yun, S.; Kim, S.; Robards, M.; Smola, A.; Green, D.; Saunders, P. Wearable sensor activity analysis using semi-Markov models with a grammar. Pervasive Mob. Comput. 2010, 6, 342–350. [Google Scholar] [CrossRef]
- Thompson, C.J.; Bemben, M.G. Reliability and comparability of the accelerometer as a measure of muscular power. Med. Sci. Sports Exerc. 1999, 31, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Vales-Alonso, J.; Chaves-Dieguez, D.; Lopez-Matencio, P.; Alcaraz, J.J.; Parrado-Garcia, F.J.; Gonzalez-Castano, F.J. SAETA: A smart coaching assistant for professional volleyball training. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1138–1150. [Google Scholar] [CrossRef]
- Van der Slikke, R.M.A.; Berger, M.A.M.; Bregman, D.J.J.; Lagerberg, A.H.; Veeger, H.E.J. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration. J. Biomech. 2015, 48, 3398–3405. [Google Scholar] [CrossRef] [PubMed]
- Van der Slikke, R.M.A.; Berger, M.A.M.; Bregman, D.J.J.; Veeger, H.E.J. From big data to rich data: The key features of athlete wheelchair mobility performance. J. Biomech. 2016, 49, 3340–3346. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, A.; Turcotte, R.A.; Pearsall, D.J. Recoil effect of the ice hockey stick during a slap shot. J. Appl. Biomech. 2006, 22, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Vingren, J.L.; Buddhadev, H.H.; Hill, D.W. Smith machine counterbalance system affects measures of maximal bench press throw performance. J. Strength Cond. Res. 2011, 25, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Waldron, M.; Worsfold, P.R.; Twist, C.; Lamb, K. A three-season comparison of match performances among selected and unselected elite youth rugby league players. J. Sports Sci. 2014, 32, 1110–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldron, M.; Worsfold, P.; Twist, C.; Lamb, K. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gates to assess sprint performance variables. J. Sports Sci. 2011, 29, 1613–1619. [Google Scholar] [CrossRef] [PubMed]
- Warlop, T.B.; Bollens, B.; Crevecoeur, F.; Detrembleur, C.; Lejeune, T.M. Dynamics of revolution time variability in cycling pattern: Voluntary intent can alter the long-range autocorrelations. Ann. Biomed. Eng. 2013, 41, 1604–1612. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Hokari, M. Kinematical analysis and measurement of sports form. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2006, 36, 549–557. [Google Scholar] [CrossRef]
- Watari, R.; Hettinga, B.; Osis, S.; Ferber, R. Validation of a torso-mounted accelerometer for measures of vertical oscillation and ground contact time during treadmill running. J. Appl. Biomech. 2016, 32, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Weaving, D.; Marshall, P.; Earle, K.; Nevill, A.M.; Abt, G. Combining internal- and external-training-load measures in professional rugby league. Int. J. Sports Physiol. Perform. 2014, 9, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Wellman, A.D.; Coad, S.C.; Goulet, G.C.; McLellan, C.P. Quantification of competitive game demands of NCAA division I college football players using global positioning systems. J. Strength Cond. Res. 2016, 30, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Weyand, P.G.; Kelly, M.; Blackadar, T.; Darley, J.C.; Oliver, S.R.; Ohlenbusch, N.E.; Joffe, S.W.; Hoyt, R.W. Ambulatory estimates of maximal aerobic power from foot-ground contact times and heart rates in running humans. J. Appl. Physiol. 2001, 91, 451–458. [Google Scholar] [CrossRef] [PubMed]
- White, A.; MacFarlane, N. Analysis of international competition and training in men’s field hockey by global positioning system and inertial sensor technology. J. Strength Cond. Res. 2015, 29, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.C.; Lee, J.B.; Leadbetter, R.I.; Gordon, S.J. Validation of a single inertial sensor for measuring running kinematics overground during a prolonged run. J. Fit. Res. 2016, 5, 14–23. [Google Scholar]
- Wixted, A.J.; Billing, D.C.; James, D.A. Validation of trunk mounted inertial sensors for analysing running biomechanics under field conditions, using synchronously collected foot contact data. Sports Eng. 2010, 12, 207–212. [Google Scholar] [CrossRef]
