Physical Training In-Game Metrics for Cognitive Assessment: Evidence from Extended Trials with the Fitforall Exergaming Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intervention and Monitoring Games
2.2. Difficulty and Exertion Management
2.3. FitForAll In-Game Metrics
2.4. Study’s Features Based on FitForAll In-Game Metrics
2.5. Intervention
2.6. Participants
2.7. Neuropsychological Examination
2.8. Clinical Diagnosis of Participants
2.9. Data Analysis
3. Results
3.1. Statistically Significant Differences
3.2. Correlation between Metrics and Cognitive Assessments
3.3. Classification of Healthy and Non-Healthy according to In-Game Metrics
3.4. Discriminative Validity of HRMG of Cognitively Normal and MCI
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jimison, H.B.; McKanna, J.; Ambert, K.; Hagler, S.; Hatt, W.J.; Pavel, M. Models of cognitive performance based on home monitoring data. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 2010, 5234–5237. [Google Scholar] [CrossRef]
- Jimison, H.; Pavel, M. Embedded assessment algorithms within home-based cognitive computer game exercises for elders. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 6101–6104. [Google Scholar]
- Bradford, A.; Kunik, M.E.; Schulz, P.; Williams, S.P.; Singh, H. Missed and delayed diagnosis of dementia in primary care: Prevalence and contributing factors. Alzheimer’s Dis. Assoc. Disord. 2009, 23, 306–314. [Google Scholar] [CrossRef] [PubMed]
- McKanna, J.A.; Jimison, H.; Pavel, M. Divided attention in computer game play: Analysis utilizing unobtrusive health monitoring. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; Volume 2009, pp. 6247–6250. [Google Scholar]
- Chaytor, N.; Schmitter-Edgecombe, M.; Burr, R. Improving the ecological validity of executive functioning assessment. Arch. Clin. Neuropsychol. 2006, 21, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Borson, S.; Frank, L.; Bayley, P.J.; Boustani, M.; Dean, M.; Lin, P.-J.; McCarten, J.R.; Morris, J.C.; Salmon, D.P.; Schmitt, F.A.; et al. Improving dementia care: The role of screening and detection of cognitive impairment. Alzheimer’s Dement. 2013, 9, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zygouris, S.; Tsolaki, M. Computerized cognitive testing for older adults a review. Am. J. Alzheimer’s Dis. Other Demen. 2014, 30, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, J.H., Jr.; Cannon, R.L.; Nicholas, C.R.; Hall, L.; Hare, F.; Carr, E.; Dougherty, A.; Janowitz, J.; Arunthamakun, J.; Cannona, R.L.; et al. The computerized self test (CST): An interactive, internet accessible cognitive screening test for dementia. J. Alzheimer’s Dis. 2010, 20, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Canini, M.; Battista, P.; Della Rosa, P.A.; Catricalà, E.; Salvatore, C.; Gilardi, M.C.; Castiglioni, I. Computerized neuropsychological assessment in aging: Testing efficacy and clinical ecology of different interfaces. Comput. Math. Methods Med. 2014, 2014, 804723. [Google Scholar] [CrossRef]
- Valladares-Rodríguez, S.; Pérez-Rodríguez, R.; Anido-Rifón, L.; Fernández-Iglesias, M. Trends on the application of serious games to neuropsychological evaluation: A scoping review. J. Biomed. Inform. 2016, 64, 296–319. [Google Scholar] [CrossRef]
