Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,991)

Search Parameters:
Keywords = •CH3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5454 KB  
Article
The Role of the Transition Metal in M2P (M = Fe, Co, Ni) Phosphides for Methane Activation and C–C Coupling Selectivity
by Abdulrahman Almithn
Catalysts 2025, 15(10), 954; https://doi.org/10.3390/catal15100954 (registering DOI) - 5 Oct 2025
Abstract
Achieving selective, direct conversion of methane into value-added chemicals requires catalysts that can navigate the intrinsic trade-off between C–H bond activation and over-dehydrogenation. Transition metal phosphides (TMPs) have emerged as promising catalysts that can tune this selectivity. This work utilizes density functional theory [...] Read more.
Achieving selective, direct conversion of methane into value-added chemicals requires catalysts that can navigate the intrinsic trade-off between C–H bond activation and over-dehydrogenation. Transition metal phosphides (TMPs) have emerged as promising catalysts that can tune this selectivity. This work utilizes density functional theory (DFT) to systematically assess how the transition metal’s identity (M = Fe, Co, Ni) in isostructural M2P phosphides governs this balance. The findings reveal that the high reactivity of Fe2P and Co2P, which facilitates initial methane activation, also promotes facile deep dehydrogenation pathways to coke precursors like CH*. In stark contrast, Ni2P exhibits a moderated reactivity that kinetically hinders CH* formation while simultaneously exhibiting the lowest activation barrier for the C–C coupling of CH2* intermediates to form ethylene. This revealed trade-off between the high reactivity of Fe/Co phosphides and the high selectivity of Ni2P offers a guiding principle for the rational design of advanced bimetallic phosphides for efficient methane upgrading. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