- Wixted, A.; Portus, M.; Spratford, W.; James, D. Detection of throwing in cricket using wearable sensors. Sports Technol. 2011, 4, 134–140. [Google Scholar] [CrossRef]
- Wright, B.V.; Stager, J.M. Quantifying competitive swim training using accelerometer-based activity monitors. Sports Eng. 2013, 16, 155–164. [Google Scholar] [CrossRef]
- Wundersitz, D.W.T.; Gastin, P.B.; Robertson, S.; Davey, P.C.; Netto, K.J. Validation of a trunk-mounted accelerometer to measure peak impacts during team sport movements. Int. J. Sports Med. 2015, 36, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Wundersitz, D.W.T.; Gastin, P.B.; Richter, C.; Robertson, S.J.; Netto, K.J. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running. Eur. J. Sport Sci. 2015, 15, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Wundersitz, D.W.T.; Josman, C.; Gupta, R.; Netto, K.J.; Gastin, P.B.; Robertson, S. Classification of team sport activities using a single wearable tracking device. J. Biomech. 2015, 48, 3975–3981. [Google Scholar] [CrossRef] [PubMed]
- Wunsch, T.; Kröll, J.; Stöggl, T.; Schwameder, H. Effects of a structured midsole on spatio-temporal variables and running economy in overground running. Eur. J. Sport Sci. 2017, 17, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Mohr, C.; Li, Q. Ambulatory running speed estimation using an inertial sensor. Gait Posture 2011, 34, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Yiou, E.; Do, M.C. In a complex sequential movement, what component of the motor program is improved with intensive practice, sequence timing or ensemble motor learning? Exp. Brain Res. 2001, 137, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, K.; Yi, J. Rider trunk and bicycle pose estimation with fusion of force/inertial sensors. IEEE Trans. Biomed. Eng. 2013, 60, 2541–2551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, K.; Yi, J.; Liu, T.; Pan, Q. Whole-body pose estimation in human bicycle riding using a small set of wearable sensors. IEEE/ASME Trans. Mechatron. 2016, 21, 163–174. [Google Scholar] [CrossRef]
- Zhao, Y.; Gerhard, D.; Barden, J. Periodicity-based swimming performance feature extraction and parameter estimation. Sports Eng. 2015, 18, 177–189. [Google Scholar] [CrossRef]
- Zihajehzadeh, S.; Loh, D.; Lee, T.J.; Hoskinson, R.; Park, E.J. A cascaded Kalman filter-based GPS/MEMS-IMU integration for sports applications. Measurement 2015, 73, 200–210. [Google Scholar] [CrossRef]
- Zorko, M.; Nemec, B.; Babič, J.; Lešnik, B.; Supej, M. The waist width of skis influences the kinematics of the knee joint in alpine skiing. J. Sports Sci. Med. 2015, 14, 606–619. [Google Scholar] [PubMed]
- Yuan, Q.; Chen, I.M. Human velocity and dynamic behavior tracking method for inertial capture system. Sens. Actuators A Phys. 2012, 183, 123–131. [Google Scholar] [CrossRef]
- Kelly, S.J.; Murphy, A.J.; Watsford, M.L.; Austin, D.; Rennie, M. Reliability and validity of sports accelerometers during static and dynamic testing. Int. J. Sports Physiol. Perform. 2015, 10, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, P.; Wilson, G.; Logan, P. Strength and power assessment. Issues, controversies and challenges. Sports Med. 1995, 19, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.; Wilson, G.; Carlyon, B. Generality versus specificity: A comparison of dynamic and isometric measures of strength and speed-strength. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Belli, A.; Astrua, M.; Tihanyi, J.; Pozzo, R.; Kellis, S.; Tsarpela, O.; Foti, C.; Manno, R.; Tranquilli, C. A dynamometer for evaluation of dynamic muscle work. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Roe, M.; Malone, S.; Blake, C.; Collins, K.; Gissane, C.; Büttner, F.; Murphy, J.C.; Delahunt, E. A six stage operational framework for individualising injury risk management in sport. Inj. Epidemiol. 2017, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [PubMed]
- #SportTechieTrends: 80+ Industry Experts Share the Sports Technology Trends and Innovations to Watch in 2017. Available online: https://www.sporttechie.com/sporttechietrends-80-industry-experts-share-the-sports-technology-trends-and-innovations-to-watch-in-2017/ (accessed on 12 March 2018).
