Extension of Operating Range in Hybrid Cascaded H-Bridge Inverters with Capacitor Voltage Balancing Capability
Abstract
:1. Introduction
2. Overview of HCHB Inverters
2.1. Circuit Configuration
2.2. Generalized Switching Pattern
2.2.1. Voltage Synthesis for Five-Level Inverter
2.2.2. Voltage Synthesis for Seven-Level Inverter
2.2.3. Voltage Synthesis for Nine-Level Inverter
2.2.4. Generalized Voltage Synthesis for HCHB Inverters
2.3. Operating Range Limits
3. Proposed Balancing Control Scheme
3.1. Control of DC-Link Capacitor Voltages
3.2. Control of Flying Capacitor Voltages
3.3. Summary of Proposed Balancing Scheme
4. Simulation Results
5. Experimental Verifications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poorfakhraei, A.; Narimani, M.; Emadi, A. A Review of Multilevel Inverter Topologies in Electric Vehicles: Current Status and Future Trends. IEEE Open J. Power Electron. 2021, 2, 155–170. [Google Scholar] [CrossRef]
- Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Pérez, M.A.; Leon, J.I. Recent Advances and Industrial Applications of Multilevel Converters. IEEE Trans. Ind. Electron. 2010, 57, 2553–2580. [Google Scholar] [CrossRef]
- Li, J.; Bhattacharya, S.; Huang, A.Q. A New Nine-Level Active NPC (ANPC) Converter for Grid Connection of Large Wind Turbines for Distributed Generation. IEEE Trans. Power Electron. 2011, 26, 961–972. [Google Scholar] [CrossRef]
- Ozdemir, E.; Ozdemir, S.; Tolbert, L.M. Fundamental-Frequency-Modulated Six-Level Diode-Clamped Multilevel Inverter for Three-Phase Stand-Alone Photovoltaic System. IEEE Trans. Ind. Electron. 2009, 56, 4407–4415. [Google Scholar] [CrossRef]
- Elsanabary, A.I.; Konstantinou, G.; Mekhilef, S.; Townsend, C.D.; Seyedmahmoudian, M.; Stojcevski, A. Medium Voltage Large-Scale Grid-Connected Photovoltaic Systems Using Cascaded h-Bridge and Modular Multilevel Converters: A Review. IEEE Access 2020, 8, 223686–223699. [Google Scholar] [CrossRef]
- Da Silva, I.R.F.M.P.; Jacobina, C.B.; Oliveira, A.C.; De Almeida Carlos, G.A.; De Rossiter Correa, M.B. Hybrid Modular Multilevel DSCC Inverter for Open-End Winding Induction Motor Drives. IEEE Trans. Ind. Appl. 2017, 53, 1232–1242. [Google Scholar] [CrossRef]
- Dhanamjayulu, C.; Padmanaban, S.; Ramachandaramurthy, V.K.; Holm-Nielsen, J.B.; Blaabjerg, F. Design and Implementation of Multilevel Inverters for Electric Vehicles. IEEE Access 2021, 9, 317–338. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, A.Q.; Yu, R. Dual-Mode Cascaded Buck—Boost Multilevel Transformerless PV Inverter with GaN AC Switches. IEEE Trans. Power Electron. 2019, 34, 7474–7488. [Google Scholar] [CrossRef]
- Rodríguez, J.; Lai, J.S.; Peng, F.Z. Multilevel Inverters: A Survey of Topologies, Controls, and Applications. IEEE Trans. Ind. Electron. 2002, 49, 724–738. [Google Scholar] [CrossRef]
- Busquets-monge, S.; Nicolas-apruzzese, J. A Multilevel Active-Clamped Converter Topology—Operating Principle. IEEE Trans. Ind. Electron. 2011, 58, 3868–3878. [Google Scholar] [CrossRef]
- Schweizer, M.; Kolar, J.W. Design and Implementation of a Highly Efficient Three-Level T-Type Converter for Low-Voltage Applications. IEEE Trans. Power Electron. 2013, 28, 899–907. [Google Scholar] [CrossRef]
- Hammond, P.W. A New Approach to Enhance Power Quality for Medium Voltage AC Drives. IEEE Trans. Ind. Appl. 1997, 33, 202–208. [Google Scholar] [CrossRef]
