1. Introduction
The emergence of COVID-19 demonstrated the catastrophic impact of airborne respiratory diseases. COVID-19 and similar airborne diseases can cause long-term health problems and significant disruption to social and economic life. The most common modes of transmission for similar diseases are droplet/particulate matter (PM) transmission, direct contact and airborne transmission via small aerosol particles [
1]. However, during the COVID-19 pandemic, pathogens in respiratory aerosol particles were the dominant mode of transmission. According to the World Health Organization [
2], respiratory particles larger than 5
m are considered droplets and smaller particles are considered aerosols. Studies [
3] have found similar aerosol size distributions in cough aerosols and exhaled breath from patients with respiratory infections, with most pathogens concentrated in small particles (<5
m). There is considerable disagreement among experts regarding the average particle size of respiratory aerosols. However, numerous studies have demonstrated that they represent the primary mode of virus transmission indoors [
4,
5,
6]. This is because small aerosol particles have the potential to be transmitted to a multitude of individuals at a considerable distance from the source of infection. This is due to their lack of settling by gravity, which allows them to remain suspended in the air and accumulate over time. This renders them more susceptible to aerodynamic transport. Consequently, indoor environments such as classrooms, meeting rooms, clubs, etc., are susceptible to the spread of viruses due to the presence of long-lived, small aerosols (with a diameter of less than 5 µm) when inadequate or disproportionate ventilation is apparent.
Small aerosol particles can carry many viruses depending on the location of the infection in the respiratory tract of the spreader [
7]. The same study suggested that COVID-19 RNA are also present in respiratory aerosols with mean diameters of
∼
m. Furthermore, they have a greater potential to cause a bronchial infection. Once in the susceptible host, they tend to be inhaled deeply, leading to potential infection in the lower airways, while larger droplets tend to be retained in the upper airways. Consequently, the mitigation strategies employed in indoor environments should be directed toward reducing the number of small aerosol particles.
The effects of preventive measures, such as different types of masks, air purifiers and air ventilation, within group dynamic scenarios are scarcely investigated and need proper attention [
8]. Particularly, smaller particles pose a greater threat due to their ability to infiltrate beyond normal masks. An experimental study by [
9] on the effectiveness of different masks concluded that simple surgical or homemade masks do not provide sufficient protection against small droplets with diameters of
–2
m. Nevertheless, the use of such masks is recommended when no particle-filtering respiratory mask is available.
When making recommendations for indoor infection control measures, it is usually assumed that the “well mixed” hypothesis [
10] applies. This hypothesis postulates that particles are rapidly dispersed throughout the indoor air due to thorough turbulent mixing, resulting in a homogeneous distribution. Despite adherence to infection control measures based on the well-mixed hypothesis, infections can still occur when ventilation transfers airborne particles from one infected person to another, as confirmed by real-life case studies by [
11,
12]. In order to ascertain the specific circumstances under which the well-mixed hypothesis does not hold, it is necessary to conduct large-scale measurements. Lagrangian particle tracking approaches, such as Shake-The-Box, are well-suited to this task as they are capable of accurately measuring flow fields in large measurement volumes.
In [
13], measurements using two-dimensional Shake-The-Box Lagrangian particle tracking are presented, revealing the flow topologies in a cross-section of a
m ×
m classroom. They studied transient scenarios with dynamic motion of the occupants. Such experiments require expensive equipment, such as large LED arrays and high-resolution cameras, but provide insight into the Lagrangian and Eulerian properties of such large flow domains. Nevertheless, this approach does not permit the assessment of infection risk at each location in arbitrary room geometries and the influence of human motion on aerosol transport due to limitations in optical accessibility.
In order to implement an effective indoor ventilation strategy, it is necessary to study different transient scenarios. This includes the simulation of several realistic boundary conditions, such as windows, enclosed space areas, forced/natural ventilation mechanisms, continuous and/or intermittent ventilation ducts, indoor/outdoor temperature difference, likely host/carrier location, etc. The large degree of freedom therefore requires a high number of experiments, which is only possible with a simple experimental approach. The measurement of aerosol particle concentration fulfills this requirement when a flexible, remote and robust measurement system is available for the simultaneous measurement of aerosol particle concentration at multiple locations.
The monitoring of indoor air quality for pollutants using PMS is usually carried out according to reference standards. The same principle is applied to respiratory aerosols. This is associated with high capital cost and large size, making it unsuitable for smart array or PMS devices. In order to design an efficient, intelligent and low-cost measurement system, a number of requirements must be taken into account, such as compact size for easy installation, low power consumption for longer operation, accessibility, low-cost production and simultaneous array operation. However, it is important to note that small and inexpensive optical particle counters are now readily available and easy to use. Nevertheless, it has been shown that such devices give different mass concentration measurements than reference devices and are sensitive to humidity [
14].
