Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection
Abstract
:1. Introduction
1.1. Cancer-Cell Biology
1.2. Cancer Biomarkers
1.3. Methodology
2. Bead-Based Biosensors
2.1. Significance of Bead-Based Biosensors
2.1.1. High Surface-to-Volume Ratio
2.1.2. High Throughput
2.1.3. Fast Response
2.2. Signal-Amplification Strategies
2.2.1. Ultra-Sensitive Probes
2.2.2. Nucleic Acid Amplification
2.2.3. Enrichment by Concentration
2.2.4. Enzymatic Amplification
2.3. Recent Trends and Innovations
2.3.1. Integration with Microfluidics and Nanotechnology
2.3.2. Multiplexing
2.3.3. State-of-the-Art POC Cancer Diagnostics
2.4. Materials for Bead-Based Biosensors
2.4.1. Magnetic Beads
2.4.2. Polymer Beads
2.4.3. Quantum Dots
2.4.4. Gold Nanoparticles
2.4.5. Silica Beads
2.4.6. Luminescent/Fluorescent Beads
2.5. Biosensing Technologies
2.5.1. Optoelectrical Biosensors
2.5.2. Electrochemical
2.5.3. Magnetic Biosensors
2.5.4. Mechanical
- (a)
- Diffusion
- (b)
- Shear Forces
- (c)
- Precipitation
3. Challenges and Future Perspectives
3.1. Standardization and Validation
3.2. Biomarker Selection
3.3. Integration with Complementary Technologies
3.4. Translation into Clinical Practice
3.5. Accessibility and Affordability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fitzgerald, R.C.; Antoniou, A.C.; Fruk, L.; Rosenfeld, N. The future of early cancer detection. Nat. Med. 2022, 28, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, M.; den Hollander, P.; Kuburich, N.A.; Rosen, J.M.; Mani, S.A. Mechanisms of cancer metastasis. In Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Jacquemin, V.; Antoine, M.; Dom, G.; Detours, V.; Maenhaut, C.; Dumont, J.E. Dynamic cancer cell heterogeneity: Diagnostic and therapeutic implications. Cancers 2022, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Sarhadi, V.K.; Armengol, G. Molecular biomarkers in cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Jacob, R.; Manne, U.; Paluri, R. Advances in pancreatic cancer biomarkers. Oncol. Rev. 2019, 13, 410. [Google Scholar] [CrossRef] [PubMed]
- Hristova, V.A.; Chan, D.W. Cancer biomarker discovery and translation: Proteomics and beyond. Expert Rev. Proteom. 2019, 16, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Hicks, D.G.; Buscaglia, B.; Goda, H.; McMahon, L.; Natori, T.; Turner, B.; Soukiazian, A.; Okada, H.; Nakano, Y. A novel detection methodology for HER2 protein quantitation in formalin-fixed, paraffin embedded clinical samples using fluorescent nanoparticles: An analytical and clinical validation study. BMC Cancer 2018, 18, 1266. [Google Scholar] [CrossRef]
- Kapara, A.; Findlay Paterson, K.A.; Brunton, V.G.; Graham, D.; Zagnoni, M.; Faulds, K. Detection of estrogen receptor alpha and assessment of fulvestrant activity in MCF-7 tumor spheroids using microfluidics and SERS. Anal. Chem. 2021, 93, 5862–5871. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Kong, D.; Wu, Z.; Liu, G.; Gao, Y.; Yan, X.; Liu, F.; Liu, X.; Wang, C.; Cui, J. Interface interaction of MoS2 nanosheets with DNA based aptameric biosensor for carbohydrate antigen 15–3 detection. Microchem. J. 2020, 155, 104675. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Su, H.; Mao, L.; Jiang, X.; Zhang, T.; Dai, X. Three-dimensional electrochemical DNA biosensor based on 3D graphene-Ag nanoparticles for sensitive detection of CYFRA21-1 in non-small cell lung cancer. Sens. Actuators B Chem. 2018, 255, 2910–2918. [Google Scholar] [CrossRef]
- Li, X.; Peng, G.; Cui, F.; Qiu, Q.; Chen, X.; Huang, H. Double determination of long noncoding RNAs from lung cancer via multi-amplified electrochemical genosensor at sub-femtomole level. Biosens. Bioelectron. 2018, 113, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Shoja, Y.; Kermanpur, A.; Karimzadeh, F. Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosens. Bioelectron. 2018, 113, 108–115. [Google Scholar] [PubMed]
- Zhand, S.; Zhu, Y.; Nazari, H.; Sadraeian, M.; Warkiani, M.E.; Jin, D. Thiolate DNAzymes on gold nanoparticles for isothermal amplification and detection of mesothelioma-derived exosomal PD-L1 mRNA. Anal. Chem. 2023, 95, 3228–3237. [Google Scholar] [CrossRef]
- Pan, T.-Y.; Kou, H.-S.; Wu, S.-M.; Wang, C.-C. Fast genotyping of K-RAS codons 12 and 13 based on streptavidin magnetic microbeads equipped with biotin-coupled single base-pair mismatch PCR (SM-PCR). Sens. Actuators B Chem. 2023, 382, 133517. [Google Scholar] [CrossRef]
- Barhoum, A.; Altintas, Z.; Devi, K.S.; Forster, R.J. Electrochemiluminescence biosensors for detection of cancer biomarkers in biofluids: Principles, opportunities, and challenges. Nano Today 2023, 50, 101874. [Google Scholar] [CrossRef]
- Park, J.; Park, J.S.; Huang, C.-H.; Jo, A.; Cook, K.; Wang, R.; Lin, H.-Y.; Van Deun, J.; Li, H.; Min, J. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat. Biomed. Eng. 2021, 5, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Tang, D. Magnetic bead-based photoelectrochemical immunoassay for sensitive detection of carcinoembryonic antigen using hollow cadmium sulfide. Talanta 2020, 219, 121215. [Google Scholar] [CrossRef]
- Moon, J.-M.; Kim, Y.H.; Cho, Y. A nanowire-based label-free immunosensor: Direct incorporation of a PSA antibody in electropolymerized polypyrrole. Biosens. Bioelectron. 2014, 57, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Moranova, L.; Stanik, M.; Hrstka, R.; Campuzano, S.; Bartosik, M. Electrochemical LAMP-based assay for detection of RNA biomarkers in prostate cancer. Talanta 2022, 238, 123064. [Google Scholar] [CrossRef] [PubMed]
- Jokerst, J.V.; Chen, Z.; Xu, L.; Nolley, R.; Chang, E.; Mitchell, B.; Brooks, J.D.; Gambhir, S.S. A magnetic bead-based sensor for the quantification of multiple prostate cancer biomarkers. PLoS ONE 2015, 10, e0139484. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Guo, Z.; Liu, Y.; Guo, A.; Lou, W.; Fan, D.; Wei, Q. Sandwich-type electrochemical immunosensor using dumbbell-like nanoparticles for the determination of gastric cancer biomarker CA72-4. Talanta 2015, 134, 305–309. [Google Scholar] [CrossRef]