- Statistics & Facts on Wearable Technology. Available online: https://www.statista.com/topics/1556/wearable-technology/ (accessed on 12 March 2018).
- Zervos, H.; Chansin, G.; Hayward, J. Wearable Technology 2017–2027: Markets, Players, Forecasts: IDTechEx; IDTechEx: Cambridge, UK, 2017. [Google Scholar]
- Bughin, L.; Chui, M.; Manyika, J. Ten IT-Enabled Business Trends for the Decade Ahead; McKinsey Quarterly: Seattle, WA, USA, 2013. [Google Scholar]
- Fuss, F.K. Instrumentation of athletes and equipment during competitions. Sports Technol. 2009, 1, 235–236. [Google Scholar] [CrossRef]
- Lightman, K. Silicon gets sporty. IEEE Spectr. 2016, 53, 48–53. [Google Scholar] [CrossRef]
- Hynes, G.; O’Grady, M.; O’Hare, G. Towards accessible technologies for coaching. Int. J. Sports Sci. Coach. 2013, 8, 105–114. [Google Scholar] [CrossRef]
- Mooney, R.; Corley, G.; Godfrey, A.; Osborough, C.; Newell, J.; Quinlan, L.R.; ÓLaighin, G. Analysis of swimming performance: Perceptions and practices of US-based swimming coaches. J. Sports Sci. 2016, 34, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Ringuet-Riot, C.J.; Hahn, A.; James, D.A. A structured approach for technology innovation in sport. Sports Technol. 2013, 6, 137–149. [Google Scholar] [CrossRef]
- Baca, A.; Dabnichki, P.; Heller, M.; Kornfeind, P. Ubiquitous computing in sports: A review and analysis. J. Sports Sci. 2009, 27, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Ringuet-Riot, C.; Carter, S.; James, D.A. Programmed innovation in team sport using needs driven innovation. Procedia Eng. 2014, 72, 817–822. [Google Scholar] [CrossRef]
- Zok, M. Inertial sensors are changing the games. In Proceedings of the 2014 International Symposium on Inertial Sensors and Systems (ISISS), Laguna Beach, CA, USA, 25–26 February 2014; pp. 1–3. [Google Scholar]
- Wells, D.; Cereatti, A.; Camomilla, V.; Donnelly, C.; Elliott, B.; Alderson, J. A calibration procedure for MIMU sensors allowing for the calculation of elbow angles. In Proceedings of the 33rd Annual Conference of the International Society of Biomechanics in Sport, Poitiers, France, 29 June–3 July 2015; Volume 33, pp. 1326–1329. [Google Scholar]
- Hummel, O.; Fehr, U.; Ferger, K. Beyond ibeer-exploring the potential of smartphone sensors for performance diagnostics in sports. Int. J. Comput. Sci. Sport 2013, 12, 46–60. [Google Scholar]
- Oliveira, D.S.; Afonso, J.A. A smartphone-based multi-sensor wireless platform for cycling performance monitoring. In IAENG Transactions on Engineering Sciences: Special Issue for the International Association of Engineers Conferences 2015; Ao, S., Chan, A.H., Katagiri, H., Xu, L., Eds.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2016; pp. 322–335. [Google Scholar]
- Baca, A.; Kornfeind, P.; Preuschl, E.; Bichler, S.; Tampier, M.; Novatchkov, H. A server-based mobile coaching system. Sensors 2010, 10, 10640–10662. [Google Scholar] [CrossRef] [PubMed]
- Andreoni, G.; Standoli, C.E.; Paolo, P.P. Defining requirements and related methods for designing sensorized garments. Sensors 2016, 16, 769. [Google Scholar] [CrossRef] [PubMed]
- Vasilyev, P.; Pearson, S.; El-Gohary, M.; Aboy, M.; McNames, J. Inertial and time-of-arrival ranging sensor fusion. Gait Posture 2017, 54, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A.; Genovese, V. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements. Sensors 2014, 14, 13324–13347. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Oh, S. A barometer-IMU fusion method for vertical velocity and height estimation. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–4. [Google Scholar]