35 pages, 2596 KB  
Article
New Insight and Confrontation of the Internal Structure and Sensilla of the Mouthparts of Cicadomorpha (Insecta: Hemiptera)
by Jolanta Brożek, Piotr Wegierek, Mick Webb and Adam Stroiński
Insects 2025, 16(10), 1026; https://doi.org/10.3390/insects16101026 (registering DOI) - 4 Oct 2025
Abstract
This study presents detailed microstructural observations of the mouthparts and sensory organs of adult cicadomorphan species, obtained using scanning electron microscopy (SEM). Despite microstructural variation, the overall morphology of the mouthparts, comprising a three-segmented labium and a bundle of interlocking stylets (maxillae and [...] Read more.
This study presents detailed microstructural observations of the mouthparts and sensory organs of adult cicadomorphan species, obtained using scanning electron microscopy (SEM). Despite microstructural variation, the overall morphology of the mouthparts, comprising a three-segmented labium and a bundle of interlocking stylets (maxillae and mandibles), is highly conserved across species, supporting its evolutionary significance in sap feeding from floem, xylem, or epidermis cells. Variations in the number and shape of mandibular stylet barbs likely reflect adaptations to different host plant tissues. The presence of an identical dual interlocking system between the maxillary stylets, which is found consistently across taxa, enhances functional stability during feeding and indicates a conserved mechanism among cicadomorphans. The species studied exhibit two distinct types of salivary canal closure: hooked and T-shaped. The latter potentially represents a state linked to specialised feeding strategies, such as sap xylem feeding. On the labial tip, there are different shapes of the anterior sensory fields. This area hosts a complex array of sensilla of different numbers, including gustatory (sensilla peg, PS1 and PS2, basiconica, BS3, double basiconica, DB), olfactory (finger–like, FLS) and thermo-hygroreceptive (sensillum dome-shaped, DS, and coeloconicum, CS) types, which facilitate host detection and feeding site selection. In the posterior sensory field, sensilla contact-chemosensory (sensilla basiconica, BS1 and BS2, and sensillum trichoideum, TS) are present. Mechanosensilla chaetica (CH1–CH3) are widely distributed on the last labial segment and may contribute to labium positioning. These findings emphasise the presence of both conserved and specialised morphological traits reflecting evolutionary and ecological diversification within Cicadomorpha. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
14 pages, 692 KB  
Article
Detection of Bovine Leukemia Virus in Argentine, Bolivian, Paraguayan and Cuban Native Cattle Using a Quantitative Real-Time PCR Assay-BLV-CoCoMo-qPCR-2
by Guillermo Giovambattista, Aronggaowa Bao, Olivia Marcuzzi, Ariel Loza Vega, Juan Antonio Pereira Rico, Maria Florencia Ortega Masague, Liz Aurora Castro Rojas, Ruben Dario Martinez, Odalys Uffo Reinosa and Yoko Aida
Pathogens 2025, 14(10), 1005; https://doi.org/10.3390/pathogens14101005 (registering DOI) - 4 Oct 2025
Abstract
Bovine leukemia virus (BLV), an oncogenic retrovirus of the genus Deltaretrovirus, causes enzootic bovine leukosis (EBL), the most prevalent neoplastic disease in cattle and a major source of economic loss. While BLV prevalence has been studied in commercial breeds, data on native Latin [...] Read more.
Bovine leukemia virus (BLV), an oncogenic retrovirus of the genus Deltaretrovirus, causes enzootic bovine leukosis (EBL), the most prevalent neoplastic disease in cattle and a major source of economic loss. While BLV prevalence has been studied in commercial breeds, data on native Latin American cattle remain limited. This study assessed BLV infection and proviral load in 244 animals from six native breeds: Argentine Creole (CrAr), Patagonian Argentine Creole (CrArPat), Pampa Chaqueño Creole (CrPaCh), Bolivian Creole from Cochabamba (CrCoch), Saavedreño Creole (CrSaa), and Siboney (Sib), sampled across Argentina, Bolivia, Paraguay, and Cuba. BLV-CoCoMo-qPCR-2 assay detected BLV provirus in 76 animals (31.1%), with a mean load of 9923 copies per 105 cells (range: 1–79,740). Infection rates varied significantly by breed (9.8% in CrAr to 83.8% in CrPaCh) and country (15.6% in Argentina to 83.8% in Paraguay) (p = 9.999 × 10−5). Among positives, 57.9% exhibited low proviral load (≤1000 copies), and 13.2% showed moderate levels (1001–9999), suggesting potential resistance to EBL progression. This is the first comprehensive report of BLV proviral load in Creole cattle across Latin America, offering novel epidemiological insights and highlighting the importance of native breeds in BLV surveillance. Full article
13 pages, 5074 KB  
Article
Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance
by Congyu Cai, Yufeng Sun, Yulan Xiao, Weiye Zheng, Minhui Pan and Weiwei Wang
Molecules 2025, 30(19), 3980; https://doi.org/10.3390/molecules30193980 (registering DOI) - 4 Oct 2025
Abstract
Photocatalytic conversion of CO2 to hydrocarbon fuels offers a promising pathway for sustainable renewable energy production. In this study, a ZnO/ZnFe2O4 composite featuring a Type-II heterojunction was synthesized through a facile one-step hydrothermal approach, significantly enhancing visible-light-driven CO2 [...] Read more.