- Liang, J.; Wang, J.; Zhang, L.; Wang, S.; Yao, C.; Zhang, Z. Conductometric immunoassay of alpha-fetoprotein in sera of liver cancer patients using bienzyme-functionalized nanometer-sized silica beads. Analyst 2019, 144, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zhao, L.; Dong, H.; Zhao, W.; Liu, S.; Sui, G. Microfluidic immunoassay system for rapid detection and semi-quantitative determination of a potential serum biomarker mesothelin. ACS Sens. 2019, 4, 2952–2957. [Google Scholar] [CrossRef] [PubMed]
- Gazze, A.; Ademefun, R.; Conlan, R.S.; Teixeira, S.R. Electrochemical impedence spectroscopy enabled CA125 detection; toward early ovarian cancer diagnosis using graphene biosensors. J. Interdiscip. Nanomed. 2018, 3, 82–88. [Google Scholar] [CrossRef]
- Sylvester, J.E.; Kron, S.J. A bead-based activity screen for small-molecule inhibitors of signal transduction in chronic myelogenous leukemia cells. Mol. Cancer Ther. 2010, 9, 1469–1481. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Ahommed, M.; Daizy, M.; Bacchu, M.; Ali, M.; Al-Mamun, M.; Aly, M.A.S.; Khan, M.; Hossain, S.I. Recent development in electrochemical biosensors for cancer biomarkers detection. Biosens. Bioelectron. X 2021, 8, 100075. [Google Scholar] [CrossRef]
- Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in colorectal cancer: Current research and future prospects. Int. J. Mol. Sci. 2020, 21, 5311. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.K.; Estrela, P. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors 2018, 18, 2010. [Google Scholar] [CrossRef]
- Wu, J.; Fu, Z.; Yan, F.; Ju, H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC Trends Anal. Chem. 2007, 26, 679–688. [Google Scholar] [CrossRef]
- Klebes, A.; Ates, H.C.; Verboket, R.D.; Urban, G.A.; von Stetten, F.; Dincer, C.; Früh, S.M. Emerging multianalyte biosensors for the simultaneous detection of protein and nucleic acid biomarkers. Biosens. Bioelectron. 2023, 244, 115800. [Google Scholar] [CrossRef] [PubMed]
- Timilsina, S.S.; Jolly, P.; Durr, N.; Yafia, M.; Ingber, D.E. Enabling multiplexed electrochemical detection of biomarkers with high sensitivity in complex biological samples. Acc. Chem. Res. 2021, 54, 3529–3539. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Lin, X.; Chen, F.; Qin, X.; Yan, Y.; Ren, L.; Yu, H.; Chang, L.; Wang, Y. Current research status of tumor cell biomarker detection. Microsyst. Nanoeng. 2023, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Guo, Y.; Zhao, F. Electrochemical biosensors for the detection of cancer biomarkers with different signal amplification strategies. Int. J. Electrochem. Sci. 2021, 16, 210732. [Google Scholar] [CrossRef]
- Rutten, I.; Daems, D.; Leirs, K.; Lammertyn, J. Highly Sensitive Multiplex Detection of Molecular Biomarkers Using Hybridization Chain Reaction in an Encoded Particle Microfluidic Platform. Biosensors 2023, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Guan, Z.; Ma, H.; Wang, P.; Xi, S. Ultrasensitive detection of carcinoembryonic antigen based on exonuclease Ⅲ-assisted recycling and hybridization chain reaction strategies. Int. J. Electrochem. Sci. 2023, 18, 100127. [Google Scholar] [CrossRef]
- Ren, W.; Liu, H.; Yang, W.; Fan, Y.; Yang, L.; Wang, Y.; Liu, C.; Li, Z. A cytometric bead assay for sensitive DNA detection based on enzyme-free signal amplification of hybridization chain reaction. Biosens. Bioelectron. 2013, 49, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kang, M.; Ban, C. Aptamer-antibody hybrid ELONA that uses hybridization chain reaction to detect a urinary biomarker EN2 for bladder and prostate cancer. Sci. Rep. 2022, 12, 11523. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.-S.; Ji, J.H.; Hwang, K.S.; Jun, S.C.; Kang, J.Y. Sensitivity Enhancement of Bead-based Electrochemical Impedance Spectroscopy (BEIS) biosensor by electric field-focusing in microwells. Biosens. Bioelectron. 2016, 85, 16–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Li, N.; Ma, W.; Yang, M.; Hou, C.; Huo, D. An ultra-sensitive dual-signal ratio electrochemical aptasensor based on functionalized bimetallic MOF nanocomplexes by the in-situ electrochemical synthesis for detect HER2. Int. J. Hydrog. Energy 2023, 48, 24548–24558. [Google Scholar] [CrossRef]
- Das, D.; Lin, C.-W.; Kwon, J.-S.; Chuang, H.-S. Rotational diffusometric sensor with isothermal amplification for ultra-sensitive and rapid detection of SARS-CoV-2 nsp2 cDNA. Biosens. Bioelectron. 2022, 210, 114293. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-L.; Chuang, H.-S. Trace biomolecule detection with functionalized Janus particles by rotational diffusion. Anal. Chem. 2020, 92, 12996–13003. [Google Scholar] [CrossRef] [PubMed]
- Bialy, R.M.; Mainguy, A.; Li, Y.; Brennan, J.D. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem. Soc. Rev. 2022, 51, 9009–9067. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, W.; Hu, Y.; Wei, X.; Huang, L.; Fan, S.; Huang, M.; Song, Y.; Yu, Y.; Fu, F. Visual detection of aflatoxin B1 based on specific aptamer recognition combining with triple amplification strategy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 271, 120862. [Google Scholar] [CrossRef] [PubMed]
- Pitikultham, P.; Putnin, T.; Pimalai, D.; Sathirapongsasuti, N.; Kitiyakara, C.; Jiang, Q.; Ding, B.; Japrung, D. Ultrasensitive Detection of MicroRNA in Human Saliva via Rolling Circle Amplification Using a DNA-Decorated Graphene Oxide Sensor. ACS Omega 2023, 8, 15266–15275. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Sun, A.; Liu, K. Rolling circle amplification-based biosensors. Anal. Lett. 2015, 48, 1199–1216. [Google Scholar] [CrossRef]