- Liebermann, D.G.; Katz, L.; Hughes, M.D.; Bartlett, R.M.; McClements, J.; Franks, I.M. Advances in the application of information technology to sport performance. J. Sports Sci. 2002, 20, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Umek, A.; Zhang, Y.; Tomažič, S.; Kos, A. Suitability of strain gage sensors for integration into smart sport equipment: A golf club example. Sensors 2017, 17, 916. [Google Scholar] [CrossRef] [PubMed]
- Vales-Alonso, J.; Ĺopez-Matencio, P.; Gonzalez-Castãno, F.J.; Navarro-Helĺin, H.; Bãnos-Guirao, P.J.; Perez-Martinez, F.J.; Martinez-Álvarez, R.P.; González-Jiménez, D.; Gil-Castiñeira, F.; Duro-Ferńandez, R. Ambient intelligence systems for personalized sport training. Sensors 2010, 10, 2359–2385. [Google Scholar] [CrossRef] [PubMed]
- James, D.A.; Fanella, L.; Cusani, R. Near Real Time Network Simulation for Team Sports Monitoring. Procedia Eng. 2013, 60, 422–427. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Barnes, J.; Guenterberg, E.; Jafari, R. A phonological expression for physical movement monitoring in body sensor networks. In Proceedings of the 2008 5th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2008), Atlanta, GA, USA, 29 September–2 October 2008; pp. 58–68. [Google Scholar]
- Baca, A. Adaptive systems in sports. In Social Networks and the Economics of Sports; Springer International Publishing: Cham, Switzerland, 2014; pp. 115–124. [Google Scholar]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Validation of power measurement techniques in dynamic lower body resistance exercises. J. Appl. Biomech. 2007, 23, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Lames, M.; McGarry, T. On the search for reliable performance indicators in game sports. Int. J. Perform. Anal. Sport 2007, 7, 62–79. [Google Scholar] [CrossRef]
- James, D.A.; Lee, J.B. The increasing adoption of consumer grade wearables: Comparing the apples and oranges of sport science. J. Fit. Res. 2016, 5, 3–4. [Google Scholar]
- Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A.M. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks. Sensors 2014, 14, 18625–18649. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Cereatti, A.; Cappozzo, A. A spot check for assessing static orientation consistency of inertial and magnetic sensing units. Gait Posture 2011, 33, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Syed, Z.F.; Aggarwal, P.; Goodall, C.; Niu, X.; El-Sheimy, N. A new multi-position calibration method for MEMS inertial navigation systems. Meas. Sci. Technol. 2007, 18, 1897–1970. [Google Scholar] [CrossRef]
- Fong, W.T.; Ong, S.K.; Nee, A.Y.C. Methods for in-field user calibration of an inertial measurement unit without external equipment. Meas. Sci. Technol. 2008, 19, 85202. [Google Scholar] [CrossRef]
- Olivares, A.; Olivares, G.; Gorriz, J.M.; Ramirez, J. High-efficiency low-cost accelerometer-aided gyroscope calibration. In Proceedings of the International Conference on Test and Measurement, Hong Kong, China, 5–6 December 2009; pp. 354–360. [Google Scholar]
- Gebre-Egziabher, D.; Elkaim, G.H.; Powell, J.D.; Parkinson, B.W. A non-linear, two-step estimation algorithm for calibrating solid-state strapdown magnetometers. In Proceedings of the 8th International Conference on Integrated Navigation Systems, St. Petersburg, Russia, 27–31 May 2001; pp. 290–297. [Google Scholar]