Photocatalytic conversion of CO2 to hydrocarbon fuels offers a promising pathway for sustainable renewable energy production. In this study, a ZnO/ZnFe2O4 composite featuring a Type-II heterojunction was synthesized through a facile one-step hydrothermal approach, significantly enhancing visible-light-driven CO2 reduction activity. The optimized catalyst exhibits CH4 and CO production rates that are 3.3 and 4.9 times higher, respectively, than those of pristine ZnFe2O4 over 6 h. This significant enhancement in photocatalytic performance is attributed to the Type-II band alignment, which not only broadens light absorption but also greatly promotes efficient charge separation. It is corroborated by a series of experimental evidence: a two-fold enhancement in photocurrent response, a 15.1% reduction in PL intensity, decreased electrochemical impedance, and an extended charge carrier lifetime. Furthermore, in situ FTIR spectroscopy confirms that the heterojunction facilitates the formation of key intermediates (specifically *COOH and HCOO). This study highlights the importance of precise interface design based on a Type-II heterojunction in heterostructured composite catalysts and provides mechanistic insights for developing highly efficient CO2 photoreduction systems. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 1026 KB  
Article
Flexible, Stretchable, and Self-Healing MXene-Based Conductive Hydrogels for Human Health Monitoring
by Ruirui Li, Sijia Chang, Jiaheng Bi, Haotian Guo, Jianya Yi and Chengqun Chu
Polymers 2025, 17(19), 2683; https://doi.org/10.3390/polym17192683 - 3 Oct 2025
Abstract
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In [...] Read more.
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In this study, polyvinyl alcohol (PVA) and polyacrylamide (PAM) were used as the dual-network matrix, lithium chloride and MXene were added, and a simple immersion strategy was adopted to synthesize a multifunctional MXene-based conductive hydrogel in a glycerol/water (1:1) binary solvent system. A subsequent investigation was then conducted on the hydrogel. The prepared PVA/PAM/LiCl/MXene hydrogel exhibits excellent tensile properties (~1700%), high electrical conductivity (1.6 S/m), and good self-healing ability. Furthermore, it possesses multimodal sensing performance, including humidity sensitivity (sensitivity of −1.09/% RH), temperature responsiveness (heating sensitivity of 2.2 and cooling sensitivity of 1.5), and fast pressure response/recovery times (220 ms/230 ms). In addition, the hydrogel has successfully achieved real-time monitoring of human joint movements (elbow and knee bending) and physiological signals (pulse, breathing), as well as enabled monitoring of spatial pressure distribution via a 3 × 3 sensor array. The performance and versatility of this hydrogel make it a promising candidate for next-generation flexible sensors, which can be applied in the fields of human health monitoring, electronic skin, and human–machine interaction. Full article
(This article belongs to the Special Issue Semiflexible Polymers, 3rd Edition)
13 pages, 1811 KB  
Article
Ochronotic Deposition in Alkaptonuria: Semiquinone-Mediated Oxidative Coupling and Metabolic Drivers of Homogentisic Acid Accumulation
by Daniela Grasso, Valentina Balloni, Maria Camilla Baratto, Adele Mucci, Annalisa Santucci and Andrea Bernini
Int. J. Mol. Sci. 2025, 26(19), 9674; https://doi.org/10.3390/ijms26199674 - 3 Oct 2025
Abstract
Alkaptonuria (AKU) is a rare metabolic disorder caused by homogentisate 1,2-dioxygenase (HGD) deficiency, leading to homogentisic acid (HGA) accumulation and ochronotic pigment deposition, which drug therapy cannot reverse. The process of pigment formation and deposition is still unclear. This study offers molecular insights [...] Read more.
Alkaptonuria (AKU) is a rare metabolic disorder caused by homogentisate 1,2-dioxygenase (HGD) deficiency, leading to homogentisic acid (HGA) accumulation and ochronotic pigment deposition, which drug therapy cannot reverse. The process of pigment formation and deposition is still unclear. This study offers molecular insights into the polymeric structure, with the goal of developing future adjuvant strategies that can inhibit or reverse pigment formation, thereby complementing drug therapy in AKU. HGA polymerisation was examined under physiological, acidic, and alkaline conditions using liquid and solid phase nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and polyacrylamide gel electrophoresis. At physiological pH, HGA polymerised slowly, while alkaline catalysis accelerated pigment formation while retaining the HGA aromatic scaffold. During the process, EPR detected a semiquinone radical intermediate, consistent with an oxidative coupling mechanism. Reactivity profiling showed the diphenol ring was essential for polymerisation, while –CH2COOH modifications did not impair reactivity. Pigments displayed a polydisperse molecular weight range (11–50 kDa) and a strong negative charge. Solid-state NMR has revealed the presence of phenolic ether and biphenyl linkages. Collectively, these identified structural motifs can serve as a foundation for future molecular targeting related to pigment formation. Full article
(This article belongs to the Special Issue Advances in Rare Diseases Biomarkers: 2nd Edition)
Show Figures