- Das, D.; Chen, H.-A.; Lee, Y.-C.; Kwon, J.-S.; Chuang, H.-S. Rapid particle concentration for immunofluorescence enhancement by a surface acoustic wave microchip. Sens. Actuators B Chem. 2023, 394, 134353. [Google Scholar] [CrossRef]
- Chen, W.-L.; Jayan, M.; Kwon, J.-S.; Chuang, H.-S. Facile open-well immunofluorescence enhancement with coplanar-electrodes-enabled optoelectrokinetics and magnetic particles. Biosens. Bioelectron. 2021, 193, 113527. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Kwon, J.-S.; Hsu, S.-M.; Chuang, H.-S. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform. Lab Chip 2020, 20, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Jiang, Y.; Lv, T.; Li, G.; Yang, F. Immunofluorescence analysis of breast cancer biomarkers using antibody-conjugated microbeads embedded in a microfluidic-based liquid biopsy chip. Biosens. Bioelectron. 2022, 216, 114598. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, J.; Zou, Y.; Jiang, Y.; Wu, L.; Deng, Y. Construction of Magnetic Core–Large Mesoporous Satellite Immunosensor for Long-Lasting Chemiluminescence and Highly Sensitive Tumor Marker Determination. Small 2023, 19, 2304631. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Basak, S.; Kalkal, A.; Packirisamy, G. Recent advances in nanotechnology and microfluidic-based approaches for isolation and detection of circulating tumor cells (CTCs). Nano-Struct. Nano-Objects 2022, 31, 100886. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, Y.; Wang, Y.; Chen, L.; Zeng, Y.; Li, L.; Guo, L. Strategies for Enhancing the Sensitivity of Electrochemiluminescence Biosensors. Biosensors 2022, 12, 750. [Google Scholar] [CrossRef]
- Mandli, J.; Mohammadi, H.; Amine, A. Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles. Bioelectrochemistry 2017, 116, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Li, C.; Wu, K.; Hu, C.; Yang, N. Detection of tumor marker using ZnO@ reduced graphene oxide decorated with alkaline phosphatase-labeled magnetic beads. ACS Appl. Nano Mater. 2019, 2, 7747–7754. [Google Scholar] [CrossRef]
- Son, M.H.; Park, S.W.; Sagong, H.Y.; Jung, Y.K. Recent advances in electrochemical and optical biosensors for cancer biomarker detection. BioChip J. 2023, 17, 44–67. [Google Scholar] [CrossRef]
- Bai, C.; Liu, M. Nanotechnology for Microfluidics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Sher, M.; Coleman, B.; Caputi, M.; Asghar, W. Development of a point-of-care assay for HIV-1 viral load using higher refractive index antibody-coated microbeads. Sensors 2021, 21, 1819. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Peng, P.-Y. Semiconductor sensor embedded microfluidic chip for protein biomarker detection using a bead-based immunoassay combined with deoxyribonucleic acid strand labeling. Anal. Chim. Acta 2015, 869, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Caneira, C.R.; Soares, R.R.; Pinto, I.F.; Mueller-Landau, H.S.; Azevedo, A.M.; Chu, V.; Conde, J.P. Development of a rapid bead-based microfluidic platform for DNA hybridization using single-and multi-mode interactions for probe immobilization. Sens. Actuators B Chem. 2019, 286, 328–336. [Google Scholar] [CrossRef]
- Riahi, R.; Shaegh, S.A.M.; Ghaderi, M.; Zhang, Y.S.; Shin, S.R.; Aleman, J.; Massa, S.; Kim, D.; Dokmeci, M.R.; Khademhosseini, A. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci. Rep. 2016, 6, 24598. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wang, P.; Ke, Y. DNA Nanotechnology-Based Biosensors and Therapeutics. Adv. Healthc. Mater. 2021, 10, 2002205. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, Z.; Li, G. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application. Biosensors 2022, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-J.; Deng, C.-Z.; Chung, P.-S.; Tian, W.-C.; Sheen, H.-J. A high sensitivity bead-based immunoassay with nanofluidic preconcentration for biomarker detection. Sens. Actuators B Chem. 2018, 272, 502–509. [Google Scholar] [CrossRef]
- Robertson, J.W.; Reiner, J.E. The utility of nanopore technology for protein and peptide sensing. Proteomics 2018, 18, 1800026. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, M.; Argyropoulos, C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. Micromachines 2023, 14, 459. [Google Scholar] [CrossRef]
- Angeli, E.; Repetto, L.; Firpo, G.; Valbusa, U. Electrical biosensing with synthetic nanopores and nanochannels. Curr. Opin. Electrochem. 2021, 29, 100754. [Google Scholar] [CrossRef]
- He, L.; Tessier, D.R.; Briggs, K.; Tsangaris, M.; Charron, M.; McConnell, E.M.; Lomovtsev, D.; Tabard-Cossa, V. Digital immunoassay for biomarker concentration quantification using solid-state nanopores. Nat. Commun. 2021, 12, 5348. [Google Scholar] [CrossRef]
- Chuah, K.; Wu, Y.; Vivekchand, S.; Gaus, K.; Reece, P.J.; Micolich, A.P.; Gooding, J.J. Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples. Nat. Commun. 2019, 10, 2109. [Google Scholar] [CrossRef]
- Ying, Y.-L.; Hu, Z.-L.; Zhang, S.; Qing, Y.; Fragasso, A.; Maglia, G.; Meller, A.; Bayley, H.; Dekker, C.; Long, Y.-T. Nanopore-based technologies beyond DNA sequencing. Nat. Nanotechnol. 2022, 17, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Vermesh, O.; Mani, V.; Ge, T.J.; Madsen, S.J.; Sabour, A.; Hsu, E.-C.; Gowrishankar, G.; Kanada, M.; Jokerst, J.V. The exosome total isolation chip. ACS Nano 2017, 11, 10712–10723. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, A.M.; Glória, J.C.; Chaves, Y.O.; Neves, W.L.L.; Mariúba, L.A.M. Diagnostic applications of microsphere-based flow cytometry: A review. Exp. Biol. Med. 2022, 247, 1852–1861. [Google Scholar] [CrossRef]
