Evaluation of Different Pressure-Based Foot Contact Event Detection Algorithms across Different Slopes and Speeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Protocol
2.2. Post-Hoc Data Processing
2.2.1. Reference FCE Detection
2.2.2. Pressure Based FCE Detection
FCE Algorithm 1 (FCE1) 2 Threshold Crossing
Algorithm 2 (FCE2) 2 Different Thresholds
Algorithm 3 (FCE3) 2 Peak Derivative
Algorithm 4 (FCE4) 2 Slope Extension Method
Algorithm 5 (FCE5) 2 Low-Frequency Unity
Algorithm 6 (FCE6) 2 Harle et al.
Algorithm 7 (FCE7) 2 Mann et al. & Hausdorff et al.
2.3. Data Analyses and Statistics
2.3.1. Algorithms across Speed (Level Grade)
2.3.2. Algorithms across Speed, across Grades
3. Results
3.1. Algorithms across Speeds (Level Grade)
3.2. Algorithm across Speed and across Grades
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- fc is equivalent to initial contact (IC), as used in the text of this paper
- fo is equivalent to toe off (TO), as used in the text of this paper.
References
- Mason, R.; Pearson, L.T.; Barry, G.; Young, F.; Lennon, O.; Godfrey, A.; Stuart, S. Wearables for Running Gait Analysis: A Systematic Review. Sports Med. 2022, 53, 241–268. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.; Malisoux, L.; Nührenbörger, C.; Urhausen, A.; Meijer, K.; Theisen, D. Association of Previous Injury and Speed with Running Style and Stride-to-stride Fluctuations. Scand. J. Med. Sci. Sports 2015, 25, e638–e645. [Google Scholar] [CrossRef] [PubMed]
- Moore, I.S. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy. Sports Med. 2016, 46, 793–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, P.M.; Barrett, R.S.; Morrison, S. Agreement between Footswitch and Ground Reaction Force Techniques for Identifying Gait Events: Inter-Session Repeatability and the Effect of Walking Speed. Gait Posture 2007, 26, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Zifchock, R.A.; Davis, I.; Higginson, J.; McCaw, S.; Royer, T. Side-to-Side Differences in Overuse Running Injury Susceptibility: A Retrospective Study. Hum. Mov. Sci. 2008, 27, 888–902. [Google Scholar] [CrossRef] [PubMed]
- Harle, R.; Taherian, S.; Pias, M.; Coulouris, G.; Hopper, A.; Cameron, J.; Lasenby, J.; Kuntze, G.; Bezodis, I.; Irwin, G.; et al. Towards Real-Time Profiling of Sprints Using Wearable Pressure Sensors. Comput. Commun. 2012, 35, 650–660. [Google Scholar] [CrossRef]
- Mann, R.; Malisoux, L.; Brunner, R.; Gette, P.; Urhausen, A.; Statham, A.; Meijer, K.; Theisen, D. Reliability and Validity of Pressure and Temporal Parameters Recorded Using a Pressure-Sensitive Insole during Running. Gait Posture 2014, 39, 455–459. [Google Scholar] [CrossRef]
- Tirosh, O.; Sparrow, W.A. Identifying Heel Contact and Toe-Off Using Forceplate Thresholds with a Range of Digital-Filter Cutoff Frequencies. J. Appl. Biomech. 2003, 19, 178–184. [Google Scholar] [CrossRef]
- Leitch, J.; Stebbins, J.; Paolini, G.; Zavatsky, A.B. Identifying Gait Events without a Force Plate during Running: A Comparison of Methods. Gait Posture 2011, 33, 130–132. [Google Scholar] [CrossRef]