- Lüken, M.; Misgeld, B.; Rüschen, D.; Leonhardt, S. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems. Sensors 2015, 15, 25919–25936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Winter, D., Ed.; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- De Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; van der Helm, F.C.T. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture 2009, 29, 535–541. [Google Scholar] [CrossRef] [PubMed]
Criteria | Definition |
---|---|
Measurement instruments | magneto-inertial sensors |
Motor tasks | tasks of interest in a sport context |
Type of assessment | included:
|
Publication type | journal papers |
Cohort under investigation | recreational, experienced, and elite athletes |
Database Keywords |
---|
Web of Science: (“accelerometry” OR “accelerometer” OR “gyroscope” OR “inertial sensor” OR “inertial measurement unit” OR “wearable sensor” OR “wearable system” OR “wearable device” OR “IMU” OR “MEMS”) AND (sport OR “baseball” OR “basketball” OR bicycling OR “boxing” OR “football” OR “golf” OR “gymnastics” OR “hockey” OR “martial arts” OR “tai ji” OR “karate” OR “taekwondo” OR “mountaineering” OR “racquet sports” OR “tennis” OR “cricket” OR “softball” OR “badminton” OR “running” OR “jogging” OR skating OR “snow sports” OR ski * OR “soccer” OR “snowboard” OR swimming OR “diving” OR “track and field” OR “volleyball” OR “weight lifting” OR “wrestling”) AND (humans OR athletes) NOT (patients OR pathology OR animals OR “physical activity” OR “energy expenditure”) limit to English |
Scopus: “accelerometry” OR “accelerometer” OR “gyroscope” OR “inertial sensor” OR “inertial measurement unit” OR “wearable sensor” OR “wearable system” OR “wearable device” OR “IMU” OR “MEMS” AND sport AND humans OR athletes AND NOT patients OR pathology OR animals OR “physical activity” OR “energy expenditure” limit to English |
Pubmed: (“accelerometry” OR “accelerometer” OR “gyroscope” OR “inertial sensor” OR “inertial measurement unit” OR “wearable sensor” OR “wearable system” OR “wearable device” OR “IMU” OR “MEMS”) AND (sports [Mesh] OR karate OR taekwondo OR “cricket” OR softball OR badminton) AND (humans [Mesh] OR athletes [Mesh]) NOT (patients OR pathology [Mesh] OR animals OR “physical activity” OR “energy expenditure”) AND “English” [Language] |
Sport Discus: (“accelerometry” OR “accelerometer” OR “gyroscope” OR “inertial sensor” OR “inertial measurement unit” OR “wearable sensor” OR “wearable system” OR “wearable device” OR “IMU” OR “MEMS”) AND (sport OR “baseball” OR “basketball” OR bicycling OR “boxing” OR “football” OR “golf” OR “gymnastics” OR “hockey” OR “martial arts” OR “tai ji” OR “karate” OR “taekwondo” OR “mountaineering” OR “racquet sports” OR “tennis” OR “cricket” OR “softball” OR “badminton” OR “running” OR “jogging” OR skating OR “snow sports” OR ski * OR “soccer” OR “snowboard” OR swimming OR “diving” OR “track and field” OR “volleyball” OR “weight lifting” OR “wrestling”) AND (humans OR athletes) NOT (patients OR pathology OR animals OR “physical activity” OR “energy expenditure”) AND (LA (English)) |
Team Sports | Other Individual Sports | Cyclic Sports | Winter and Outdoors Sports | ||||
---|---|---|---|---|---|---|---|
rugby | 20 | tennis | 7 | distance running | 46 | alpine skiing | 7 |
Australian football | 12 | golf | 5 | swimming | 34 | climbing | 5 |
soccer | 10 | weightlifting | 4 | cycling | 10 | cross-country skiing | 4 |
baseball | 5 | mixed martial arts | 3 | rowing | 8 | ski jumping | 4 |
cricket | 4 | boxing | 2 | sprint running | 3 | snowboarding | 4 |
field hockey | 4 | diving | 2 | kayaking | 2 | ski mountaineering | 3 |
volleyball | 4 | javelin throw/shot-put | 2 | race walking | 1 | aerial skiing | 1 |
ice hockey | 3 | karate | 2 | roller skiing | 1 | ||