Figure 1

16 pages, 455 KB  
Review
The Central Cholinergic Synapse: A Primer
by Jochen Klein
Int. J. Mol. Sci. 2025, 26(19), 9670; https://doi.org/10.3390/ijms26199670 - 3 Oct 2025
Abstract
The central cholinergic system is an important player in the control of motor function, appetite, the reward system, attention, memory and learning. Its participation in neurological diseases (e.g., Alzheimer’s and Parkinson’s disease, epilepsy) and in psychiatric diseases (e.g., schizophrenia, depression) makes it a [...] Read more.
The central cholinergic system is an important player in the control of motor function, appetite, the reward system, attention, memory and learning. Its participation in neurological diseases (e.g., Alzheimer’s and Parkinson’s disease, epilepsy) and in psychiatric diseases (e.g., schizophrenia, depression) makes it a preferred study subject for drug development. The present review summarizes salient features of the central cholinergic synapses that will guide future studies. Cholinergic synapses are defined by the presence of choline acetyltransferase (ChAT), the vesicular ACh transporter (VAChT), the high-affinity choline transporter CHT-1 and the presence of PRiMA-coupled acetylcholinesterase (AChE). The firing frequency of cholinergic fibers is reflected in high-affinity choline uptake activity, which also responds to variations in ChAT, VAChT and AChE activities conferring considerable plasticity to cholinergic responses. The availability of glucose and choline can limit ACh synthesis and release under conditions of high ACh turnover. Future studies will focus on rapid methods to measure ACh release and a deeper understanding of cholinergic plasticity during development, aging and dementia. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

17 pages, 1344 KB  
Article
Electrochemical and Spectroelectrochemical Studies on Oxygen Reduction Mediated by Cu(II) Complexes Containing the Alkylamine Ligand N,N-Dimethylethylendiamine
by Omar Monsalvo Zúñiga, Angel Mendoza, Marisela Cruz-Ramírez, Lillian G. Ramírez-Palma, Juan Pablo F. Rebolledo-Chávez and Luis Ortiz-Frade
Catalysts 2025, 15(10), 951; https://doi.org/10.3390/catal15100951 - 3 Oct 2025
Abstract
In this study, Cu(II) complexes containing the bidentate ligand N,N-dimethylethylendiamine (dmen), i.e., [CuII(dmen)2(CH3COO)2], [CuII(dmen)2(NO3)2], and [CuII(dmen)2Cl2], were developed to explore molecular [...] Read more.
In this study, Cu(II) complexes containing the bidentate ligand N,N-dimethylethylendiamine (dmen), i.e., [CuII(dmen)2(CH3COO)2], [CuII(dmen)2(NO3)2], and [CuII(dmen)2Cl2], were developed to explore molecular catalysis for the oxygen reduction reaction (ORR). Cyclic voltammetry and UV–vis spectroelectrochemical and electrochemical impedance spectroscopy experiments were performed in the absence and presence of oxygen. The UV–vis spectroscopy results suggested that the aforementioned Cu(II) complexes present an octahedral geometry in the solid state; meanwhile, they show a square pyramidal geometry in an aqueous solution. It is proposed that the chemical species [CuI(dmen)2H2O]+ reacts with O2, exhibiting an outer-sphere electron transfer mechanism. The same UV–vis spectroelectrochemical response obtained with and without O2 indicated a direct electron transfer from Cu(II) to Cu(I), with the regeneration of catalyst and the absence of other intermediate species. Among the reported compounds, [Cu(dmen)2(NO3)2] exhibited the highest catalytic rate (TOF = 1.3 × 104 s−1). The impedance spectroscopy results showed that the resistance charge transfer (Rct) of the redox pair CuII|CuI decreased in the presence of O2 from 36.391 kΩ to 5.54 kΩ. For a better understanding of the effect of aliphatic amines on the ORR, a comparison with the complex [Cu(1,10-phen)2NO3]NO3 is also presented. Full article
Show Figures