- Fellin, R.E.; Rose, W.C.; Royer, T.D.; Davis, I.S. Comparison of Methods for Kinematic Identification of Footstrike and Toe-off during Overground and Treadmill Running. J. Sci. Med. Sport Sports Med. Aust. 2010, 13, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, J.M.; Ladin, Z.; Wei, J.Y. Footswitch System for Measurement of the Temporal Parameters of Gait. J. Biomech. 1995, 28, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Wang, L.; Li, J.X.; Zhou, J.H. Comparison of Plantar Loads during Treadmill and Overground Running. J. Sci. Med. Sport 2012, 15, 554–560. [Google Scholar] [CrossRef]
- Hanlon, M.; Anderson, R. Real-Time Gait Event Detection Using Wearable Sensors. Gait Posture 2009, 30, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Burns, G.T.; Deneweth Zendler, J.; Zernicke, R.F. Validation of a Wireless Shoe Insole for Ground Reaction Force Measurement. J. Sports Sci. 2019, 37, 1129–1138. [Google Scholar] [CrossRef]
- Gottschall, J.S.; Kram, R. Ground Reaction Forces during Downhill and Uphill Running. J. Biomech. 2005, 38, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Giacomozzi, C. Appropriateness of Plantar Pressure Measurement Devices: A Comparative Technical Assessment. Gait Posture 2010, 32, 141–144. [Google Scholar] [CrossRef]
- El Kati, R.; Forrester, S.; Fleming, P. Evaluation of Pressure Insoles during Running. Procedia Eng. 2010, 2, 3053–3058. [Google Scholar] [CrossRef] [Green Version]
- Hurkmans, H.L.P.; Bussmann, J.B.J.; Benda, E.; Verhaar, J.A.N.; Stam, H.J. Accuracy and Repeatability of the Pedar Mobile System in Long-Term Vertical Force Measurements. Gait Posture 2006, 23, 118–125. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, X. A Novel Technique for Muscle Onset Detection Using Surface EMG Signals without Removal of ECG Artifacts. Physiol. Meas. 2014, 35, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Honert, E.C.; Hoitz, F.; Blades, S.; Nigg, S.R.; Nigg, B.M. Estimating Running Ground Reaction Forces from Plantar Pressure during Graded Running. Sensors 2022, 22, 3338. [Google Scholar] [CrossRef]
- Barnett, S.; Cunningham, J.L.; West, S. A Comparison of Vertical Force and Temporal Parameters Produced by an In-Shoe Pressure Measuring System and a Force Platform. Clin. Biomech. 2001, 16, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.; Guan, J.; Weatherly, M. Accuracy and Precision of Two In-Shoe Pressure Measurement Systems. Ergonomics 2002, 45, 537–555. [Google Scholar] [CrossRef] [PubMed]
- Weart, A.N.; Miller, E.M.; Freisinger, G.M.; Johnson, M.R.; Goss, D.L. Agreement Between the OptoGait and Instrumented Treadmill System for the Quantification of Spatiotemporal Treadmill Running Parameters. Front. Sports Act. Living 2020, 2, 571385. [Google Scholar] [CrossRef]
- Asmussen, M.J.; Kaltenbach, C.; Hashlamoun, K.; Shen, H.; Federico, S.; Nigg, B.M. Force Measurements during Running on Different Instrumented Treadmills. J. Biomech. 2019, 84, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Hendershot, B.D.; Mahon, C.E.; Pruziner, A.L. A Comparison of Kinematic-Based Gait Event Detection Methods in a Self-Paced Treadmill Application. J. Biomech. 2016, 49, 4146–4149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvim, F.; Cerqueira, L.; Netto, A.D.; Leite, G.; Muniz, A. Comparison of Five Kinematic-Based Identification Methods of Foot Contact Events during Treadmill Walking and Running at Different Speeds. J. Appl. Biomech. 2015, 31, 383–388. [Google Scholar] [CrossRef]