- Manera, V.; Petit, P.-D.; Derreumaux, A.; Orvieto, I.; Romagnoli, M.; Lyttle, G.; David, R.; Robert, P.H. “Kitchen and cooking”, a serious game for mild cognitive impairment and Alzheimer’s disease: A pilot study. Front. Aging Neurosci. 2015, 7, 24. [Google Scholar] [CrossRef]
- Negu, A.; Matu, S.A.; Sava, F.A.; David, D. Virtual reality measures in neuropsychological assessment: A meta-analytic review. Clin. Neuropsychol. 2016, 30, 165–184. [Google Scholar] [CrossRef]
- Robert, P.H.; Konig, A.; Amieva, H.H.; Andrieu, S.; Bremond, F.F.; Bullock, R.; Ceccaldi, M.; Dubois, B.; Gauthier, S.; Kenigsberg, P.-A.; et al. Recommendations for the use of Serious Games in people with Alzheimer’s Disease, related disorders and frailty. Front. Aging Neurosci. 2014, 6, 54. [Google Scholar] [CrossRef]
- Bellotti, F.; Kapralos, B.; Lee, K.; Moreno-Ger, P.; Berta, R. Assessment in and of Serious Games: An overview. Adv. Hum.-Comput. Interact. 2013, 2013, 1. [Google Scholar] [CrossRef] [Green Version]
- Cassady, J.C.; Johnson, R.E. Cognitive test anxiety and academic performance. Contemp. Educ. Psychol. 2002, 27, 270–295. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.; Yang, S. Defining Exergames & Exergaming. Proc. Mean. Play 2010, 2010, 21–23. [Google Scholar]
- Hagler, S.; Jimison, H.; Pavel, M. Assessing executive function using a computer game: Computational modeling of cognitive processes. IEEE J. Biomed. Health Inform. 2014, 18, 1442–1452. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, E.I.; Billis, A.S.; Mouzakidis, C.A.; Zilidou, V.I.; Antoniou, P.E.; Bamidis, P.D. Design, implementation, and wide pilot deployment of FitForAll: An easy to use exergaming platform improving physical fitness and life quality of senior citizens. IEEE J. Biomed. Health Inform. 2016, 20, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Staiano, A.E.; Calvert, S.L. The promise of exergames as tools to measure physical health. Entertain. Comput. 2011, 2, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Schoene, D.; Lord, S.R.; Verhoef, P.; Smith, S.T. A Novel Video Game–Based Device for Measuring Stepping Performance and Fall Risk in Older People. Arch. Phys. Med. Rehabil. 2011, 92, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Shen, Z.; Mei, J.; Ji, J. Parkinson’s Disease Predictive Analytics through a Pad Game Based on Personal Data. Int. J. Inf. Technol. 2013, 19, 1–17. [Google Scholar]
- Friehs, M.A.; Dechant, M.; Vedress, S.; Frings, C.; Mandryk, R.L. Effective gamification of the stop-signal task: Two controlled laboratory experiments. JMIR Serious Games 2020, 8, e17810. [Google Scholar] [CrossRef] [PubMed]
- Tarnanas, I.; Schlee, W.; Tsolaki, M. Ecological validity of virtual reality daily living activities screening for early dementia: Longitudinal study. JMIR Serious Games 2013, 1, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Tarnanas, I.; Papagiannopoulos, S.; Kazis, D.; Wiederhold, M.; Wiederhold, B.; Vuillermot, S.; Tsolaki, M. Reliability of a novel serious game using dual-task gait profiles to early characterize aMCI. Front. Aging Neurosci. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Petsani, D.; Konstantinidis, E.I.; Zilidou, V.; Bamidis, P.D. Exploring health profiles from physical and cognitive serious game analytics. In Proceedings of the 2018 2nd International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW 2018), Thessaloniki, Greece, 20–22 June 2018. [Google Scholar]