- Liu, L.; Wu, S.; Jing, F.; Zhou, H.; Jia, C.; Li, G.; Cong, H.; Jin, Q.; Zhao, J. Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels. Biosens. Bioelectron. 2016, 80, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, L.; Li, G.; Jing, F.; Mao, H.; Jin, Q.; Zhai, W.; Zhang, H.; Zhao, J.; Jia, C. Multiplexed detection of lung cancer biomarkers based on quantum dots and microbeads. Talanta 2016, 156, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Lu, Y.; Wang, K.; Cheng, Z.; Qu, Y.; Qiu, S.; Zhou, L.; Wu, Z.; Liu, H.; Zhao, J. Rapid isolation and multiplexed detection of exosome tumor markers via queued beads combined with quantum dots in a microarray. Nano-Micro Lett. 2019, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yu, X.; Gao, M.; Gull, S.; Shen, L.; Wang, W.; Li, L.; Yin, Y.; Li, W. Precisely encoded barcodes using tetrapod CdSe/CdS quantum dots with a large stokes shift for multiplexed detection. Adv. Funct. Mater. 2020, 30, 1906707. [Google Scholar] [CrossRef]
- Guo, Z.; Hao, T.; Du, S.; Chen, B.; Wang, Z.; Li, X.; Wang, S. Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene asconductingbridge. Biosens. Bioelectron. 2013, 44, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Kovarova, A.; Kastrati, G.; Pekarkova, J.; Metelka, R.; Drbohlavova, J.; Bilkova, Z.; Selesovska, R.; Korecka, L. Biosensor with electrochemically active nanocomposites for signal amplification and simultaneous detection of three ovarian cancer biomarkers. Electrochim. Acta 2023, 469, 143213. [Google Scholar] [CrossRef]
- Di, H.; Mi, Z.; Sun, Y.; Liu, X.; Liu, X.; Li, A.; Jiang, Y.; Gao, H.; Rong, P.; Liu, D. Nanozyme-assisted sensitive profiling of exosomal proteins for rapid cancer diagnosis. Theranostics 2020, 10, 9303. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhao, X.; Hu, J.; Zhang, C.; Xie, X.; Liu, R.; Lv, Y. Single-nanoparticle differential immunoassay for multiplexed gastric cancer biomarker monitoring. Anal. Chem. 2022, 94, 12899–12906. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Dai, L.; Yang, Y. Microfluidic technology and its application in the point-of-care testing field. Biosens. Bioelectron. X 2022, 10, 100109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Yin, Y.; Pan, Y.; Wang, Y.; Song, Y. Nanomaterial-assisted microfluidics for multiplex assays. Microchim. Acta 2022, 189, 139. [Google Scholar] [CrossRef] [PubMed]
- Ahmadsaidulu, S.; Banik, O.; Kumar, P.; Kumar, S.; Banoth, E. Microfluidic Point-of-Care Diagnostics for Multi-disease Detection Using Optical Techniques: A Review. IEEE Trans. NanoBioscience 2023, 23, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Clack, K.; Soda, N.; Kasetsirikul, S.; Mahmudunnabi, R.G.; Nguyen, N.T.; Shiddiky, M.J. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. Small 2023, 19, 2205856. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Bolandi, N.; Hemmati, A.; Eyvazi, S.; Ghasemzadeh, S.; Baradaran, B.; Oroojalian, F.; Majidi, M.R.; de la Guardia, M.; Mokhtarzadeh, A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem. J. 2022, 177, 107248. [Google Scholar] [CrossRef]
- Povedano, E.; Montiel, V.R.-V.; Valverde, A.; Navarro-Villoslada, F.; Yáñez-Sedeño, P.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Peláez-García, A.; Mendiola, M. Versatile electroanalytical bioplatforms for simultaneous determination of cancer-related DNA 5-methyl-and 5-hydroxymethyl-cytosines at global and gene-specific levels in human serum and tissues. ACS Sens. 2018, 4, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Meeseepong, M.; Ghosh, G.; Shrivastava, S.; Lee, N.-E. Fluorescence-Enhanced Microfluidic Biosensor Platform Based on Magnetic Beads with Highly Stable ZnO Nanorods for Biomarker Detection. ACS Appl. Mater. Interfaces 2023, 15, 21754–21765. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhou, L.; Fang, Z.; Zou, Z.; Zhao, J.; Zuo, X.; Li, G. Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chem. Commun. 2023, 59, 3383–3398. [Google Scholar] [CrossRef] [PubMed]
- PJ, K.; Takamura, T.; Sandhu, A. Magnetically Induced Self-Assembly of Superparamagnetic Particles for Medical Diagnostics. J. Jpn. Soc. Powder Powder Metall. 2014, 61, S111–S116. [Google Scholar] [CrossRef]
- Yue, Y.; Chen, X.; Wang, J.; Ma, M.; He, A.; Liu, R. Label-free electrochemical biosensor with magnetically induced self-assembly for the detection of cancer antigen 125. Arab. J. Chem. 2023, 16, 105070. [Google Scholar] [CrossRef]
- Ng, J.K.; Selamat, E.S.; Liu, W.-T. A spatially addressable bead-based biosensor for simple and rapid DNA detection. Biosens. Bioelectron. 2008, 23, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Khazaeli, P.; Salehabadi, A.; Salavati-Niasari, M. Hydrogel beads-based nanocomposites in novel drug delivery platforms: Recent trends and developments. Adv. Colloid Interface Sci. 2021, 288, 102316. [Google Scholar] [CrossRef] [PubMed]
- Soda, N.; Gonzaga, Z.J.; Chen, S.; Koo, K.M.; Nguyen, N.-T.; Shiddiky, M.J.; Rehm, B.H. Bioengineered polymer nanobeads for isolation and electrochemical detection of cancer biomarkers. ACS Appl. Mater. Interfaces 2021, 13, 31418–31430. [Google Scholar] [CrossRef] [PubMed]
- Farzin, M.A.; Abdoos, H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta 2021, 224, 121828. [Google Scholar] [CrossRef]
- Freitas, M.; Nouws, H.P.; Keating, E.; Fernandes, V.C.; Delerue-Matos, C. Immunomagnetic bead-based bioassay for the voltammetric analysis of the breast cancer biomarker HER2-ECD and tumour cells using quantum dots as detection labels. Microchim. Acta 2020, 187, 184. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wei, X.; Zhang, X.; Cai, Z.; Wei, Y.; Liu, W.; Yang, J.; Li, Y.; Cai, X.; Bai, T. Multiplexed detection of bladder cancer microRNAs based on core-shell-shell magnetic quantum dot microbeads and cascade signal amplification. Sens. Actuators B Chem. 2021, 349, 130824. [Google Scholar] [CrossRef]