- Candan, E.; Brooks, N.C.; Stillwell, A.; Abramson, R.A.; Strydom, J.; Pilawa-Podgurski, R.C.N. A Six-Level Flying Capacitor Multilevel Converter for Single-Phase Buck-Type Power Factor Correction. IEEE Trans. Power Electron. 2022, 37, 6335–6348. [Google Scholar] [CrossRef]
- Yan, B.; Huang, H.; Wang, H. Robust Phase-Shifted Model Predictive Control for Cascaded H-Bridge Power Supplies Using Linear Matrix Inequality. J. Power Electron. 2022, 22, 1496–1507. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Zhang, Z.; Guo, X. Voltage Equalization Control of Three-Phase Cascaded H-Bridge Multilevel Rectifiers. J. Power Electron. 2022, 23, 230–240. [Google Scholar] [CrossRef]
- Lee, E.-J.; Lee, K.-B. Performance Improvement of Cascaded H-Bridge Multilevel Inverters with Modified Modulation Scheme. J. Power Electron. 2021, 21, 541–552. [Google Scholar] [CrossRef]
- Khajehoddin, S.A.; Bakhshai, A.; Jain, P.K. A Simple Voltage Balancing Scheme for M-Level Diode-Clamped Multilevel Converters Based on a Generalized Current Flow Model. IEEE Trans. Power Electron. 2008, 23, 2248–2259. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, Z.; Xu, L.; Li, Y. A Generalized Carrier-Overlapped PWM Method for Neutral-Point-Clamped Multilevel Converters. IEEE Trans. Power Electron. 2020, 35, 9095–9106. [Google Scholar] [CrossRef]
- Harbi, I.; Rodriguez, J.; Poorfakhraei, A.; Vahedi, H.; Guse, M.; Trabelsi, M.; Abdelrahem, M.; Ahmed, M.; Fahad, M.; Lin, C.H.; et al. Common DC-Link Multilevel Converters: Topologies, Control and Industrial Applications. IEEE Open J. Power Electron. 2023, 4, 512–538. [Google Scholar] [CrossRef]
- Kampitsis, G.; Batzelis, E.I.; Kolokasis, A.; Matioli, E.; Pal, B.C. A Generalized Phase-Shift Pwm Extension for Improved Natural and Active Balancing of Flying Capacitor Multilevel Inverters. IEEE Open J. Power Electron. 2022, 3, 621–634. [Google Scholar] [CrossRef]
- Meynard, T.A.; Foch, H. Multi-Level Conversion: High Voltage Choppers and Voltage-Source Inverters. In Proceedings of the PESC ‘92 Record, 23rd Annual IEEE Power Electronics Specialists Conference, Toledo, Spain, 29 June–3 July 1992; pp. 397–403. [Google Scholar]
- Peng, F.Z. A Generalized Multilevel Inverter Topology with Self Voltage Balancing. IEEE Trans. Ind. Appl. 2001, 37, 611–618. [Google Scholar] [CrossRef]
- Nabae, A.; Takahashi, I.; Akagi, H. A New Neutral-Point-Clamped PWM Inverter. IEEE Trans. Ind. Appl. 1981, IA, 225–230. [Google Scholar] [CrossRef]
- Dutra, A.D.E.; Vitorino, M.A.; Correa, M.B.D.R. A Survey on Multilevel Rectifiers with Reduced Switch Count. IEEE Access 2023, 11, 56098–56141. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Liu, W.; Zhang, Y.; Wang, K.; Liang, J. Step-up Switched-Capacitor Multilevel Inverter Employing Multiple Inputs with Reduced Switches. J. Power Electron. 2021, 21, 986–997. [Google Scholar] [CrossRef]
- Salem, A.; Van Khang, H.; Robbersmyr, K.G.; Norambuena, M.; Rodriguez, J. Voltage Source Multilevel Inverters with Reduced Device Count: Topological Review and Novel Comparative Factors. IEEE Trans. Power Electron. 2021, 36, 2720–2747. [Google Scholar] [CrossRef]
- Brückner, T.; Bernet, S.; Güldner, H. The Active NPC Converter and Its Loss-Balancing Control. IEEE Trans. Ind. Electron. 2005, 52, 855–868. [Google Scholar] [CrossRef]
- Barbosa, P.; Steimer, P.; Steinke, J.; Meysenc, L.; Winkelnkemper, M.; Celanovic, N. Active Neutral-Point-Clamped Multilevel Converters. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Dresden, Germany, 16 June 2005; pp. 2296–2301. [Google Scholar]