netball | 3 | artistic gymnastics | 1 | Motor capacity | skateboarding | 1 | |
basketball | 2 | badminton | 1 | ||||
wheelchair basketball | 2 | bowling | 1 | jumping | 24 | ||
American football | 1 | fencing | 1 | overload training | 20 | ||
contact sports | 1 | horse riding | 1 | agility tests | 7 | ||
Gaelic football | 1 | shooting | 1 | ||||
handball | 1 | taekwondo | 1 | ||||
softball | 1 |
Parameter Type | Type of Assessment | Sport | ||
---|---|---|---|---|
Spatio-temporal | temporal | non-cyclic tasks | measure critical temporal events | blade–puck contact time in ice hockey |
cricket ball bowling and release | ||||
detect task phases and critical events | artistic gymnastics springboard jumps | |||
baseball swing | ||||
bowling | ||||
cricket bowling | ||||
diving trampoline jumps | ||||
golf | ||||
half-pipe snowboard | ||||
instep kick | ||||
javelin throw | ||||
karate front kick | ||||
ski jumping | ||||
soccer turning manoeuvres | ||||
swimming tumble turn and start | ||||
cyclic tasks | characterize cyclic stride/step/stroke event | cricket ball delivery | ||
kayaking | ||||
multi-person rowing | ||||
running | ||||
single sculler rowing | ||||
skating | ||||
swimming | ||||
revolution rate | bowling ball | |||
cycling | ||||
detect task phases | cross-country skiing | |||
front crawl | ||||
ice hockey skating | ||||
running on a track | ||||
running on a treadmill | ||||
sprint running | ||||
uphill mountaineering | ||||
spatial | Step/cycle length | swimming | ||
treadmill running | ||||
Centre of mass (CoM) | velocity | instantaneous | rowing | |
alpine skiing | ||||
cycling | ||||
running | ||||
simulated cross-country skiing | ||||
snowboarding | ||||
swimming | ||||
vertical jumping | ||||
average | cross-country skiing | |||
running | ||||
running cycle | ||||
swimming cycle | ||||
swimming lane | ||||
swimming turning | ||||
uphill mountaineering | ||||
displacement | forward | alpine skiing | ||
cross-country skiing | ||||
jumps while skiing, snowboarding, mountain biking | ||||
running | ||||
ski jumping | ||||
snowboarding | ||||
uphill mountaineering | ||||
vertical | running | |||
golf swing | ||||
ski jumping | ||||
acceleration | event detection and amplitude | running impacts | ||
landing from horizontal jump | ||||
tennis racket shock | ||||
variations in acceleration amplitude | running performance, economy, symmetry | |||
Objects | orientation | whole body movements | ski horizontal and V-opening angles | ski jumping |
ski inclination | alpine skiing | |||
boat–oar stroke angle | rowing | |||
boat orientation | ||||
bicycle roll and crank angle | cycling | |||
swing | club face orientation | golf | ||
bat orientation | baseball swing | |||
kinematics | whole body movements | springboard kinematics | gymnastic vaulting | |
boat kinematics | rowing | |||
oar acceleration | ||||
seat position | ||||
road incline | running | |||
shot acceleration | shot put | |||
ski velocity | ski jumping | |||
swing | bat position and linear velocity | baseball swing | ||
club head kinematics | golf | |||
racquet head forward velocity | tennis | |||
overarm throw | ball velocity at release | baseball swing | ||
softball | ||||
javelin kinematics | javelin throw | |||
sidearm/underarm movements | ball velocity | bowling | ||
cricket bowling | ||||
foil speed | fencing lounge and touche | |||
puck velocity | ice hockey | |||
Body segments | orientation | trunk rotation | aerial manoeuvres in half-pipe snowboard | |
bike riding | ||||
swimming | ||||
trunk inclination | golf swing | |||
running on a track | ||||