- Chen, Z.; Li, P.; Zhang, Z.; Zhai, X.; Liang, J.; Chen, Q.; Li, K.; Lin, G.; Liu, T.; Wu, Y. Ultrasensitive sensor using quantum dots-doped polystyrene nanospheres for clinical diagnostics of low-volume serum samples. Anal. Chem. 2019, 91, 5777–5785. [Google Scholar] [CrossRef]
- Wu, W.; Liu, X.; Shen, M.; Shen, L.; Ke, X.; Cui, D.; Li, W. Multicolor quantum dot nanobeads based fluorescence-linked immunosorbent assay for highly sensitive multiplexed detection. Sens. Actuators B Chem. 2021, 338, 129827. [Google Scholar] [CrossRef]
- Heydari-Bafrooei, E.; Ensafi, A.A. Nanomaterials-based biosensing strategies for biomarkers diagnosis, a review. Biosens. Bioelectron. X 2023, 13, 100245. [Google Scholar] [CrossRef]
- Oliveira, B.B.; Ferreira, D.; Fernandes, A.R.; Baptista, P.V. Engineering gold nanoparticles for molecular diagnostics and biosensing. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023, 15, e1836. [Google Scholar] [CrossRef] [PubMed]
- Bu, J.; Lee, T.H.; Jeong, W.-J.; Poellmann, M.J.; Mudd, K.; Eun, H.S.; Liu, E.W.; Hong, S.; Hyun, S.H. Enhanced detection of cell-free DNA (cfDNA) enables its use as a reliable biomarker for diagnosis and prognosis of gastric cancer. PLoS ONE 2020, 15, e0242145. [Google Scholar] [CrossRef]
- Calmo, R.; Chiadò, A.; Fiorilli, S.; Ricciardi, C. Advanced ELISA-like biosensing based on ultralarge-pore silica microbeads. ACS Appl. Bio Mater. 2020, 3, 5787–5795. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zhang, F.; Chai, R.; Zhou, W.; Hu, M.; Liu, B.; Chen, X.; Liu, M.; Xu, Q.; Liu, N. Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. J. Cell Mol. Med. 2019, 23, 7617–7631. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Cao, D.; Qi, C.-B.; Kang, Y.-F.; Song, C.-Y.; Xu, D.-D.; Zheng, B.; Pang, D.-W.; Tang, H.-W. Combining holographic optical tweezers with upconversion luminescence encoding: Imaging-based stable suspension array for sensitive responding of dual cancer biomarkers. Anal. Chem. 2018, 90, 2639–2647. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Guisán, J.M.; Rocha-Martin, J. Oriented immobilization of antibodies onto sensing platforms-A critical review. Anal. Chim. Acta 2022, 1189, 338907. [Google Scholar] [CrossRef] [PubMed]
- Vandghanooni, S.; Sanaat, Z.; Barar, J.; Adibkia, K.; Eskandani, M.; Omidi, Y. Recent advances in aptamer-based nanosystems and microfluidics devices for the detection of ovarian cancer biomarkers. TrAC Trends Anal. Chem. 2021, 143, 116343. [Google Scholar] [CrossRef]
- Surucu, O.; Öztürk, E.; Kuralay, F. Nucleic Acid Integrated Technologies for Electrochemical Point-of-Care Diagnostics: A Comprehensive Review. Electroanalysis 2022, 34, 148–160. [Google Scholar] [CrossRef]
- Davis, R.M.; Kiss, B.; Trivedi, D.R.; Metzner, T.J.; Liao, J.C.; Gambhir, S.S. Surface-enhanced Raman scattering nanoparticles for multiplexed imaging of bladder cancer tissue permeability and molecular phenotype. Acs Nano 2018, 12, 9669–9679. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Gong, G.; Jiang, Y.; Qin, J.; Mei, Y.; Han, J. Electrochemical immunosensor modified with nitrogen-doped reduced graphene oxide@ Carboxylated multi-walled carbon Nanotubes/Chitosan@ Gold nanoparticles for CA125 detection. Chemosensors 2022, 10, 272. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, X.; Xia, L.; Li, G.; Shui, L. Microfluidic magnetic analyte delivery technique for separation, enrichment, and fluorescence detection of ultratrace biomarkers. Anal. Chem. 2021, 93, 8273–8280. [Google Scholar] [CrossRef] [PubMed]
- Quansah, M.; Fetter, L.; Fineran, A.; Colling, H.V.; Silver, K.; Rowland, T.J.; Bonham, A.J. Rapid and Quantitative Detection of Lung Cancer Biomarker ENOX2 Using a Novel Aptamer in an Electrochemical DNA-Based (E-DNA) Biosensor. Biosensors 2023, 13, 675. [Google Scholar] [CrossRef]
- Xu, L.; Shoaie, N.; Jahanpeyma, F.; Zhao, J.; Azimzadeh, M.; Al, K.T. Optical, electrochemical and electrical (nano) biosensors for detection of exosomes: A comprehensive overview. Biosens. Bioelectron. 2020, 161, 112222. [Google Scholar] [CrossRef]
- Chia, Y.Y.; Theverajah, T.M.; Alias, Y.; Khor, S.M. Three-dimensional porous calcium alginate fluorescence bead–based immunoassay for highly sensitive early diagnosis of breast cancer. Anal. Bioanal. Chem. 2022, 414, 1359–1373. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Gui, R.; Gong, J.; Huang, W. Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen. Biosens. Bioelectron. 2017, 92, 378–384. [Google Scholar] [CrossRef]
- Hamd-Ghadareh, S.; Salimi, A.; Fathi, F.; Bahrami, S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens. Bioelectron. 2017, 96, 308–316. [Google Scholar] [CrossRef]
- Yang, X.; Tang, Y.; Zhang, X.; Hu, Y.; Tang, Y.Y.; Hu, L.Y.; Li, S.; Xie, Y.; Zhu, D. Fluorometric visualization of mucin 1 glycans on cell surfaces based on rolling-mediated cascade amplification and CdTe quantum dots. Microchim. Acta 2019, 186, 721. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mao, G.; Du, M.; Tian, S.; Niu, L.; Ji, X.; He, Z. A fluorometric turn-on aptasensor for mucin 1 based on signal amplification via a hybridization chain reaction and the interaction between a luminescent ruthenium (II) complex and CdZnTeS quantum dots. Microchim. Acta 2019, 186, 233. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.T.; Canady, T.D.; Zhao, B.; Ghosh, S.; Li, N.; Huang, Q.; Xiong, Y.; Fried, G.; Kohli, M.; Demirci, U. Photonic metamaterial surfaces for digital resolution biosensor microscopies using enhanced absorption, scattering, and emission. In Integrated Sensors for Biological and Neural Sensing; SPIE: Cergy-Pontoise, France, 2021; pp. 50–59. [Google Scholar]
- Azzouz, A.; Hejji, L.; Kim, K.-H.; Kukkar, D.; Souhail, B.; Bhardwaj, N.; Brown, R.J.; Zhang, W. Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection. Biosens. Bioelectron. 2022, 197, 113767. [Google Scholar] [CrossRef] [PubMed]