Figure 1

15 pages, 4660 KB  
Article
Tuning Chemical Looping Steam Reforming of Methane Performance via Ni-Fe-Al Interaction in Spinel Ferrites
by Jun Hu, Hongyang Yu and Yanan Wang
Fuels 2025, 6(4), 76; https://doi.org/10.3390/fuels6040076 - 3 Oct 2025
Abstract
The chemical looping steam reforming of methane (CLSR) employing Fe-containing oxygen carriers can produce syngas and hydrogen simultaneously. However, Fe-based oxygen carriers exhibit low CH4 activation ability and cyclic stability. In this work, oxygen carriers with fixed Fe content and different Fe/Ni [...] Read more.
The chemical looping steam reforming of methane (CLSR) employing Fe-containing oxygen carriers can produce syngas and hydrogen simultaneously. However, Fe-based oxygen carriers exhibit low CH4 activation ability and cyclic stability. In this work, oxygen carriers with fixed Fe content and different Fe/Ni ratios were synthesized by the sol–gel method to investigate the effects of Ni-Fe-Al interactions on CLSR performance. Ni-Fe-Al interactions promote the growth of the spinel structure and regulate both the catalytic sites and the available lattice oxygen, resulting in the CH4 conversion and CO selectivity being maintained at 96–98% and above 98% for the most promising oxygen carrier, with an Fe2O3 content of 20 wt% and Fe/Ni molar ratio of 10. The surface, phase, and particle size were kept the same over 90 cycles, leading to high stability. During the CLSR cycles, conversion from Fe3+ to Fe2+/Fe0 occurs, along with transformation between Ni2+ in NiAl2O4 and Ni0. Overall, the results demonstrate the feasibility of using spinel containing earth-abundant elements in CLSR and the importance of cooperation between oxygen release and CH4 activation. Full article
Show Figures

Figure 1

14 pages, 9892 KB  
Article
Research on Chromium-Free Passivation and Corrosion Performance of Pure Copper
by Xinghan Yu, Ziye Xue, Haibo Chen, Wei Li, Hang Li, Jing Hu, Jianli Zhang, Qiang Chen, Guangya Hou and Yiping Tang
Materials 2025, 18(19), 4585; https://doi.org/10.3390/ma18194585 - 2 Oct 2025
Abstract
In response to the actual needs of pure copper bonding wires, it is crucial to develop a chromium-free passivator that is environmentally friendly and has excellent corrosion resistance. In this study, three different composite organic formulations of chromium-free passivation solutions are selected: 2-Amino-5-mercapto-1,3,4 [...] Read more.
In response to the actual needs of pure copper bonding wires, it is crucial to develop a chromium-free passivator that is environmentally friendly and has excellent corrosion resistance. In this study, three different composite organic formulations of chromium-free passivation solutions are selected: 2-Amino-5-mercapto-1,3,4 thiadiazole (AMT) + 1-phenyl-5-mercapto tetrazolium (PMTA), 2-mercaptobenzimidazole (MBI) + PMTA, and Hexadecanethiol (CHS) + sodium dodecyl sulfate (SDS). The performance analysis and corrosion mechanism were compared with traditional hexavalent chromium passivation through characterization techniques such as XRD, SEM, and XPS. The results show that the best corrosion resistance formula is the combination of the PMTA and MBI passivation agent, and all its performances are superior to those of hexavalent chromium. The samples treated with this passivation agent corrode within 18 s in the nitric acid drop test, which is better than the 16 s for Cr6+ passivation. The samples do not change color after being immersed in salt water for 48 h. Electrochemical tests and high-temperature oxidation test also indicate better corrosion resistance than Cr6+ passivation. Through the analysis of functional groups and bonding, the excellent passivation effect is demonstrated to be achieved by the synergistic action of the chemical adsorption film formation of PMTA and the anchoring effect of MBI. Eventually, a dense Cu-PMTA-BMI film is formed on the surface, which effectively blocks the erosion of the corrosive medium and significantly improves the corrosion resistance. Full article
(This article belongs to the Special Issue Antibacterial and Corrosion-Resistant Coatings for Marine Application)
Show Figures