snowboarding | ||||
sprint start | ||||
lower limb orientation | alpine skiing | |||
ski jumping | ||||
trampoline jumps | ||||
upper limb orientation | baseball pitching | |||
running on a track | ||||
tennis | ||||
pelvis orientation | climbing | |||
ski jumping | ||||
swimming | ||||
gravity vector removal | running | |||
swimming | ||||
various tasks | ||||
kinematics | postural tremor | air pistol shooting | ||
lower limb vibrations | off-road and road cycling | |||
take off velocity and angle | standing horizontal jump | |||
shoulder, elbow, wrist displacement | baseball pitching | |||
heel lift and forearm acceleration | running | |||
tibial linear acceleration | depth jumps | |||
tibial angular and linear acceleration | instep kick | |||
tibial angular and linear velocity | ||||
pelvis jerk | climbing | |||
joint kinematics | wrist | angular displacement | swimming | |
tennis | ||||
shoulder | angular displacement | running | ||
swimming | ||||
tennis | ||||
elbow | angular displacement | swimming | ||
hip | angular displacement | cycling | ||
horse riding | ||||
karate front kick | ||||
angular velocity | karate front kick | |||
knee | angular displacement | alpine skiing | ||
ski jumping | ||||
snowboarding | ||||
angular velocity | karate front kick | |||
running | ||||
ankle | angular displacement | cycling | ||
ski jumping | ||||
soccer specific tasks | ||||
main joints | angular displacement | trampoline jumps | ||
Dynamics | dynamics | external forces | aerodynamic force | ski jumping stable flight |
dissipative forces | bowling ball | |||
ski racing | ||||
ground reaction forces | ski jumping take-off | |||
ski racing | ||||
springboard during diving | ||||
impact force | straight punch | |||
power | ski racing | |||
joint moments | elbow | baseball pitching | ||
lower limb | instep kick | |||
snowboarding turns |
Device Position | 1 | 2 | 3 | 4 | 5 | 6 |
He1 (head-helmet) | [68] | [122] | [212,302] | |||
U1 (acromion) | [58] | [303] | [119] | |||
U2 (upper arm posterior) | [80] | [53,54] | [147] | [168,185,267,295,322] | ||
U3 (upper arm) | [331] | [269] | ||||
A1 (fore arm) | [177,247,303] | [64,107,108,158,185,322] | [114,119,161,211,212,278] | |||
W1 (wrist) | [71,323] | [76,295] | [63,80,156,164,261,269,288,332] | [146,147] | [266] | [76,295] |
H1 (third metacarpal bone) | [303] | [53,158] | [301] | [119] | ||
H2 (index finger) | [303] | |||||
H3 (thumb) | [180] | |||||
T1 (sternum, clavicles) | [112] | [115] | [53,54] | [146] | [122] | |
T2 (sternum bottom) | [174,177,274,306] | |||||
T3 (navel) | [166] | |||||
T4 (upper back, T6–T10) | [56,60,63,66,67,73,74,80,86,98,99,101,102,111,130,131,132,135,137,143,152,163,165,175,183,208,225,226,231,232,234,235,240,241,242,249,253,259,274,277,296,297,311,312,317,319] | [128,129,134,136,182,295,326,330,331] | [161,178,210,215,227,266,295,333] | |||
T5 (L1–L3) | [63,84,174,177,184,191,197,223,224,320,321] | [24] | [69,70,192,193,290] | [119,212] | ||
T6 (L4, L5, sacrum, or lower back) | [155] | [61,63,67,72,80,85,110,113,162,170,190,194,196,200,201,203,213,234,237,244,273,304,332] | [147,285] | [41,88,89,90,104,105,106,107,122,168,220,248,251,257,262,263,291] | [114,199,211,238,258,278,281] | |
T7 (5 cm left of L5) | [146] | [159] | ||||
P1 (iliac crest) | [264] | [83,218,219,264,265] | [52] | |||
Th1 (great trochanter-hip) | [147] | [280] | ||||
Th2 (distal thigh) | [126] | [88,89,90,115,273] | [96] | |||
Th3 (frontal thigh) | [52,91,231] | [214,228,238,294] | ||||
Th4 (mid lateral thigh) | [331] | [122] | ||||
S1 (head of fibula) | [117,157,229,230,313] | [248,295] | ||||