- Suwansa-ard, S.; Kanatharana, P.; Asawatreratanakul, P.; Wongkittisuksa, B.; Limsakul, C.; Thavarungkul, P. Comparison of surface plasmon resonance and capacitive immunosensors for cancer antigen 125 detection in human serum samples. Biosens. Bioelectron. 2009, 24, 3436–3441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Shen, X. Cancer antigen 125 detection using the plasmon resonance scattering properties of gold nanorods. Analyst 2013, 138, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Duan, R.; Yang, H.; Luo, X.; Xi, M. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int. J. Nanomed. 2012, 7, 2921–2928. [Google Scholar] [CrossRef] [PubMed]
- Pahlow, S.; Richard-Lacroix, M.; Hornung, F.; Köse-Vogel, N.; Mayerhöfer, T.G.; Hniopek, J.; Ryabchykov, O.; Bocklitz, T.; Weber, K.; Ehricht, R. Simple, Fast and Convenient Magnetic Bead-Based Sample Preparation for Detecting Viruses via Raman-Spectroscopy. Biosensors 2023, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Yarbakht, M.; Nikkhah, M.; Moshaii, A.; Weber, K.; Matthäus, C.; Cialla-May, D.; Popp, J. Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy. Talanta 2018, 186, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, T.; Li, C.S.; Song, Y.; Lou, H.; Guan, D.; Jin, L. Surface enhanced Raman spectroscopy (SERS) for the multiplex detection of Braf, Kras, and Pik3ca mutations in plasma of colorectal cancer patients. Theranostics 2018, 8, 1678. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Zhang, Z.; Zuo, D.; Zhu, W.; Zhang, J.; Zeng, Q.; Yang, D.; Li, M.; Zhao, Y. Ultrasensitive detection of serum microRNA using branched DNA-based SERS platform combining simultaneous detection of α-fetoprotein for early diagnosis of liver cancer. ACS Appl. Mater. Interfaces 2018, 10, 34869–34877. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Wang, C.; Lu, L.; Wang, C.; Sun, Z.; Xiao, R. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron. 2019, 130, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Alvarez-Puebla, R.A. Surface-enhanced Raman spectroscopy in cancer diagnosis, prognosis and monitoring. Cancers 2019, 11, 748. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Iqbal, M.; Lin, J.; Luo, X.; Jiang, B.; Malgras, V.; Wu, K.C.-W.; Kim, J.; Yamauchi, Y. Electrochemical deposition: An advanced approach for templated synthesis of nanoporous metal architectures. Acc. Chem. Res. 2018, 51, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- Dakshayini, B.; Reddy, K.R.; Mishra, A.; Shetti, N.P.; Malode, S.J.; Basu, S.; Naveen, S.; Raghu, A.V. Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem. J. 2019, 147, 7–24. [Google Scholar] [CrossRef]
- Dinani, H.S.; Pourmadadi, M.; Rashedi, H.; Yazdian, F. Fabrication of nanomaterial-based biosensor for measurement of a microRNA involved in cancer. In Proceedings of the 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 26–27 November 2020; pp. 47–54. [Google Scholar]
- Wang, W.; Fan, X.; Xu, S.; Davis, J.J.; Luo, X. Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens. Bioelectron. 2015, 71, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Senel, M.; Dervisevic, M.; Kokkokoğlu, F. Electrochemical DNA biosensors for label-free breast cancer gene marker detection. Anal. Bioanal. Chem. 2019, 411, 2925–2935. [Google Scholar] [CrossRef] [PubMed]
- Suhasini, P.; Shetty, S.S.; Shetty, V.V.; Shetty, P.; Rao, C.; Shetty, P.K. Prognostic significance of tetraspanin CD9 and oncogenic epidermal growth factor receptor in tongue squamous cell carcinoma survival. Pathol. Res. Pract. 2023, 248, 154651. [Google Scholar] [CrossRef]
- Shetty, S.R.; Yeeravalli, R.; Bera, T.; Das, A. Recent advances on epidermal growth factor receptor as a molecular target for breast cancer therapeutics. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem. Anti-Cancer Agents) 2021, 21, 1783–1792. [Google Scholar] [CrossRef]
- Ilkhani, H.; Sarparast, M.; Noori, A.; Bathaie, S.Z.; Mousavi, M.F. Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens. Bioelectron. 2015, 74, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.A.; Sánchez, J.L.A.; O’Sullivan, C.K.; Abbas, M.N. DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 2017, 118, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, A.; Aghaie, A.; Vahedi, E.; Qazvini, A.; Ghanei, M.; Afkhami, A.; Hajian, A.; Bagheri, H. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2020, 206, 120251. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Bao, J.; Zhao, Y.; Huo, D.; Chen, M.; Qi, Y.; Yang, M.; Fa, H.; Hou, C. A sandwich-type electrochemical immunoassay for ultrasensitive detection of non-small cell lung cancer biomarker CYFRA21-1. Bioelectrochemistry 2018, 120, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Sabahi, A.; Salahandish, R.; Ghaffarinejad, A.; Omidinia, E. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta 2020, 209, 120595. [Google Scholar] [CrossRef] [PubMed]
- Razmi, N.; Hasanzadeh, M. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. TrAC Trends Anal. Chem. 2018, 108, 1–12. [Google Scholar] [CrossRef]
- Jafari, M.; Hasanzadeh, M.; Solhi, E.; Hassanpour, S.; Shadjou, N.; Mokhtarzadeh, A.; Jouyban, A.; Mahboob, S. Ultrasensitive bioassay of epitope of Mucin-16 protein (CA 125) in human plasma samples using a novel immunoassay based on silver conductive nano-ink: A new platform in early stage diagnosis of ovarian cancer and efficient management. Int. J. Biol. Macromol. 2019, 126, 1255–1265. [Google Scholar] [CrossRef] [PubMed]
- Raghav, R.; Srivastava, S. Core–shell gold–silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sens. Actuators B Chem. 2015, 220, 557–564. [Google Scholar] [CrossRef]