- Barbosa, P.; Steimer, P.; Steinke, J.; Winkelnkemper, M.; Celanovic, N. Active-Neutral-Point-Clamped (ANPC) Multilevel Converter Technology. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Dresden, Germany, 11–14 September 2005. [Google Scholar]
- Le, Q.A.; Lee, D.C. A Novel Six-Level Inverter Topology for Medium-Voltage Applications. IEEE Trans. Ind. Electron. 2016, 63, 7195–7203. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, Z.; Xu, L.; Li, Y. Topology and Control of a Five-Level Hybrid-Clamped Converter for Medium-Voltage High-Power Conversions. IEEE Trans. Power Electron. 2018, 33, 4690–4702. [Google Scholar] [CrossRef]
- Dao, N.D.; Lee, D.-C. Operation and Control Scheme of a Five-Level Hybrid Inverter for Medium-Voltage Motor Drives. IEEE Trans. Power Electron. 2018, 33, 10178–10187. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, C.; Chen, C.; Xiong, J.; Zhang, K. Ripple Analysis and Capacitor Voltage Balancing of Five-Level Hybrid Clamped Inverter (5L-HC) for Medium-Voltage Applications. IEEE Access 2019, 7, 86077–86089. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, Z.; Xu, L.; Li, Y. A Four-Level Hybrid-Clamped Converter with Natural Capacitor Voltage Balancing Ability. IEEE Trans. Power Electron. 2014, 29, 1152–1162. [Google Scholar] [CrossRef]
- Gateau, G.; Meynard, T.A.; Foch, H. Stacked Multicell Converter (SMC): Properties and Design. PESC Rec. IEEE Annu. Power Electron. Spec. Conf. 2001, 3, 1583–1588. [Google Scholar] [CrossRef]
- Yuan, X. Ultimate Generalized Multilevel Converter Topology. IEEE Trans. Power Electron. 2021, 36, 8634–8639. [Google Scholar] [CrossRef]
- Keshmiri, N.; Narimani, M. A New 7-Level Voltage Source Converter for Medium-Voltage Application. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 3649–3654. [Google Scholar] [CrossRef]
- Narimani, M.; Wu, B.; Cheng, Z.; Zargari, N.R. A New Nested Neutral Point-Clamped (NNPC) Converter for Medium-Voltage (MV) Power Conversion. IEEE Trans. Power Electron. 2014, 29, 6375–6382. [Google Scholar] [CrossRef]
- Narimani, M.; Wu, B.; Zargari, N.R. A Novel Seven-Level Voltage Source Converter for Medium-Voltage (MV) Applications. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 4277–4282. [Google Scholar] [CrossRef]
- Dekka, A.; Narimani, M. Capacitor Voltage Balancing and Current Control of a Five-Level Nested Neutral-Point-Clamped Converter. IEEE Trans. Power Electron. 2018, 33, 10169–10177. [Google Scholar] [CrossRef]
- Narimani, M.; Wu, B.; Zargari, N.R. A Novel Five-Level Voltage Source Inverter with Sinusoidal Pulse Width Modulator for Medium-Voltage Applications. IEEE Trans. Power Electron. 2016, 31, 1959–1967. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, J.; Du, S. A Novel Medium Voltage Five-Level Converter with Minimized Volume. J. Power Electron. 2022, 22, 1676–1686. [Google Scholar] [CrossRef]
- Ebrahimi, J.; Karshenas, H. A New Single DC Source Six-Level Flying Capacitor Based Converter with Wide Operating Range. IEEE Trans. Power Electron. 2019, 34, 2149–2158. [Google Scholar] [CrossRef]
- Barzegarkhoo, R.; Forouzesh, M.; Lee, S.S.; Blaabjerg, F.; Siwakoti, Y.P. Switched-Capacitor Multilevel Inverters: A Comprehensive Review. IEEE Trans. Power Electron. 2022, 37, 11209–11243. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, S.; Sun, R.; Wang, X.; Yi, Y. Three-Phase Step-up Multilevel Inverter with Self-Balanced Switched-Capacitor. IEEE Trans. Power Electron. 2021, 36, 7652–7664. [Google Scholar] [CrossRef]
