Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,238)

Search Parameters:
Keywords = 1-butanol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2560 KB  
Article
LC-HRMS/MS-Guided Profiling and Biological Evaluation of Stachys duriaei Extracts: Anticancer and Vasorelaxant Mechanisms via Apoptosis and Endothelium-Dependent Pathways
by Racha Lydia Bouchouka, Zahia Kabouche, Marie Defondaumière, Marlène Debiossat, Catherine Ghezzi, Laurent Riou, Tarek H. Taha, Fehmi Boufahja, Hamdi Bendif and Stefania Garzoli
Molecules 2025, 30(17), 3570; https://doi.org/10.3390/molecules30173570 (registering DOI) - 31 Aug 2025
Abstract
Stachys duriaei (Lamiaceae) remains unexplored despite its pharmacological potential. In this study, for the first time, the antiproliferative, pro-apoptotic, cell cycle arrest, and vasorelaxant effects of the n-butanolic extract (BESD) and a VLC fraction (BF1SD) of Stachys duriaei were investigated. Antiproliferative activity [...] Read more.
Stachys duriaei (Lamiaceae) remains unexplored despite its pharmacological potential. In this study, for the first time, the antiproliferative, pro-apoptotic, cell cycle arrest, and vasorelaxant effects of the n-butanolic extract (BESD) and a VLC fraction (BF1SD) of Stachys duriaei were investigated. Antiproliferative activity was evaluated on PC3 and MDA-MB-231 cell lines via MTT assay (72 h). Apoptosis (Annexin V-FITC/PI) and cell cycle arrest (PI/RNase) were assessed by flow cytometry (24 h, 250–1000 µg/mL). Vasorelaxant effects were studied ex vivo on rat aortic rings. LC-HRMS/MS was used for phytochemical analysis. BESD showed higher antiproliferative activity (IC50: 196 ± 6 µg/mL for PC3, 182 ± 8 µg/mL for MDA-MB-231) than BF1SD (IC50: 281 ± 6 µg/mL and 273 ± 3 µg/mL, respectively). Apoptosis was dose-dependent, with BF1SD displaying a stronger effect at 1000 µg/mL (67.3 ± 0.5% vs. 49.9 ± 0.7% for BESD). BESD induced G2/M arrest, while BF1SD caused G0/G1 and G2/M arrest. Vasorelaxation was endothelium-dependent, likely mediated by NO. Identified compounds (hyperoside, luteolin-7-glucoside, and rutin) may contribute to these effects. BESD and BF1SD exhibit anticancer and vasorelaxant properties, indicating potential therapeutic use against cancer and cardiovascular diseases. Further studies are needed to isolate active compounds and confirm their effects in vivo. Full article
Show Figures

Figure 1

10 pages, 1555 KB  
Communication
Isolation and Quantification of L-Tryptophan from Protaetia brevitarsis seulensis Larvae as a Marker for the Quality Control of an Edible Insect Extract
by Hye Jin Yang and Wei Li
Insects 2025, 16(9), 905; https://doi.org/10.3390/insects16090905 - 29 Aug 2025
Abstract
Protaetia brevitarsis seulensis (Kolbe, 1886) larvae have traditionally been used in East Asian medicine and have recently attracted attention as functional food ingredients because of their pharmacological potential. However, chemical investigations remain limited, and no marker compounds have been established for quality control. [...] Read more.
Protaetia brevitarsis seulensis (Kolbe, 1886) larvae have traditionally been used in East Asian medicine and have recently attracted attention as functional food ingredients because of their pharmacological potential. However, chemical investigations remain limited, and no marker compounds have been established for quality control. This study aimed to isolate and identify a primary constituent from the 70% ethanol extract of P. brevitarsis (PBE) and to develop an analytical method for its quantification. Among the solvent-partitioned fractions, the n-butanol fraction (PBE-B) exhibited a major peak in HPLC analysis. The compound was purified through a combination of vacuum liquid chromatography (VLC), medium-pressure liquid chromatography (MPLC), and recycling preparative HPLC. Its structure was identified as L-tryptophan based on HR-ESI-MS and NMR spectroscopy. Quantitative analysis was conducted using HPLC-DAD under optimized analytical conditions, employing a Thermo Scientific™ Acclaim™ Polar Advantage II column and an acidified mobile phase (0.1% formic acid in water and methanol) to improve resolution. The method demonstrated excellent linearity (r2 > 0.9999), and the L-tryptophan content in PBE was determined to be 1.93 ± 0.05 μg/mg. The analyte was well separated with minimal interference, supporting the reproducibility of the method. These results indicate that L-tryptophan is a promising candidate Q-marker for the quality control of P. brevitarsis extracts. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

