Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Materials
2.2. Cells and Virus
2.3. Yield-Reduction Assays and Virus Titration
2.4. Cytotoxic Assays
2.5. Measurements of Inflammatory Mediators
2.6. Molecular Docking Procedure
2.7. SARS-CoV-2 Exonuclease Reactions
2.8. SARS-CoV-2 Mpro Inhibition
3. Results
3.1. Cell-Based Assays: SARS-CoV-2 Inhibition in Calu-3 Cells
3.2. Cell-Based Assays: Anti-Inflammatory Profile
3.3. In Silico Calculations for the Main SARS-CoV-2 Targets to Natural Products
3.4. In Silico Evaluation for SARS-CoV-2 nsp-14 ExoN and Enzymatic Validation
3.5. In Silico Evaluation for SARS-CoV-2 Mpro and Enzymatic Validation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COVID-19 Dashboardby the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 31 May 2022).
- Coronavirus (COVID-19)|Drugs. Available online: https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs (accessed on 15 May 2022).
- Caniels, T.G.; Bontjer, I.; van der Straten, K.; Poniman, M.; Burger, J.A.; Appelman, B.; Lavell, A.H.A.; Oomen, M.; Godeke, G.-J.; Valle, C.; et al. Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. Sci. Adv. 2021, 7, eabj5365. [Google Scholar] [CrossRef] [PubMed]
- Obeid, M.; Suffiotti, M.; Pellaton, C.; Bouchaab, H.; Cairoli, A.; Salvadé, V.; Stevenel, C.; Hottinger, R.; Pythoud, C.; Coutechier, L.; et al. Humoral responses against variants of concern by COVID-19 mRNA vaccines in immunocompromised patients. JAMA Oncol. 2022, 8, e220446. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Beltran, W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021, 184, 2372–2383. [Google Scholar] [CrossRef] [PubMed]
- Geers, D.; Shamier, M.C.; Bogers, S.; den Hartog, G.; Gommers, L.; Nieuwkoop, N.N.; Schmitz, K.S.; Rijsbergen, L.C.; van Osch, J.A.T.; Dijkhuizen, E.; et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 2021, 6, eabj1750. [Google Scholar] [CrossRef]
- Yusuf, A.P.; Zhang, J.-Y.; Li, J.-Q.; Muhammad, A.; Abubakar, M.B. Herbal medications and natural products for patients with covid-19 and diabetes mellitus: Potentials and challenges. Phytomed. Plus 2022, 2, 100280. [Google Scholar] [CrossRef]
- Pizzato, M.; Baraldi, C.; Sopetto, G.B.; Finozzi, D.; Gentile, C.; Gentile, M.D.; Marconi, R.; Paladino, D.; Raoss, A.; Riedmiller, I.; et al. SARS-CoV-2 and the host cell: A tale of interactions. Front. Virol. 2022, 1, 815388. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Y.; Zhao, P.; Li, W.; Li, M.; Zhu, J.; Ye, S. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput. Biol. Med. 2022, 26, 105241. [Google Scholar] [CrossRef]
- Wang, X.; Sacramento, C.Q.; Jockusch, S.; Chaves, O.A.; Tao, C.; Fintelman-Rodrigues, N.; Chien, M.; Temerozo, J.R.; Li, X.; Kumar, S.; et al. Combination of antiviral drugs to inhibit SARS-CoV-2 polymerase and exonuclease as potential COVID-19 therapeutics. Commun. Biol. 2022, 5, 154. [Google Scholar] [CrossRef]
- Saha, S.; Nandi, R.; Vishwakarma, P.; Prakash, A.; Kumar, D. Discovering potential RNA dependent RNA polymerase inhibitors as prospective drugs against COVID-19: An in silico approach. Front. Pharmacol. 2021, 12, 634047. [Google Scholar] [CrossRef]
- Chakravarti, R.; Singh, R.; Ghosh, A.; Dey, D.; Sharma, P.; Velayutham, R.; Roy, S.; Ghosh, D. A review on potential of natural products in the management of COVID-19. RSC Adv. 2021, 11, 16711–16735. [Google Scholar] [CrossRef]
- Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front. Pharmacol. 2020, 11, 588654. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Mouffouk, C.; Mouffouk, S.; Mouffouk, S.; Hambaba, L.; Haba, H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur. J. Pharmacol. 2021, 891, 173759. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaragozá, C.; Villaescusa, L.; Monserrat, J.; Zaragozá, F.; Álvarez-Mon, M. Potential therapeutic anti-inflammatory and immunomodulatory effects of dihydroflavones, flavones, and flavonols. Molecules 2020, 25, 1017. [Google Scholar] [CrossRef] [Green Version]
- Kaul, R.; Paul, P.; Kumar, S.; Büsselberg, D.; Dwivedi, V.D.; Chaari, A. Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review. Int. J. Mol. Sci. 2021, 22, 11069. [Google Scholar] [CrossRef]
- Jiménez-Avalos, G.; Vargas-Ruiz, A.P.; Delgado-Pease, N.E.; Olivos-Ramirez, G.E.; Sheen, P.; Fernández-Díaz, M.; Quiliano, M.; Zimic, M. Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO. Sci. Rep. 2021, 11, 15452. [Google Scholar] [CrossRef]
- Godinho, P.I.C.; Soengas, R.G.; Silva, V.L.M. Therapeutic potential of glycosyl flavonoids as anti-coronaviral agents. Pharmaceuticals 2021, 14, 546. [Google Scholar] [CrossRef]
- Chu, H.; Chan, J.F.; Wang, Y.; Yuen, T.T.; Chai, Y.; Hou, Y.; Shuai, H.; Yang, D.; Hu, B.; Huang, X.; et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19. Clin. Infect. Dis. 2020, 71, 1400–1409. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Chan, J.F.; Yuen, T.T.; Shuai, H.; Yuan, S.; Wang, Y.; Hu, B.; Yip, C.C.; Tsang, J.O.; Huang, X.; et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: An observational study. Lancet Microbe 2020, 1, e14–e23. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Soares, V.C.; de Azevedo-Quintanilha, I.G.; Dias, S.S.G.; Fintelman-Rodrigues, N.; Sacramento, C.Q.; Mattos, M.; de Freitas, C.S.; Temerozo, J.R.; Teixeira, L.; et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov. 2021, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Liskova, A.; Samec, M.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Al-Ishaq, R.K.; Abotaleb, M.; Nosal, V.; Kajo, K.; Ashrafizadeh, M.; et al. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biom. Pharmacot. 2021, 138, 111430. [Google Scholar] [CrossRef] [PubMed]
- Alzaabi, M.M.; Hamdy, R.; Ashmawy, N.S.; Hamoda, A.M.; Alkhayat, F.; Khademi, N.N.; Al Joud, S.M.A.; El-Keblawy, A.A.; Soliman, S.S.M. Flavonoids are promising safe therapy against COVID-19. Phytochem. Rev. 2022, 21, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Bain, W.; Lee, J.S.; Watson, A.M.; Stitt-Fischer, M.S. Practical guidelines for collection, manipulation and inactivation of SARS-CoV-2 and COVID-19 clinical specimens. Curr. Protoc. Cytom. 2020, 93, e77. [Google Scholar] [CrossRef] [PubMed]
- Chaves, O.A.; Sacramento, C.Q.; Ferreira, A.C.; Mattos, M.; Fintelman-Rodrigues, N.; Temerozo, J.R.; Vazquez, L.; Pinto, D.P.; da Silveira, G.P.E.; da Fonseca, L.B.; et al. Atazanavir is a competitive inhibitor of SARS-CoV-2 Mpro, impairing variants replication in vitro and in vivo. Pharmaceuticals 2022, 15, 21. [Google Scholar] [CrossRef]
- Sacramento, C.Q.; Fintelman-Rodrigues, N.; Dias, S.S.G.; Temerozo, J.R.; Da Silva, A.d.P.D.; da Silva, C.S.; Blanco, C.; Ferreira, A.C.; Mattos, M.; Soares, V.C.; et al. Unlike chloroquine, mefloquine inhibits SARS-CoV-2 infection in physiologically relevant cells. Viruses 2022, 14, 374. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, L.; Shaw, N.; Gao, Y.; Wang, J.; Sun, Y.; Lou, Z.; Yan, L.; Zhang, R.; Rao, Z. Structural basis and functional analysis of the SARS coronavirus nsp14–nsp10 complex. Proc. Natl. Acad. Sci. USA 2015, 112, 9436–9441. [Google Scholar] [CrossRef] [Green Version]
- Beese, L.S.; Steitz, T.A. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: A two metal ion mechanism. EMBO J. 1991, 10, 25–33. [Google Scholar] [CrossRef]