- Shute, V.; Ventura, M.; Malcolm, B.; Zapata-Rivera, D. Melding the power of serious games and embedded assessment to monitor and foster learning. In Serious Games: Mechanisms and Effects; Ritterfeld, U., Cody, M.J., Vorderer, P., Eds.; Routledge: Abington, UK, 2009. [Google Scholar]
- de Klerk, S.; Kato, P. The future value of serious games for assessment: Where do we go now? J. Appl. Test. Technol. 2017, 18, 32–37. [Google Scholar]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1094–1105. [Google Scholar] [CrossRef] [Green Version]
- Rozanska-Kirschke, A.; Kocur, P.; Wilk, M.; Dylewicz, P. The Fullerton Fitness Test as an index of fitness in the elderly. Med. Rehabil. 2006, 10, 9–16. [Google Scholar]
- Gerling, K.; Livingston, I.; Nacke, L.; Mandryk, R. Full-body motion-based game interaction for older adults. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; pp. 1873–1882. [Google Scholar]
- Borg, G.A.G. Psychophysical bases of perceived exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Bamidis, P.D.; Fissler, P.; Papageorgiou, S.G.; Zilidou, V.; Konstantinidis, E.I.; Billis, A.S.; Romanopoulou, E.; Karagianni, M.; Beratis, I.; Tsapanou, A.; et al. Gains in cognition through combined cognitive and physical training: The role of training dosage and severity of neurocognitive disorder. Front. Aging Neurosci. 2015, 7, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fountoulakis, K.N.; Tsolaki, M.; Chantzi, H.; Kazis, A. Mini mental state examination (MMSE): A validation study in Greece. Am. J. Alzheimer’s Dis. Other Demen. 2000, 15, 342–345. [Google Scholar] [CrossRef]
- Kounti, F.; Tsolaki, M.; Eleftheriou, M.; Agogiatou, C.; Karagiozi, K.; Bakoglidou, E.; Nikolaidou, E.; Nakou, S.; Poptsi, E.; Zafiropoulou, M.; et al. Administration of Montreal Cognitive Assesment (MoCA) test in Greek healthy elderly, patients with mild cognitive impairment and patients with dementia. In Proceedings of the European Conference on Psychological Assesment & 2nd International Conference of the Psychological Society of Nothern Greece, Thessaloniki, Greece, 3–6 May 2007; p. 129. [Google Scholar]
- Poptsi, E.; Kounti, F.; Karagiozi, K.; Eleuftheriou, M.; Agogiatou, C.; Bacoglidou, E.; Nikolaidou, E.; Nakou, S.; Zafiropoulou, M.; Kioseoglou, G.; et al. The administration of trail making test to Greek healthy elderly, to patients with mild cognitive impairment, preclinical dementia and mild dementia. In Proceeding of 2nd International Conference of the Psychological society of Northern Greece, Psychological Assessment, Thessaloniki, Greece, 3–5 May 2007. [Google Scholar]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Vemuri, P.; Gunter, J.L.; Senjem, M.L.; Whitwell, J.L.; Kantarci, K.; Knopman, D.S.; Boeve, B.F.; Petersen, R.C.; Jack, C.R. Alzheimer’s disease diagnosis in individual subjects using structural MR images: Validation studies. Neuroimage 2008, 39, 1186–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrovsky, D.; Friehs, M.A.; Birk, M.V.; Yates, R.K.; Mandryk, R.L. Game dynamics that support snacking, not feasting. In Proceedings of the Annual Symposium on Computer–Human Interaction in Play, Barcelona, Spain, 22–25 August 2019; pp. 573–588. [Google Scholar]
- McCallum, S. Gamification and serious games for personalized health. Stud. Health Technol. Inform. 2012, 177, 85–96. [Google Scholar]