In [
15], a performance study was conducted to evaluate different consumer-grade particulate matter sensors under controlled air pollution and thermal conditions. Four PM sensors, Sensirion SPS30 (Stäfa, Switzerland), Alphasense OPC-R1, Alphasense OPC-N3 (Essex, United Kingdom) and Nova Fitness SDS018 (Jinan, China), were used in the test. These sensors, coupled with an Arduino Mega, transmitted and logged PM data to a personal computer. Five indoor air pollutant sources producing different particle diameter spectra ranging from ≤0.1
m (ultrafine particles) to <10
m (coarse particles) with concentrations from 2 ppm to 2387 ppm were used to simulate PM levels. The results showed that all sensors underestimated the mass concentration of particulate matter. However, the SPS30 showed a strong correlation with the results obtained by the reference measurement system, a Grimm model 1371, Durag Aerosol Technik miniWRAS (Hamburg, Germany). In contrast to the other consumer sensors tested, the Pearson correlation coefficient was greater than 0.8 for each particle source. The results show that the SPS30 is an effective sensor for detecting changes in PM concentration in the range of 0.3–2.5
m.
In recent years, a number of distributed, low-cost PM measurement systems have been developed and deployed. One example is a measurement system development reported in the study by [
16] which is capable of integrating a variety of sensors, including the Sensirion SPS30 PMS. Such measurement systems are suitable for experiments in a variety of room geometries and boundary conditions. Recently, experiments based on PMSs have been utilized to measure the particle dispersion in an aircraft cabin [
17]. The SPS30 used in this study can also deviate significantly from reference instruments, such as the Grimm 1.108, but with very low inter-instrument variability [
18]. Therefore, they are still suitable for aerosol particle transport experiments as long as only one type is used. However, these systems rely on interconnecting cables between the sensors and a host computer and are therefore limited for experiments with widely separated measurement points or moving occupants.
In order to record the dispersion of particles in specific situations and spatial geometries as part of experiments, sensors are required at several locations in the room to record the particle concentration, which can then be read out. Such a system has been developed by [
19] and based on a low-cost PM sensor (HPMA115S0) which has been used to monitor indoor air quality in controlled experiments with incense, burnt smoke and toast particles. Additional instruments, such as the TSI Model 3938 Scanning Mobility Particle Sizer (SMPS) and Model 3321 Aerodynamic Particle Sizer (APS), were used to calculate measurements with coefficients of determination (R2) ranging from 0.21 to 0.99 for PM2.5. An indoor environmental monitoring device based on Arduino Pro Mini was developed to measure relative humidity, temperature, CO
2 concentration, motion and PM concentration [
20]. This device, known as the School Monitoring Box (SKOMOBO), included various sensors and interfaces for external devices.
Weekly et al. (2013) [
21] presented a wireless PM sensor for the detection of coarse airborne particulate matter in indoor environments. The device used PPD-20V and DSM301A sensors to detect PM with different size ranges. Data from the PM sensor were remotely transmitted to a computer for analysis, with calibration using a GT-526S laser particle counter. The results of the experiment demonstrated the effectiveness of the device in detecting coarse particles and thus correlating the PM data with the occupant concentration in the public spaces. The idea of using PM concentration in relation to the number of people is a novel approach, but the system is purely static and deals with the number of people rather than PM concentration data.
However, both sensor systems described are based on custom-designed boards and the software required to operate them is not freely available. Therefore, we present an open source, low-cost and distributed PM measurement system designed to measure dynamic scenarios such as DATIV. Thus, we present a distributed measurement system equipped with essential features to perform aerosol dispersion experiments in realistic settings with moving participants. The system’s affordability and simplicity make it suitable not only for extensive use in experiments investigating the transmission of virus-laden aerosols, but also for general assessment of air quality in different indoor environments.
3. Functional Test
The measurement system has been developed primarily for aerosol dispersion experiments in enclosed spaces. Therefore, this section describes a validation experiment on aerosol dispersion using the developed measurement system. The validation experiment was performed at the Cottbus Aerosol Reference Experimental (CARE) facility located at the Brandenburg University of Technology, Cottbus-Senftenberg (BTU C-S) in Cottbus, Germany, where a classroom scenario with multiple occupants was simulated. The CARE experimental classroom has a rectangular shape with a volume of approximately 130 m
3. Further detailed information on the CARE facility is given in [
8].
Two hypothetical scenarios based on one person releasing infectious aerosol particles during a 45-min lesson in a semi-populated classroom, as was the case during the COVID-19 pandemic, were investigated. In the first scenario, no ventilation was employed. In the second scenario, all windows were opened for a period of five minutes following a 20-min interval. This was one of the mitigation strategies employed in schools during the COVID-19 pandemic. The model spreader uses DEHS particles to represent aerosol particles with a diameter of less than 5
m, which can remain suspended in the air for long periods of time. DEHS is a standard material used in experimental fluid mechanics as a tracer particle for imaging measurement techniques because it closely follows the air flow. It is therefore suitable as a model aerosol particle to mimic small diameter saliva particles, which also follow the flow topology. The experiment used a Topas ATM 230 aerosol generator to deliver particles with a mean diameter from 0.1 to 0.5
m. The exhalation volume flow rate was 8 L/min, corresponding to the respiratory minute volume of quietly seated occupants. For further details on the DEHS particle, interested readers are referred to [
25].