S2 (medial shank) | [243] | [62,124,125,126] | [52,88,89,90,91,115,231,256,273,328] | [55,161,211,238] | ||
S3 (frontal shank) | [140,222,228] | [177,240] | [91,122,168] | [214,294] | ||
S4 (ankle) | [148,248,283,294,295] | [269] | [167] | |||
S5 (lateral shank) | [256] | |||||
S6 (lower postural shank) | [256] | [212] | ||||
F1 (shoelace) | [160,209,318] | [87,160,202,209,294,318] | [55,57,114,214,278,295] | |||
F2 (heel) | [118,148,162] | |||||
Moven suit (Xsens Technologies, The Netherlands) (He, T2, U3, A1, H1, Th2/Th4, S5/S6, F1, T6) | [43,75,138,161,188,189,292,300] |
Device position | 1 | 2 | 3 |
B1 (barbell close to handle) | [186] | [65,82,100,123,198,272,310] | [78,289] |
B2 (barbell extremity) | [172] | [150,151,271] | |
B3 (on the smith press) | [305] | ||
B4 (punching bag) | [79] | ||
B5 (weight stack) | [252,284] | ||
St1 (golf shaft) | [181] | ||
St2 (golf lower hand) | [147] | ||
St3 (golf near head) | [147] | ||
St4 (hockey puck) | [206] | [309] | |
St5 (racquet) | [59] | ||
St6 (pistol) | [303] | ||
St7 (on the shot put) | [139] | ||
St8 (frame and target) | [239] | ||
St9 (on the foil) | [329] | ||
St10 (golf on the club head) | [171] | ||
St11 (javelin) | [270] | ||
St12 (baseball/softball) | [221] | ||
L1 (wheelchair wheel) | [94,216,282] | [250,308] | |
L2 (wheelchair frame) | [308] | [71,282,307] | |
L3 (rear bike) | [302] | [330] | |
L4 (rowing seat) | [58] | ||
L5 (rowing oar) | [205,295] | ||
L6 (rowing boat) | [116,205] | [260] | |
L7 (skis) | [88,90,121,231,254,255] | ||
L8 (top of the boat) | [217,275,287] | ||
L9 (on the kayak) | [169] | ||
L10 (on the springboard) | [187] | [173] | |
L11 (roller ski/skate chassis) | [268] | [293] | |
L12 (bike seat) | [95,212] | ||
L13 (bike crank) | [95] | ||
L14 (bike frame) | [331] |
Guidelines for Magnetic and Inertial Measurement Unit Use |
---|
Quality Assessment 1. avoid ferromagnetic disturbances when possible (no iron or magnetic fields) 2. assess accuracy following specific guidelines for sensor spot checks (e.g., [371,372]) |
Calibration 3. re-calibrate accelerometers, gyroscopes [373,374,375], and magnetic sensors [376,377] to improve poor accuracy before each acquisition session when possible 4. carefully perform anatomical calibration, either functional or point-based, especially when assessing joint kinematics [38] |
Fixing 5. avoid restricting the range of movement 6. limit the movement between body and device (avoid tape) 7. for tasks entailing impacts, avoid elastic belts for fixing 8. avoid areas with “wobbling” soft tissues (fat or muscles) and areas close to joints |
Data Processing 9. low-pass filter with various cut-off frequencies depending on the analysed sport task [25,378] 10. use ad hoc algorithms to compensate for drift errors [21,371] 11. compensate ferromagnetic disturbances indoor [334,379] 12. refer to appropriate validation based on reference data or literature that is sport and task-specific 13. interpret data within the limits set by the quality assessment |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. https://doi.org/10.3390/s18030873
Camomilla V, Bergamini E, Fantozzi S, Vannozzi G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors. 2018; 18(3):873. https://doi.org/10.3390/s18030873
Chicago/Turabian StyleCamomilla, Valentina, Elena Bergamini, Silvia Fantozzi, and Giuseppe Vannozzi. 2018. "Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review" Sensors 18, no. 3: 873. https://doi.org/10.3390/s18030873
APA StyleCamomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors, 18(3), 873. https://doi.org/10.3390/s18030873