- Bamparopoulos, G.; Konstantinidis, E.; Bratsas, C.; Bamidis, P.D. Towards exergaming commons: Composing the exergame ontology for publishing open game data. J. Biomed. Semantics 2016, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, C.S.; Sheng, Y. Measuring the (dis-)similarity between expert and novice behaviors as serious games analytics. Educ. Inf. Technol. 2013, 20, 5–19. [Google Scholar] [CrossRef]
- Breton, A.; Casey, D.; Arnaoutoglou, N.A. Cognitive tests for the detection of mild cognitive impairment (MCI), the prodromal stage of dementia: Meta-analysis of diagnostic accuracy studies. Int. J. Geriatr. Psychiatry 2019, 34, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, V.; Wyss, P.; Rampa, L.; Mitache, A.V.; Müri, R.M.; Mosimann, U.P.; Nef, T. Evaluation of a novel Serious Game based assessment tool for patients with Alzheimer’s disease. PLoS ONE 2017, 12, e0175999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Games (Domain) | Score Equation |
---|---|
Hiking and Cycling (Aerobic) | |
Strength exercises (Strength) | |
Stretching exercises (Flexibility) | |
Steps (Balance) | |
Apple (HRMG) | |
Arkanoid (HRMG) | |
Fishing (HRMG) | |
Golf (HRMG) | |
SkiJump (HRMG) |
Cognitively Normal (CN) | MCI | MD | |
---|---|---|---|
#Participants | 38 | 64 | 14 |
Females | 30 | 54 | 11 |
Age (years) | 67.1 ± 5.2 | 69.3 ± 6.4 | 77.7 ± 3.4 |
Education (years) | 8.5 ± 2.6 | 7.6 ± 2.8 | 5.8 ± 4.3 |
MMSE | 28.1 ± 1.2 | 26.5 ± 2.2 | 21.7 ± 1.5 |
MOCA | 26.2 ± 2.4 | 22.43 ± 2.9 | 16.0 ± 2.3 |
TMT A | 70.0 ± 32.3 | 86.9 ± 36.3 | 178.1 ± 90.4 |
TMT B | 141.9 ± 64.1 | 189.7 ± 76.5 | 298.9 ± 80.1 |
Strength | 7.6 ± 1.2 | 7.6 ± 0.9 | 6.5 ± 1.7 |
Aerobic | 6.8 ± 1.6 | 6.4 ± 1.4 | 5.8 ± 1.7 |
HRMG | 5.2 ± 1.2 | 4.7 ± 0.8 | 3.3 ± 0.7 |
Flexibility | 8.7 ± 1.0 | 8.9 ± 0.4 | 8.3 ± 0.9 |
Heart Rate | 74.0 ± 10.2 | 72.6 ± 9.8 | 72.0 ± 9.2 |
Borg Scale | 6.9 ± 1.2 | 7.1 ± 1.2 | 7.2 ± 1.0 |
Cognition | TP Rate | FP Rate | Sensitivity | Specificity | ROC Area |
---|---|---|---|---|---|
Cognitively Normal | 0.684 | 0.179 | 68.4% | 82.1% | 0.785 |
MCI | 0.734 | 0.308 | 73.4% | 69.2% | 0.734 |
MD | 0.643 | 0.039 | 64.3% | 96.1% | 0.875 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinidis, E.I.; Bamidis, P.D.; Billis, A.; Kartsidis, P.; Petsani, D.; Papageorgiou, S.G. Physical Training In-Game Metrics for Cognitive Assessment: Evidence from Extended Trials with the Fitforall Exergaming Platform. Sensors 2021, 21, 5756. https://doi.org/10.3390/s21175756
Konstantinidis EI, Bamidis PD, Billis A, Kartsidis P, Petsani D, Papageorgiou SG. Physical Training In-Game Metrics for Cognitive Assessment: Evidence from Extended Trials with the Fitforall Exergaming Platform. Sensors. 2021; 21(17):5756. https://doi.org/10.3390/s21175756
Chicago/Turabian StyleKonstantinidis, Evdokimos I., Panagiotis D. Bamidis, Antonis Billis, Panagiotis Kartsidis, Despoina Petsani, and Sokratis G. Papageorgiou. 2021. "Physical Training In-Game Metrics for Cognitive Assessment: Evidence from Extended Trials with the Fitforall Exergaming Platform" Sensors 21, no. 17: 5756. https://doi.org/10.3390/s21175756
APA StyleKonstantinidis, E. I., Bamidis, P. D., Billis, A., Kartsidis, P., Petsani, D., & Papageorgiou, S. G. (2021). Physical Training In-Game Metrics for Cognitive Assessment: Evidence from Extended Trials with the Fitforall Exergaming Platform. Sensors, 21(17), 5756. https://doi.org/10.3390/s21175756