Since the flow topology in the classroom determines the particle transport paths, it is necessary to model the heat input of the people responsible for creating a mixed convective flow. As illustrated in
Figure 5, a seating arrangement comprising one teacher and eight students was employed to simulate a scenario in which a classroom was half-populated, a common occurrence during the COVID-19 pandemic. A total of seven test persons participated in the experiment, who were presented as mannequins in the figure. They were equipped with masks to which the SPS30 sensors were attached. If the test persons are not expected to move during the experiment, it is possible to replace them with dummies exhibiting a heat signature that closely resembles that of humans. Consequently, in the final row, two dummies are positioned instead of humans. These comprise a black polyethylene cylinder with a lid that serves as thermal insulation and a styropor head at which a SPS30 sensor is attached. A 75 watt light bulb was attached to each of these cylinders as an energy input. The temperature on the outside of the cylinder stabilizes at 37 °C within 40 min, which is the typical heat output for people at rest in seating position. During the spreading process, the aerosol concentration at the back of the room was measured at three different positions indicated as S1, S2 and S3, as shown in
Figure 5. As the distance between the spreader in the front of the room to the sensors is high, it is expected that the well-mixed-hypothesis holds such that the aerosol particles will be relatively homogeneously distributed at the back of the room. Consequently, the measurement setup allows for the validation of the measurement accuracy by comparing the measurement results of the sensors.
Results
The sensors were first synchronised using the GUI shown in
Figure 4 and then instructed to start measuring simultaneously. The result downloaded from each individual sensor at the end of both experiments is shown in
Figure 6a,b. As
Section 3 discussed the detailed measurement conditions,
Figure 6a presents the particle count where no ventilation was applied and
Figure 6b shows the particle count with window opening for certain time periods.
The concentration of particles with a diameter of 0.3 m < d < 1 m increases throughout the measurement uniformly at all sensor positions, as expected in the classroom under investigation. A small proportion of the DEHS particles produced are larger than 1 m, so the concentration of particles with a diameter of 1 m < d < 2.5 m also increases.
The results show that it takes just over 10 min for some of the exhaled particles to spread around the room and reach the back row of seats. It can be observed that extended measurements work without data loss and support the suitability of the measurement system for long-term experiments, such as the analysis of transient situations wherein the well-mixed hypothesis is not applicable. Since particle sizes can be analyzed separately, such experiments can potentially be used to study not only the dispersal of the smallest aerosol particles, but also those that should sink to the ground within a few meters, but can travel much further due to the altered flow topology caused by thermal plumes. The concentration curves depicted in
Figure 6b illustrate that the opening of the window initially results in elevated particle concentrations, which then fall rapidly so that a clear reduction in concentration can be observed at the end. The increase in concentration after 20 min may be attributed to the movement of people necessary to open the windows. As previous experiments [
8] suggest, this movement leads to greater mixing and thus transports more particles to the sensor positions.
When analysing the concentration, it is important to note that not all particles in the room come from the artificial source used. To obtain an accurate measurement, the particle concentration before the particle generator is switched on should be subtracted. However, transient additional sources such as pollen can present a challenge. When such external sources are identified in fresh air exchange experiments, sensors should be placed both indoors and outdoors to accurately assess their influence.
4. Conclusions
Large public spaces are hotspots for airborne disease transmission. To test and maintain indoor air quality for airborne transmission, an open source, low-cost and distributed particulate matter sensor (PMS) measurement system was developed and tested. This system can deploy multiple PMSs simultaneously and can be remotely controlled using the widely available Raspberry Pi-based operating system. The hardware is based on readily available low-cost components and does not require the design or manufacture of a custom board. The cost of assembling each unit is less than EUR 100, which enables the simultaneous measurements on a high number of measurement locations. The data acquisition system can be easily operated using the GUI in any common browser installed on a remote device such as PCs, tablets and/or smartphones with a corresponding IP address. The software for remote operation is simple and open source.
In the classroom scenario under investigation, in which a spreader continuously exhales particles for 45 min, it was demonstrated that the SPS30 sensors are capable of reliably measuring the increase in concentration. This corroborates the previous finding cited in reference [
15], according to which changes in concentration are reliably detected by these devices. Previous experiments, as cited in [
8], which demonstrated a decrease in particle concentration during spreading experiments with open windows, were successfully replicated. Furthermore, the operation and data acquisition were demonstrated to be robust over the entire 45-min period, allowing for the execution of realistic, transient experiments over the complete relevant time frame.
Consequently, the system represents the most straightforward and cost-effective approach for conducting aerosol transport studies. It is also suitable for experiments using artificial saliva, so that effects such as particle deposition, evaporation and droplet agglomeration are captured in the measurements. However, the SPS30 can only measure up to 2.5 m and extrapolate 10 m under appropriate conditions, so it is not suitable for measuring rapidly settling droplets.