Figure 1

24 pages, 2228 KB  
Article
Ultrasound-Assisted Deep Eutectic Solvent Extraction of Flavonoids from Cercis chinensis Seeds: Optimization, Kinetics and Antioxidant Activity
by Penghua Shu, Shuxian Fan, Simin Liu, Yu Meng, Na Wang, Shoujie Guo, Hao Yin, Di Hu, Xinfeng Fan, Si Chen, Jiaqi He, Tingting Guo, Wenhao Zou, Lin Zhang, Xialan Wei and Jihong Huang
Separations 2025, 12(10), 269; https://doi.org/10.3390/separations12100269 - 2 Oct 2025
Abstract
This study establishes an efficient and eco-friendly ultrasound-assisted extraction (UAE) method for total flavonoids present in Cercis chinensis seeds using natural deep eutectic solvents (NADES). Among nine NADES formulations screened, choline chloride–levulinic acid (ChCl–Lev, 1:2) demonstrated optimal performance, yielding 112.1 mg/g total flavonoids. [...] Read more.
This study establishes an efficient and eco-friendly ultrasound-assisted extraction (UAE) method for total flavonoids present in Cercis chinensis seeds using natural deep eutectic solvents (NADES). Among nine NADES formulations screened, choline chloride–levulinic acid (ChCl–Lev, 1:2) demonstrated optimal performance, yielding 112.1 mg/g total flavonoids. Through Response Surface Methodology (RSM), the ultrasound-assisted extraction (UAE) parameters were explored. Under the optimized conditions (water content of 30%, time of 28 min, temperature of 60 °C, and solvent-to-solid ratio of 1:25 g/mL), the total flavonoid yield reached 128.5 mg/g, representing a 195% improvement compared to conventional ethanol extraction. The recyclability of NADES was successfully achieved via AB-8 macroporous resin, retaining 80.89% efficiency after three cycles. Extraction kinetics, modeled using Fick’s second law, confirmed that the rate constant (k) increased with temperature, highlighting temperature-dependent diffusivity as a key driver of efficiency. The extracted flavonoids exhibited potent antioxidant activity, with IC50 values of 0.86 mg/mL (ABTS•+) and 0.69 mg/mL (PTIO•). This work presents a sustainable NADES-UAE platform for flavonoid recovery and offers comprehensive mechanistic and practical insights for green extraction of plant bioactives. Full article
30 pages, 3428 KB  
Review
Tropical Fungi and LULUCF: Synergies for Climate Mitigation Through Nature-Based Culture (NbC)
by Retno Prayudyaningsih, Maman Turjaman, Margaretta Christita, Neo Endra Lelana, Ragil Setio Budi Irianto, Sarjiya Antonius, Safinah Surya Hakim, Asri Insiana Putri, Henti Hendalastuti Rachmat, Virni Budi Arifanti, Wahyu Catur Adinugroho, Said Fahmi, Rinaldi Imanuddin, Sri Suharti, Ulfah Karmila Sari, Asep Hidayat, Sona Suhartana, Tien Wahyuni, Sisva Silsigia, Tsuyoshi Kato, Ricksy Prematuri, Ahmad Faizal, Kae Miyazawa and Mitsuru Osakiadd Show full author list remove Hide full author list
Climate 2025, 13(10), 208; https://doi.org/10.3390/cli13100208 - 2 Oct 2025
Abstract
Fungi in tropical ecosystems remain an understudied yet critical component of climate change mitigation, particularly within the Land Use, Land-Use Change, and Forestry (LULUCF) sector. This review highlights their dual role in reducing greenhouse gas (GHG) emissions by regulating carbon dioxide (CO2 [...] Read more.
Fungi in tropical ecosystems remain an understudied yet critical component of climate change mitigation, particularly within the Land Use, Land-Use Change, and Forestry (LULUCF) sector. This review highlights their dual role in reducing greenhouse gas (GHG) emissions by regulating carbon dioxide (CO2), methane (CH4), and nitrous oxides (N2O) while enhancing long-term carbon sequestration. Mycorrhizal fungi are pivotal in maintaining soil integrity, facilitating nutrient cycling, and amplifying carbon storage capacity through symbiotic mechanisms. We synthesize how fungal symbiotic systems under LULUCF shape ecosystem networks and note that, in pristine ecosystems, these networks are resilient. We introduce the concept of Nature-based Culture (NbC) to describe symbiotic self-cultures sustaining ecosystem stability, biodiversity, and carbon sequestration. Case studies demonstrate how the NbC concept is applied in reforestation strategies such as AeroHydro Culture (AHC), the Integrated Mangrove Sowing System (IMSS), and the 4N approach (No Plastic, No Burning, No Chemical Fertilizer, Native Species). These approaches leverage mycorrhizal networks to improve restoration outcomes in peatlands, mangroves, and semi-arid regions while minimizing land disturbance and chemical inputs. Therefore, by bridging fungal ecology with LULUCF policy, this review advocates for a paradigm shift in forest management that integrates fungal symbioses to strengthen carbon storage, ecosystem resilience, and human well-being. Full article
(This article belongs to the Special Issue Forest Ecosystems under Climate Change)
Show Figures