- Rajaji, U.; Muthumariyappan, A.; Chen, S.-M.; Chen, T.-W.; Ramalingam, R.J. A novel electrochemical sensor for the detection of oxidative stress and cancer biomarker (4-nitroquinoline N-oxide) based on iron nitride nanoparticles with multilayer reduced graphene nanosheets modified electrode. Sens. Actuators B Chem. 2019, 291, 120–129. [Google Scholar] [CrossRef]
- Heidari, R.; Rashidiani, J.; Abkar, M.; Taheri, R.A.; Moghaddam, M.M.; Mirhosseini, S.A.; Seidmoradi, R.; Nourani, M.R.; Mahboobi, M.; Keihan, A.H. CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: p53. Biosens. Bioelectron. 2019, 126, 7–14. [Google Scholar] [CrossRef]
- Li, S.; Zhou, J.; Noroozifar, M.; Kerman, K. Gold-platinum core-shell nanoparticles with thiolated polyaniline and multi-walled carbon nanotubes for the simultaneous voltammetric determination of six drug molecules. Chemosensors 2021, 9, 24. [Google Scholar] [CrossRef]
- Rostamabadi, P.F.; Heydari-Bafrooei, E. Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchim. Acta 2019, 186, 495. [Google Scholar] [CrossRef] [PubMed]
- Paimard, G.; Shahlaei, M.; Moradipour, P.; Karamali, V.; Arkan, E. Impedimetric aptamer based determination of the tumor marker MUC1 by using electrospun core-shell nanofibers. Microchim. Acta 2020, 187, 5. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, Y.; Yan, H.; Wu, Y.; Zhu, C.; Du, D.; Lin, Y. SWCNTs@ GQDs composites as nanocarriers for enzyme-free dual-signal amplification electrochemical immunoassay of cancer biomarker. Anal. Chim. Acta 2018, 1042, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Aydın, E.B.; Sezgintürk, M.K. A sensitive and disposable electrochemical immunosensor for detection of SOX2, a biomarker of cancer. Talanta 2017, 172, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-P.; Hu, Y.; Liu, P.; Deng, Y.-N.; Wang, P.; Chen, W.; Liu, A.-L.; Chen, Y.-Z.; Lin, X.-H. Label-free electrochemical DNA biosensor for rapid detection of mutidrug resistance gene based on Au nanoparticles/toluidine blue–graphene oxide nanocomposites. Sens. Actuators B Chem. 2015, 207, 269–276. [Google Scholar] [CrossRef]
- Azmi, M.M.; Tehrani, Z.; Lewis, R.; Walker, K.-A.; Jones, D.; Daniels, D.; Doak, S.; Guy, O. Highly sensitive covalently functionalised integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosens. Bioelectron. 2014, 52, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Narlawar, S.; Coudhury, S.; Gandhi, S. Magnetic properties-based biosensors for early detection of cancer. In Biosensor Based Advanced Cancer Diagnostics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 165–178. [Google Scholar] [CrossRef]
- Cortade, D.L.; Wang, S.X. Quantitative and rapid detection of morphine and hydromorphone at the point of care by an automated giant magnetoresistive nanosensor platform. Anal. Bioanal. Chem. 2022, 414, 7211–7221. [Google Scholar] [CrossRef] [PubMed]
- Blšákova, A.; Květoň, F.; Lorencová, L.; Blixt, O.; Vikartovská, A.; Kasak, P.; Tkac, J. Amplified suspension magnetic bead-based assay for sensitive detection of anti-glycan antibodies as potential cancer biomarkers. Anal. Chim. Acta 2022, 1195, 339444. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Wu, D.; Yu, H.; Sun, W.; Yi, X.; Liu, L. Magnetic bead-based electrochemical and colorimetric assays of circulating tumor cells with boronic acid derivatives as the recognition elements and signal probes. Talanta 2021, 221, 121640. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhang, Y.; Liu, S.; Zhao, J.; Yuan, R.; Chen, S. CRISPR/Cas12a System Coupling Polyfluorene Nanoreporter Enriched by Magnetic Bead-based High-efficiency DNA Nanocarrier for Fluorescence Analysis. Sens. Actuators B Chem. 2023, 393, 134207. [Google Scholar] [CrossRef]
- Zhu, S.; Tan, W.; Li, W.; Zhou, R.; Wu, X.; Chen, X.; Li, W.; Shang, C.; Chen, Y. Low expression of VSIG4 is associated with poor prognosis in hepatocellular carcinoma patients with hepatitis B infection. Cancer Manag. Res. 2018, 10, 3697. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, R.; Van Leeuwen, L.M.; Rauf, S.; Shiddiky, M.J.; Trau, M. A multiplexed device based on tunable nanoshearing for specific detection of multiple protein biomarkers in serum. Sci. Rep. 2015, 5, 9756. [Google Scholar] [CrossRef] [PubMed]
- Green, B.J.; Kermanshah, L.; Labib, M.; Ahmed, S.U.; Silva, P.N.; Mahmoudian, L.; Chang, I.-H.; Mohamadi, R.M.; Rocheleau, J.V.; Kelley, S.O. Isolation of phenotypically distinct cancer cells using nanoparticle-mediated sorting. ACS Appl. Mater. Interfaces 2017, 9, 20435–20443. [Google Scholar] [CrossRef] [PubMed]
- Sreejith, K.R.; Umer, M.; Singha, P.; Nguyen, N.-K.; Kasetsirikul, S.; Ooi, C.H.; Shiddiky, M.J.; Nguyen, N.-T. Loop-mediated isothermal amplification in a core-shell bead assay for the detection of tyrosine kinase AXL overexpression. Micromachines 2021, 12, 905. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Fang, X.; Chen, H.; Weng, W.; Liu, B.; Kong, J. Dual-modality loop-mediated isothermal amplification for pretreatment-free detection of Septin9 methylated DNA in colorectal cancer. Microchim. Acta 2021, 188, 307. [Google Scholar] [CrossRef] [PubMed]
- Van Gool, A.; Corrales, F.; Čolović, M.; Krstić, D.; Oliver-Martos, B.; Martínez-Cáceres, E.; Jakasa, I.; Gajski, G.; Brun, V.; Kyriacou, K. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev. Proteom. 2020, 17, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, S.; Gautam, R.K.; Singh, A.K.; Tiwari, I. Nanoscale materials-based hybrid frameworks modified electrochemical biosensors for early cancer diagnostics: An overview of current trends and challenges. Microchem. J. 2022, 172, 106980. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Zhu, M.; Kuang, Z.; Li, X.; Xu, F.; Miao, S.; Zhang, Z.; Lou, X.; Li, H. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem. Rev. 2023, 123, 7953–8039. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Voldman, J. An integrated model for bead-based immunoassays. Biosens. Bioelectron. 2020, 154, 112070. [Google Scholar] [CrossRef] [PubMed]