- Chaves, O.A.; Sacramento, C.Q.; Fintelman-Rodrigues, N.; Temerozo, J.R.; Pereira-Dutra, F.; Mizurini, D.M.; Monteiro, R.Q.; Vazquez, L.; Bozza, P.T.; Castro-Faria-Neto, H.C.; et al. Apixaban, an orally available anticoagulant, inhibits SARS-CoV-2 replication and its major protease in a non-competitive way. J. Mol. Cell Biol. 2022, mjac039. [Google Scholar] [CrossRef]
- Glaab, E.; Manoharan, G.B.; Abankwa, D. Pharmacophore model for SARS-CoV-2 3CLpro small-molecule inhibitors and in vitro experimental validation of computationally screened inhibitors. J. Chem. Inf. Model. 2021, 61, 4082–4096. [Google Scholar] [CrossRef]
- Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020, 30, 678–692. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Sun, Y.; Deng, Y.Q.; Wang, N.; Tan, Y.; Zhang, N.-N.; Li, X.-F.; Kong, C.; Xu, Y.-P.; Chen, Q.; et al. Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection. Cell Res. 2021, 31, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-C.; Zhao, H.-L.; Liu, J.; He, L.; Yu, R.-L.; Kang, C.-M. Design of SARS-CoV-2 Mpro, PLpro dual-target inhibitors based on deep reinforcement learning and virtual screening. Future Med. Chem. 2022, 14, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Yuce, M.; Cicek, E.; Inan, T.; Dag, A.B.; Kurkcuoglu, O.; Sungur, F.A. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins 2021, 89, 1425–1441. [Google Scholar] [CrossRef]
- El-Baba, T.J.; Lutomski, C.A.; Kantsadi, A.L.; Malla, T.R.; John, T.; Mikhailov, V.; Bolla, J.R.; Schofield, C.J.; Zitzmann, N.; Vakonakis, I.; et al. Allosteric inhibition of the SARS-CoV-2 main protease: Insights from mass spectrometry based assays. Angew. Chem. 2020, 59, 23544–23548. [Google Scholar] [CrossRef]
- Maertens, G.N.; Engelman, A.N.; Cherepanov, P. Structure and function of retroviral integrase. Nat. Rev. Microbiol. 2022, 20, 20–34. [Google Scholar] [CrossRef]
- Li, B.-W.; Zhang, F.-H.; Serrao, E.; Chen, H.; Sanchez, T.W.; Yang, L.-M.; Neamati, N.; Zheng, Y.-T.; Wang, H.; Long, Y.-Q. Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75. Bioorg. Med. Chem. 2014, 22, 3146–3158. [Google Scholar] [CrossRef]
- Huuskonen, J.J.; Vuorela, H.; Hiltunen, R. Prediction of activity for a set of flavonoids against HIV-1 integrase. In Molecular Modeling and Prediction of Bioactivity, 1st ed.; Gundertofte, K., Jørgensen, F.S., Eds.; Springer: Boston, MA, USA, 2000. [Google Scholar]
- Enkhtaivan, G.; John, K.M.; Pandurangan, M.; Hur, J.H.; Leutou, A.S.; Kim, D.H. Extreme effects of Seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts. Saudi J. Biol. Sci. 2017, 24, 1646–1656. [Google Scholar] [CrossRef] [Green Version]
- Higa, S.; Hirano, T.; Kotani, M.; Matsumoto, M.; Fujita, A.; Suemura, M.; Tanaka, T. Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils. J. Allergy Clin. Immunol. 2003, 111, 1299–1306. [Google Scholar] [CrossRef]
- Khater, S.; Kumar, P.; Dasgupta, N.; Das, G.; Ray, S.; Prakash, A. Combining SARS-CoV-2 proofreading exonuclease and RNA-dependente RNA polymerase inhibitors as a strategy to combat COVID-19: A high-throughput in silico screening. Front. Microbiol. 2021, 12, 647693. [Google Scholar] [CrossRef]
- Atanazov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Pfizer’s Novel COVID-19 Oral Antiviral Treatment Candidate Reduced Risk of Hospitalization or Death by 89% in Interim Analysis of Phase 2/3 Epic-HR Study. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-COVID-19-oral-antiviral-treatment-candidate (accessed on 28 June 2022).
- Do You Know All 17 SDGs? Available online: https://sdgs.un.org/goals (accessed on 28 June 2022).