Figure 1

20 pages, 10430 KB  
Article
Modeling of Roughness Effects on Generic Gas Turbine Swirler via a Detached Eddy Simulation Low-y+ Approach
by Robin Vivoli, Daniel Pugh, Burak Goktepe and Philip J. Bowen
Energies 2025, 18(19), 5240; https://doi.org/10.3390/en18195240 - 2 Oct 2025
Abstract
The use of additive manufacturing (AM) has seen increased utilization over the last decade, thanks to well-documented advantages such as lower startup costs, reduced wastage, and the ability to rapidly prototype. The poor surface finish of unprocessed AM components is one of the [...] Read more.
The use of additive manufacturing (AM) has seen increased utilization over the last decade, thanks to well-documented advantages such as lower startup costs, reduced wastage, and the ability to rapidly prototype. The poor surface finish of unprocessed AM components is one of the major drawbacks of this technology, with the research literature suggesting a measurable impact on flow characteristics and burner operability. For instance, surface roughness has been shown to potentially increase resistance to boundary layer flashback—an area of high concern, particularly when utilizing fuels with high hydrogen content. A more detailed understanding of the underlying thermophysical mechanisms is, therefore, required. Computational fluid dynamics can help elucidate the impact of these roughness effects by enabling detailed data interrogation in locations not easily accessible experimentally. In this study, roughness effects on a generic gas turbine swirler were numerically modeled using a low-y+ detached eddy simulation (DES) approach. Three DES models were investigated utilizing a smooth reference case and two rough cases, the latter employing a literature-based and novel equivalent sand-grain roughness (ks) correlation developed for this work. Existing experimental isothermal and CH4 data were used to validate the numerical simulations. Detailed investigations into the effects of roughness on flow characteristics, such as swirl number and recirculation zone position, were subsequently performed. The results show that literature-based ks correlations are unsuitable for the current application. The novel correlation yields more promising outcomes, though its effectiveness depends on the chosen turbulence model. Moreover, it was demonstrated that, for identical ks values, while trends remained consistent, the extent to which they manifested differed under reacting and isothermal conditions. Full article
(This article belongs to the Special Issue Science and Technology of Combustion for Clean Energy)
Show Figures