- Arndt, A. Correction for Sensor Creep in the Evaluation of Long-Term Plantar Pressure Data. J. Biomech. 2003, 36, 1813–1817. [Google Scholar] [CrossRef]
- Milner, C.E.; Paquette, M.R. A Kinematic Method to Detect Foot Contact during Running for All Foot Strike Patterns. J. Biomech. 2015, 48, 3502–3505. [Google Scholar] [CrossRef]
- Jones, A.M.; Kirby, B.S.; Clark, I.E.; Rice, H.M.; Fulkerson, E.; Wylie, L.J.; Wilkerson, D.P.; Vanhatalo, A.; Wilkins, B.W. Physiological Demands of Running at 2-Hour Marathon Race Pace. J. Appl. Physiol. 2021, 130, 369–379. [Google Scholar] [CrossRef]
- Hurkmans, H.L.P.; Bussmann, J.B.J.; Selles, R.W.; Horemans, H.L.D.; Benda, E.; Stam, H.J.; Verhaar, J.A.N. Validity of the Pedar Mobile System for Vertical Force Measurement during a Seven-Hour Period. J. Biomech. 2006, 39, 110–118. [Google Scholar] [CrossRef]
Initial Contact (IC) | Toe Off (TO) | Stance Time (GCT) | ||
---|---|---|---|---|
Speeds | Algorithms | Mean MAE ± SD (ms) | Mean MAE ± SD (ms) | Mean MAE ± SD (ms) |
2.6 | FCE1 | 0.7 ± 0.3 * | 1.3 ± 0.9 * | 7 ± 5 |
FCE2 | 1.3 ± 2.0 | 1.3 ± 0.9 | 12 ± 11 | |
FCE3 | 3.7 ± 0.9 † | 15.9 ± 4.5 †‡ | 94 ± 24 * | |
FCE4 | 1.3 ± 0.8 | 2.4 ± 0.9 | 12 ± 8 | |
FCE5 | 1.5 ± 0.5 | 3.7 ± 1.4 | 26 ± 8 | |
FCE6 | 1.4 ± 0.6 | 3.4 ± 1.2 | 24 ± 7 | |
FCE7 | 5.1 ± 0.5 ‡ | 2.9 ± 1.1 | 41 ± 7 † | |
3.0 | FCE1 | 1.0 ± 1.1 * | 1.7 ± 1.4 * | 8 ± 5 |
FCE2 | 1.2 ± 1.2 | 1.7 ± 1.4 | 10 ± 6 | |
FCE3 | 3.7 ± 1.4 † | 12.4 ± 5.5 † | 79 ± 25 * | |
FCE4 | 1.5 ± 0.8 | 2.1 ± 1.6 | 13 ± 6 | |
FCE5 | 1.5 ± 0.8 | 4.1 ± 2 | 26 ± 10 | |
FCE6 | 1.4 ± 0.6 | 3.5 ± 1.4 | 22 ± 6 | |
FCE7 | 5.0 ± 1.2 ‡ | 3.7 ± 1.7 | 43 ± 9† | |
3.4 | FCE1 | 1.0 ± 1.1 * | 1.7 ± 1.4 * | 8 ± 5 |
FCE2 | 1.2 ± 1.2 | 1.7 ± 1.4 | 10 ± 6 | |
FCE3 | 3.7 ± 1.4 † | 12.4 ± 5.5 † | 79 ± 25 * | |
FCE4 | 1.5 ± 0.8 | 2.1 ± 1.6 | 13 ± 6 | |
FCE5 | 1.5 ± 0.8 | 4.1 ± 2 | 26 ± 10 | |
FCE6 | 1.4 ± 0.6 | 3.5 ± 1.4 | 22 ± 6 | |
FCE7 | 5.0 ± 1.2 ‡ | 3.7 ± 1.7 | 43 ± 9 † | |
3.8 | FCE1 | 1.0 ± 0.9 * | 2.5 ± 3.3 * | 10 ± 8 |
FCE2 | 1.3 ± 0.8 | 2.5 ± 3.3 | 12 ± 7 | |
FCE3 | 3.1 ± 1.0 † | 10.7 ± 4.6 † | 66 ± 22 * | |
FCE4 | 1.6 ± 0.8 | 2.3 ± 2.2 | 16 ± 8 | |
FCE5 | 1.6 ± 0.7 | 3.3 ± 2.9 | 23 ± 12 | |
FCE6 | 1.6 ± 1.0 | 3.2 ± 2.7 | 20 ± 11 | |
FCE7 | 5.7 ± 0.8 ‡ | 3.4 ± 2.3 | 45 ± 12 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blades, S.; Marriott, H.; Hundza, S.; Honert, E.C.; Stellingwerff, T.; Klimstra, M. Evaluation of Different Pressure-Based Foot Contact Event Detection Algorithms across Different Slopes and Speeds. Sensors 2023, 23, 2736. https://doi.org/10.3390/s23052736
Blades S, Marriott H, Hundza S, Honert EC, Stellingwerff T, Klimstra M. Evaluation of Different Pressure-Based Foot Contact Event Detection Algorithms across Different Slopes and Speeds. Sensors. 2023; 23(5):2736. https://doi.org/10.3390/s23052736
Chicago/Turabian StyleBlades, Samuel, Hunter Marriott, Sandra Hundza, Eric C. Honert, Trent Stellingwerff, and Marc Klimstra. 2023. "Evaluation of Different Pressure-Based Foot Contact Event Detection Algorithms across Different Slopes and Speeds" Sensors 23, no. 5: 2736. https://doi.org/10.3390/s23052736
APA StyleBlades, S., Marriott, H., Hundza, S., Honert, E. C., Stellingwerff, T., & Klimstra, M. (2023). Evaluation of Different Pressure-Based Foot Contact Event Detection Algorithms across Different Slopes and Speeds. Sensors, 23(5), 2736. https://doi.org/10.3390/s23052736