- Chen, S.; Ye, Y.; Chen, S.; Hua, T.; Wang, X. Three-Phase Boost Multilevel Inverter Based on Coupled-Structure Switched-Capacitor and V2SVM. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 679–690. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, Y.; Wang, X.; Cheng, K.W.E. Quasi-Z-Source-Fed Switched-Capacitor Multilevel Inverters without Inrush Charging Current. IEEE Trans. Ind. Electron. 2023, 70, 1115–1125. [Google Scholar] [CrossRef]
- Lee, S.S.; Bak, Y.; Kim, S.-M.; Joseph, A.; Lee, K.-B. New Family of Boost Switched-Capacitor Seven-Level Inverters (BSC7LI). IEEE Trans. Power Electron. 2019, 34, 10471–10479. [Google Scholar] [CrossRef]
- Davis, T.T.; Dey, A. Enhanced Floating Capacitor Voltage Balancing Schemes for Single-Source Seven-Level Inverters with Capacitor Fed H-Bridge Units. IEEE Trans. Ind. Electron. 2020, 67, 6227–6236. [Google Scholar] [CrossRef]
- Diao, F.; Li, Y.; Du, X.; Zhao, Y. An Active Hybrid Modulation Strategy for a Si/SiC Hybrid Multilevel Converter. IEEE Open J. Power Electron. 2021, 2, 401–413. [Google Scholar] [CrossRef]
- Yu, H.; Chen, B.; Yao, W.; Lu, Z. Hybrid Seven-Level Converter Based on T-Type Converter and H-Bridge Cascaded under SPWM and SVM. IEEE Trans. Power Electron. 2018, 33, 689–702. [Google Scholar] [CrossRef]
- Abhilash, T.; Annamalai, K.; Tirumala, S.V. A Seven-Level VSI with a Front-End Cascaded Three-Level Inverter and Flying-Capacitor-Fed H-Bridge. IEEE Trans. Ind. Appl. 2019, 55, 6073–6088. [Google Scholar] [CrossRef]
- Tirupathi, A.; Lee, D.-C. A 3-Phase Nine-Level Inverter Topology with Improved Capacitor Voltage Balancing Method. In Proceedings of the 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Republic of Korea, 31 October–3 November 2021; pp. 223–227. [Google Scholar] [CrossRef]
- Chokkalingam, B.; Bhaskar, M.S.; Padmanaban, S.; Ramachandaramurthy, V.K.; Iqbal, A. Investigations of Multi-Carrier Pulse Width Modulation Schemes for Diode Free Neutral Point Clamped Multilevel Inverters. J. Power Electron. 2019, 19, 702–713. [Google Scholar]
- Ghias, A.M.Y.M.; Pou, J.; Agelidis, V.G. An Active Voltage-Balancing Method Based on Phase-Shifted PWM for Stacked Multicell Converters. IEEE Trans. Power Electron. 2016, 31, 1921–1930. [Google Scholar] [CrossRef]
- Gobburi, H.B.; Borghate, V.B.; Meshram, P.M. A Level Enhanced Nearest Level Control for Modular Multilevel Converter without Using Sensors. IEEE Trans. Ind. Appl. 2023, 59, 4364–4374. [Google Scholar] [CrossRef]
- Chen, H.C.; Wu, P.H.; Lee, C.T.; Wang, C.W.; Yang, C.H.; Cheng, P.T. Zero-Sequence Voltage Injection for DC Capacitor Voltage Balancing Control of the Star-Connected Cascaded H-Bridge PWM Converter under Unbalanced Grid. IEEE Trans. Ind. Appl. 2015, 51, 4584–4594. [Google Scholar] [CrossRef]
- Wu, M.; Li, Y.W.; Konstantinou, G. A Comprehensive Review of Capacitor Voltage Balancing Strategies for Multilevel Converters under Selective Harmonic Elimination Pwm. IEEE Trans. Power Electron. 2021, 36, 2748–2767. [Google Scholar] [CrossRef]
- Mora, A.; Urrutia, M.; Cardenas, R.; Angulo, A.; Espinoza, M.; Diaz, M.; Lezana, P. Model-Predictive-Control-Based Capacitor Voltage Balancing Strategies for Modular Multilevel Converters. IEEE Trans. Ind. Electron. 2019, 66, 2432–2443. [Google Scholar] [CrossRef]