Compound | EC50 (μM) | CC50 (μM) | SI |
---|---|---|---|
Genistein | 5.25 ± 0.26 | 305 ± 15 | 58.1 |
Apigenin | 5.11 ± 0.26 | 302 ± 15 | 59.1 |
Luteolin | 5.92 ± 0.30 | 332 ± 17 | 56.1 |
Fisetin | 2.03 ± 0.10 | 256 ± 13 | 126 |
Kaempferol | 3.02 ± 0.15 | 357 ± 18 | 118 |
Myricetin | 0.91 ± 0.05 | 716 ± 36 | 787 |
Quercetin | 2.40 ± 0.12 | 852 ± 43 | 355 |
RDV | 0.0305 ± 0.0031 | 512 ± 30 | 1.68 × 104 |
Spike | RdRp | ExoN | PLpro | Mpro | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound | Without ACE2 | With ACE2 | Without RNA | With RNA | 1 × Mg(II) | 2 × Mg(II) | Without Substrate | With Substrate | Without Substrate | With Substrate | Allosteric Site 1 | Allosteric Site 2 |
Genistein | 39.9 | 39.6 | 37.3 | 36.6 | 45.7 | 46.3 | 46.1 | 47.3 | 52.6 | 53.3 | 50.5 | 47.7 |
Apigenin | 38.8 | 42.3 | 41.2 | 43.9 | 44.9 | 49.9 | 46.8 | 48.0 | 50.9 | 54.8 | 45.0 | 44.8 |
Luteolin | 42.3 | 43.9 | 43.2 | 42.5 | 48.9 | 53.4 | 48.5 | 48.9 | 53.2 | 56.0 | 48.1 | 48.3 |
Fisetin | 42.9 | 42.0 | 47.0 | 46.3 | 53.7 | 56.1 | 50.4 | 50.9 | 55.2 | 56.9 | 50.7 | 50.4 |
Kaempferol | 38.4 | 07.6 | 42.2 | 37.1 | 54.9 | 55.8 | 48.9 | 49.5 | 51.5 | 52.1 | 48.0 | 46.4 |
Myricetin | 43.0 | 28.3 | 48.4 | 47.1 | 55.2 | 57.9 | 47.7 | 48.9 | 56.8 | 64.0 | 52.8 | 53.2 |
Quercetin | 44.7 | 34.8 | 46.4 | 45.9 | 46.5 | 51.5 | 50.5 | 50.7 | 51.8 | 55.7 | 51.1 | 50.2 |
Compound | Amino Acid Residue | Interaction | Distance (Å) |
---|---|---|---|
Fisetin (1 × Mg(II)) | Met-58 | Van der Waals | 3.40 |
Glu-92 | Van der Waals | 3.10 | |
Asn-104 | Hydrogen bonding | 2.80 | |
Phe-146 | Van der Waals | 3.80 | |
Ala-187 | Van der Waals | 2.00 | |
Phe-190 | Van der Waals | 3.40 | |
Glu-191 | Hydrogen bonding | 2.10 | |
Myricetin (1 × Mg(II)) | Met-58 | Van der Waals | 2.30 |
Asp-90 | Van der Waals | 3.80 | |
Val-91 (C=O) | Hydrogen bonding | 1.70 | |
Glu-92 | Van der Waals | 2.80 | |
Asn-104 | Hydrogen bonding | 3.30 | |
Phe-146 | Van der Waals | 3.40 | |
Ala-187 | Van der Waals | 2.20 | |
Phe-190 | Van der Waals | 3.80 | |
Glu-191 | Hydrogen bonding | 2.10 | |
Fisetin (2 × Mg(II)) | Met-58 | Van der Waals | 2.30 |
Asp-90 | Van der Waals | 3.70 | |
Glu-92 | Van der Waals | 2.40 | |
His-95 | Van der Waals | 2.90 | |
Asn-104 | Van der Waals | 2.80 | |
Ala-187 | Van der Waals | 3.40 | |
Gly-189 | Van der Waals | 2.80 | |
Glu-191 | Hydrogen bonding | 2.20 | |
Myricetin (2 × Mg(II)) | Met-58 | Van der Waals | 2.60 |
Asp-90 | Van der Waals | 3.80 | |
Val-91 (C=O) | Hydrogen bonding | 1.70 | |
Glu-92 | Van der Waals | 3.00 | |
His-95 | Van der Waals | 2.80 | |
Asn-104 | Hydrogen bonding | 2.20 | |
Ala-187 | Van der Waals | 2.40 | |
Gly-189 | Van der Waals | 3.00 | |
Phe-190 | Van der Waals | 3.70 | |
Glu-191 | Hydrogen bonding | 2.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaves, O.A.; Fintelman-Rodrigues, N.; Wang, X.; Sacramento, C.Q.; Temerozo, J.R.; Ferreira, A.C.; Mattos, M.; Pereira-Dutra, F.; Bozza, P.T.; Castro-Faria-Neto, H.C.; et al. Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones. Viruses 2022, 14, 1458. https://doi.org/10.3390/v14071458
Chaves OA, Fintelman-Rodrigues N, Wang X, Sacramento CQ, Temerozo JR, Ferreira AC, Mattos M, Pereira-Dutra F, Bozza PT, Castro-Faria-Neto HC, et al. Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones. Viruses. 2022; 14(7):1458. https://doi.org/10.3390/v14071458
Chicago/Turabian StyleChaves, Otávio Augusto, Natalia Fintelman-Rodrigues, Xuanting Wang, Carolina Q. Sacramento, Jairo R. Temerozo, André C. Ferreira, Mayara Mattos, Filipe Pereira-Dutra, Patrícia T. Bozza, Hugo Caire Castro-Faria-Neto, and et al. 2022. "Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones" Viruses 14, no. 7: 1458. https://doi.org/10.3390/v14071458