- Kizhepat, S.; Rasal, A.S.; Chang, J.-Y.; Wu, H.-F. Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. Nanomaterials 2023, 13, 1520. [Google Scholar] [CrossRef] [PubMed]
- De La Franier, B.; Thompson, M. Early stage detection and screening of ovarian cancer: A research opportunity and significant challenge for biosensor technology. Biosens. Bioelectron. 2019, 135, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Kaya, S.I.; Ozcelikay, G.; Mollarasouli, F.; Bakirhan, N.K.; Ozkan, S.A. Recent achievements and challenges on nanomaterial based electrochemical biosensors for the detection of colon and lung cancer biomarkers. Sens. Actuators B Chem. 2022, 351, 130856. [Google Scholar] [CrossRef]
- Mavrina, E.; Kimble, L.; Waury, K.; Gogishvili, D.; Gómez de San José, N.; Das, S.; Coppens, S.; Fernandes Gomes, B.; Mravinacová, S.; Wojdała, A.L. Multi-omics interdisciplinary research integration to accelerate dementia biomarker development (MIRIADE). Front. Neurol. 2022, 13, 890638. [Google Scholar] [CrossRef]
Cancer Type | Biomarkers | References |
---|---|---|
Breast Cancer | HER2, ER, BRCA1, BRCA2, CA15-3 | [8,9,10] |
Lung Cancer | CYFRA21-1, LncRNA MEG3, EGFR, PD-L1, KRAS mutation | [11,12,13,14,15] |
Colorectal Cancer | CA19-9, EGFR, CEA | [16,17,18] |
Prostate Cancer | PSA, LncRNA PCA3, PAP | [19,20,21] |
Gastric Cancer | HER2, PD-L1, CA72-4, CEA | [22] |
Hepatic Cancer | AFP, AFP-L3, DCP | [23] |
Pancreatic Cancer | CA19-9, CEA, KRAS, TP53 | [24] |
Ovarian cancer | CA-125, BRCA1, BRCA2, CA 19-9, AFP | [25] |
Leukemia | BCR-ABL | [26] |
Pros | Cons |
---|---|
|
|
Type | Biomarker | Detection Limit | Linear Range | Reference |
---|---|---|---|---|
Enzymatic amplification | CEA | 6.12 pg/mL | 0.02–50 ng/mL | [18] |
CEA | 4.0 pg/mL | 0.01–6.0 ng/mL | [55] | |
Nucleic acid amplification | AFB1 | 0.13 pg/mL | 0.5–40 pg/mL | [44] |
miRNA16 | 8.81 fM | 10 fM–100 pM | [45] | |
miRNA21 | 3.85 fM | 10 fM–1 nM | ||
Ultra-sensitive probes | CEA | 30.5 fg/mL | 100 fg/mL–50 ng/mL | [36] |
DNA | 0.5 pM | 10 pM–50 nM | [37] | |
EN2 | 0.34 nM | 3.12–50 nM | [38] | |
Enrichment by concentration | CEA/CA15-3 | 0.1 ng/mL | 0.2–30 ng/mL | [50] |
CEA | 3.0 pg/mL | 0.01−20 ng/mL | [51] | |
Others | PSA | 10 fg/mL | 100 fg/mL–10 ng/mL | [39] |
HER2 | 0.37 pg/mL | 0.75–250 pg/mL | [40] |
Sensing Mechanism | Target Biomarker | Detection Elements | Signal Elements | Detection Limit | Reference |
---|---|---|---|---|---|
Fluorescence | HER2 | HER2 Ab | FITC | 0.004 ng/mL | [113] |
CA125 | CA125 Ab | Cy5 | 0.005 U/mL | ||
CA125 | CA125 aptamer | Near-infrared photoluminescence | 0.07 ng/mL | [114] | |
CA125 | CA125 aptamer & CA125 Ab | Fluorescence resonance energy transfer | 400 cells/mL | [115] | |
MUC1 | DNA probe & MUC1 Ab | CdTe QDs & Fluorescence-AMCA | - | [116] | |
MUC1 | biotin-labeled aptamer | Fluorescence of CdZnTeS QDs | 0.13 ng/mL | [117] | |
SPR | CA125 | CA125 Ab | 11-mercaptoundecanoic acid | 0.1 U/mL | [120] |
CA125 | CA125 Ab | Gold nanorod | 0.4 U/mL | [121] | |
HE4 | HE4 Ab | Nanochip | 4 pM | [122] | |
Raman spectroscopy | MUC1 | MUC1 aptamer | 4-mercaptopyridine | - | [124] |
BRAF & PIK3CA | Gene probes | Fluorescence label | 10−11 M | [125] | |
miR-223 | DNA probes | Raman reporters | 10−17 M | [126] | |
AFP | AFP Ab | 10−12 M | |||
CD47 & CA9 | CD47 Ab & CA9 Ab | Raman dyes | - | [108] | |
miR-10b | DNA probes | DTNB | 10−18 M | [127] |
Cancer Type | Electrode | Target Biomarker | Detection Limit | Linear Range | Reference |
---|---|---|---|---|---|
Breast cancer | Dye labeled DNA probe | CA15-3 | 0.0039 U/mL | 0.01–1 U/mL | [10] |
Oligonucleotides modified probe | BRCA1 | 1.72 fM | 50.0 fM–1.0 nM | [132] | |
Ferrocenecored poly (amidoamine) dendrimers | BRCA1 | 0.38 nM | 1.3–20 nM | [133] | |
Apt-EGFR-Ab/MB | EGFR | 50 pg/mL | 1–40 ng/mL | [136] | |
HER2 probe & CD24c DNA modified probe | HER2 | 0.16 nM | 0.37–10 nM | [137] | |
Lung cancer | ssDNA modified probe | CYFRA21-1 | 1.0 × 10−14 M | 10 fM–100 nM | [11] |
ssDNA modified probe | EGFR | 120 nM | 0.1 μM–3 μM | [13] | |
Primer probes | MEG3 | 0.25 fM | 1 fM–100 pM | [12] | |
GCE/G2Fc/Ab | IgG | 2.0 ng/mL | 5.0–50 ng/mL | [138] | |
graphene, chitosan and glutaraldehyde | CYFRA21-1 | 43 pg/mL | 0.1 to 150 ng/mL | [139] | |
Prostate cancer | polypyrrole/Au/Ab | PSA | 0.3 fg/mL | 10 fg/mL–10 ng/mL | [19] |
FTO/SWCNTs/Au/probe | miR-21 | 0.01 fM L−1 | 0.01 fM–1 μM | [140] | |
Ovarian cancer | Polyaniline | CA125 | 0.923 ng/μL | 0.92 pg/μL–15.20 ng/μL | [25] |
Ag NPs-GQDs | Mucin-16 | 0.01 U/mL | 0.01–400 U/mL | [142] | |
Au-Ag nanoparticles | CA125 | 5.9 IU/mL | 1–150 IU/mL | [143] | |
Universal | Fe2N@rGOS/probe | 4-NQO | 9.24 nM | 0.05–574.2 μM | [144] |
p53-Ab2-tGO-AuNPs | p53 | 4 fg/mL | 20–1000 fg/mL | [145] | |
glassy carbon | MUC1 | 2.7 nM | 5–115 nM | [148] | |
Ab1/rGO-AuNPs/GCE | CEA | 5.3 pg/mL | 50–650 pg/mL | [149] | |
ITO-PET/EDC-NHS/Ab | SOX2 | 7 fg/mL | 25 fg/mL–2 pg/mL | [150] | |
Au NPs/TB–GO/probe | MDR1 | 2.95 × 10−12 M | 0.01–1.0 nM | [151] | |
SOI/SiNW/PhNO2/Ab | 8-OHdG | 1 ng/mL | 1–40 ng/mL | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.-P.; Yang, T.-H.; Wang, J.-C.; Chuang, H.-S. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. Sensors 2024, 24, 2904. https://doi.org/10.3390/s24092904
Cheng H-P, Yang T-H, Wang J-C, Chuang H-S. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. Sensors. 2024; 24(9):2904. https://doi.org/10.3390/s24092904
Chicago/Turabian StyleCheng, Hui-Pin, Tai-Hua Yang, Jhih-Cheng Wang, and Han-Sheng Chuang. 2024. "Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection" Sensors 24, no. 9: 2904. https://doi.org/10.3390/s24092904