- Ramli, Z.; Jamaludin, J.; Rahim, N.A.; Azzuhri, S.R. Capacitor Voltage Balancing with Online Controller Performance-Based Tuning for a Switch-Sharing-Based Multilevel Inverter. Appl. Sci. 2021, 11, 4428. [Google Scholar] [CrossRef]
- Merlin, M.M.C.; Green, T.C. Cell Capacitor Sizing in Multilevel Converters: Cases of the Modular Multilevel Converter and Alternate Arm Converter. IET Power Electron. 2015, 8, 350–360. [Google Scholar] [CrossRef]
- Le, D.D.; Lee, D.-C. Reduction of Half-Arm Current Stresses and Flying-Capacitor Voltage Ripples of Flying-Capacitor MMCs. IEEE Access 2020, 8, 180076–180086. [Google Scholar]
- Krishnamoorthy, U.; Pitchaikani, U.; Rusu, E.; Fayek, H.H. Performance Analysis of Harmonic-Reduced Modified PUC Multi-Level Inverter Based on an MPC Algorithm. Inventions 2023, 8, 90. [Google Scholar] [CrossRef]
- Saeedian, M.; Pouresmaeil, E.; Samadaei, E.; Godinho Rodrigues, E.M.; Godina, R.; Marzband, M. An Innovative Dual-Boost Nine-Level Inverter with Low-Voltage Rating Switches. Energies 2019, 12, 207. [Google Scholar] [CrossRef]
- El Gadari, A.; El Ouardi, H.; Ounejjar, Y.; Al-haddad, K. Novel Three-Phase Nine-Level Inverter and Its Control Strategies. Electronics 2022, 11, 3348. [Google Scholar] [CrossRef]
- Al-Samawi, A.A.; Trabelsi, H. New Nine-Level Cascade Multilevel Inverter with a Minimum Number of Switches for PV Systems. Energies 2022, 15, 5857. [Google Scholar] [CrossRef]
1 | 1 | 0 | 1 | ||||
1 | 1 | 1 | 1 | ||||
1 | 1 | 0 | 0 | ||||
1 | 1 | 1 | 0 | ||||
0 | 1 | 0 | 1 | ||||
0 | 1 | 1 | 1 | ||||
0 | 1 | 0 | 0 | ||||
0 | 1 | 1 | 0 | ||||
0 | 0 | 0 | 1 | ||||
0 | 0 | 1 | 1 | 0 | |||
0 | 0 | 0 | 0 | 0 | |||
0 | 0 | 1 | 0 |
Number of Level | Base Voltage (E) | TSV | |||
---|---|---|---|---|---|
5-level | |||||
6-level * | |||||
7-level | |||||
8-level * | |||||
9-level |
Balancing Method | Advantages | Drawbacks |
---|---|---|
Phase-shifted carrier PWM [20,55] |
|
|
Nearest level control [56] |
|
|
Zero-sequence voltage injection [57] |
|
|
Selective harmonic elimination [58] |
|
|
Model predictive control [59] |
|
|
Fuzzy logic control [60] |
|
|
Auxiliary balancing circuit [32] |
|
|
Condition | |||
---|---|---|---|
All | |||
Cluster I () | |||
Cluster II () | |||
Cluster III () | |||
Cluster IV () | |||
Parameters | Symbol | Value |
---|---|---|
DC-bus voltage | 7000 V | |
DC-link capacitors | 2.7 mF (5L)/1.35 mF (7L)/0.9 mF (9L) | |
Flying capacitors | 2.7 mF (all levels) | |
Fundamental frequency | 60 Hz | |
Carrier frequency | 2000 Hz | |
RL-load | = 1 p.u. = 1.94 MW) |
Parameters | Symbol | Value |
---|---|---|
DC-bus voltage | 250 V | |
DC-link capacitors | 0.9 mF | |
Flying capacitors | 2.7 mF | |
Fundamental frequency | 60 Hz | |
Carrier frequency | 2000 Hz | |
RL-load | = 2.5 kW) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirupathi, A.; Pribadi, J.; Kim, M.-S.; Lee, D.-C. Extension of Operating Range in Hybrid Cascaded H-Bridge Inverters with Capacitor Voltage Balancing Capability. Sensors 2024, 24, 991. https://doi.org/10.3390/s24030991
Tirupathi A, Pribadi J, Kim M-S, Lee D-C. Extension of Operating Range in Hybrid Cascaded H-Bridge Inverters with Capacitor Voltage Balancing Capability. Sensors. 2024; 24(3):991. https://doi.org/10.3390/s24030991
Chicago/Turabian StyleTirupathi, Abhilash, Jonathan Pribadi, Min-Seok Kim, and Dong-Choon Lee. 2024. "Extension of Operating Range in Hybrid Cascaded H-Bridge Inverters with Capacitor Voltage Balancing Capability" Sensors 24, no. 3: 991. https://doi.org/10.3390/s24030991