Figure 1

14 pages, 2577 KB  
Article
Study of CH4–H2 Gas Combustion in Air Enriched with Oxygen Through Ozone Injection
by Lucian Mihaescu, Elena Pop, Ionel Pisa, Dorel Stoica and Rodica Manuela Grigoriu
Energies 2025, 18(19), 5236; https://doi.org/10.3390/en18195236 - 2 Oct 2025
Abstract
This study investigates the combustion behavior of H2–CH4 mixtures with oxygen-enriched air, achieved through injecting ozone (O3) into the air intake of the burner fan. The motivation for this approach lies in the high reactivity of hydrogen compared [...] Read more.
This study investigates the combustion behavior of H2–CH4 mixtures with oxygen-enriched air, achieved through injecting ozone (O3) into the air intake of the burner fan. The motivation for this approach lies in the high reactivity of hydrogen compared to methane, with the aim of promoting a more favorable oxidizing environment for overall combustion. The research combines theoretical analysis with experimental validation using a diffusion-type burner operating at a fuel flow rate of 1.2 Nm3/h. For this flow rate, the ozone injection led to an equivalent O2 concentration of approximately 21.7%. At this enrichment level, flame temperature was calculated to increase by 70–90 °C. The burner was specifically designed for the diffusion combustion of H2–CH4 mixtures and features three fuel injection nozzles, each surrounded by five air inlets. Experiments employed premixed H2-CH4 gas cylinders (Linde) with hydrogen concentrations of 20% and 30%, respectively. The results confirmed slight combustion intensification due to elevated oxygen concentration, with no issues related to flame stability or pulsations observed. Core flame temperature and flue gas emissions, including CO2, were measured. The results support the further development of this combustion technology by increasing the allowable oxygen concentration limit. Full article
19 pages, 2156 KB  
Article
Synthesis of Imidazolium Salts Linked to a t-Butylcalix[4]arene Framework and the Isolation of Interesting By-Products
by Michael J. Chetcuti, Rahma Aroua and Abdelwaheb Hamdi
Molecules 2025, 30(19), 3954; https://doi.org/10.3390/molecules30193954 - 1 Oct 2025
Abstract
A series of functionalized calix[4]arenes were prepared that contain mono- and bis-(alkoxy)imidazolium groups that are linked to the lower rim of a t-butylcalix[4]arene framework. These molecules have potential as anion-complexation reagents and as precursors to N-heterocyclic carbene complexes that are attached to [...] Read more.
A series of functionalized calix[4]arenes were prepared that contain mono- and bis-(alkoxy)imidazolium groups that are linked to the lower rim of a t-butylcalix[4]arene framework. These molecules have potential as anion-complexation reagents and as precursors to N-heterocyclic carbene complexes that are attached to a calixarene framework. They were prepared by the preliminary reaction α,ω-dibromoalkanes with the parent t-butylcalix[4]arene to give bis-ω-bromoalkoxy groups that are connected to the calix[4]arene framework in the 25- and 27-positions. The reaction of the bis-substituted calixarenes with TiCl4 led to the removal of one bromoalkoxy group to give mono-substituted derivatives. Both the mono- and bis-functionalized calixarenes were reacted with N-substituted imidazoles to give a series of mono- or bis-imidazolium salts with the imidazolium group tethered to the calix[4]arene via O–(CH2)n linkages (n = 2, 4, or 6). Unexpected bis-calix[4]arene products, in which the calixarenes are linked together via bridging organic groups, were obtained in some of these reactions. One bridge consists of two calixarenes linked together via two –C2H4– groups while the other had a –O–C4H8–imidazolium-C4H8–O– linker tethering the two calix[4]arenes together. Both these species were characterized by single crystal X-ray diffraction studies. The structures both had significant disorder but, nevertheless, the data do establish their structures. That the imidazolium-substituted calix[4]arene cations are precursors to N-heterocyclic carbene complexes of nickel was demonstrated by the reaction of a mono-imidazolium-substituted calix[4]arene with nickelocene to give the fully characterized N-heterocyclic carbene nickel complex linked to the calix[4]arene group. Full article
Show Figures

Figure 1

Back to TopTop