19 pages, 1290 KB  
Article
Bioconversion of Corn Cob Acid Hydrolysates into Isoamyl Alcohol and Volatile Compounds Using Meyerozyma guilliermondii
by Nora Estela Ponce-Fernández, Leticia Casas-Godoy, Rebeca Astorga-Trejo, Cuauhtémoc Reyes-Moreno and Claudia Castro-Martínez
Biomass 2025, 5(3), 51; https://doi.org/10.3390/biomass5030051 - 28 Aug 2025
Viewed by 105
Abstract
Corn residues are an abundant and low-cost lignocellulosic feedstock that provides a renewable carbon platform for the production of biofuels, bioplastics, and high-value aromatic volatile compounds (AVCs). Isoamyl alcohol, an important AVC, has applications in the food, cosmetics, and biofuel industries. This study [...] Read more.
Corn residues are an abundant and low-cost lignocellulosic feedstock that provides a renewable carbon platform for the production of biofuels, bioplastics, and high-value aromatic volatile compounds (AVCs). Isoamyl alcohol, an important AVC, has applications in the food, cosmetics, and biofuel industries. This study evaluated the bioconversion of corn cob acid hydrolysates by Meyerozyma guilliermondii into isoamyl alcohol and ethanol. Corn cob was selected as feedstock due to its high hemicellulose content. A Box–Behnken (BBD) design was used to optimize phosphoric acid hydrolysis. The optimal treatment (2.49% v/v H3PO4, 130 °C, 120 min, 1 mm particle size) generated 19.79 g L−1 xylose with 2.74 g L−1 acetic acid. Then, agitation speed and nitrogen concentration were optimized via a central composite design (CCD) in synthetic and hydrolysate-based media fermentations. Isoamyl alcohol specific yield after 48 h of fermentation was higher in hydrolysate medium (12.08 ± 0.67 mg·g−1) than in synthetic medium (8.274 ± 0.83 mg·g−1). Free amino nitrogen (FAN) and intracellular protein analyses revealed higher nitrogen consumption in synthetic media fermentation and greater biomass production in acid hydrolysate media. In addition to isoamyl alcohol (33 mg·L−1), and ethanol (10.18 g·L−1), 1-butanol (61.2 mg·L−1), 1-propanol (13.25 mg·L−1), and acetaldehyde (14.88 mg·L−1) were produced. These results demonstrate the potential of M. guilliermondii to convert corn cob into value-added products. Full article
Show Figures

Figure 1

15 pages, 3465 KB  
Article
Identification of Bioactive Peptides from Caenorhabditis elegans Secretions That Promote Indole-3-Acetic Acid Production in Arthrobacter pascens ZZ21
by Shan Sun, Mengsha Li, Luchen Tao, Xiran Liu, Lei Ouyang, Gen Li, Feng Hu and Huixin Li
Microorganisms 2025, 13(8), 1951; https://doi.org/10.3390/microorganisms13081951 - 21 Aug 2025
Viewed by 285
Abstract
Caenorhabditis elegans, a free-living nematode model, secretes neuropeptides, but the ecological roles of its peptide exudates in regulating rhizosphere microbial activity remain largely unexplored. We identified six short peptides (P1, P9, P19, P20, P25, and P26) from C. elegans exudates that significantly [...] Read more.
Caenorhabditis elegans, a free-living nematode model, secretes neuropeptides, but the ecological roles of its peptide exudates in regulating rhizosphere microbial activity remain largely unexplored. We identified six short peptides (P1, P9, P19, P20, P25, and P26) from C. elegans exudates that significantly enhanced indole-3-acetic acid (IAA) production by the plant growth-promoting bacterium Arthrobacter pascens ZZ21. These peptides were heat-labile and proteinase K-sensitive but unaffected by DNase I or RNase A, confirming their proteinaceous (peptide) nature rather than nucleic acid origin. The retention of bioactivity in n-butanol extracts further supported their hydrophilic, peptide-like properties. LC-MS/MS identified 30 linear peptides, including the six bioactive ones, which exhibited distinct dose-dependent effects, suggesting diverse regulatory mechanisms. Despite their relatively low abundance, these peptides strongly promoted IAA production in the bacterial culture system across multiple concentrations. These findings reveal an unrecognized mechanism whereby free-living nematodes regulate rhizobacterial metabolism via secreted peptides, offering new insights into nematode-mediated chemical signaling. Therefore, this study advances understanding of plant–microbe–nematode interactions and highlights strategies for manipulating rhizosphere microbiota in sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

26 pages, 1955 KB  
Article
A Bioactive Emulgel Formulation of Equisetum telmateia Ehrh. Methanol Extract: Integrating Antioxidant Activity, Skin Enzyme Inhibition, and Permeation Kinetics
by Tuğba Buse Şentürk, Timur Hakan Barak, Emre Şefik Çağlar, Emine Saldamlı, Ebru Özdemir Nath and Zafer Ömer Özdemir
Gels 2025, 11(8), 662; https://doi.org/10.3390/gels11080662 - 20 Aug 2025
Viewed by 498
Abstract
Equisetum telmateia Ehrh. (great horsetail) belongs to the Equisetaceae family and its aerial parts have been traditionally used for skin conditions and to achieve healthy and resilient skin, nails, and hair. This study aimed to evaluate the inhibition of skin-related enzymes by, the [...] Read more.
Equisetum telmateia Ehrh. (great horsetail) belongs to the Equisetaceae family and its aerial parts have been traditionally used for skin conditions and to achieve healthy and resilient skin, nails, and hair. This study aimed to evaluate the inhibition of skin-related enzymes by, the antioxidant capacity of, and the phytochemical composition of E. telmateia. Additionally, a novel emulgel was formulated from the main methanolic extract and characterized in terms of pH, viscosity, determination of content quantification, textural profile analysis, and spreadability. After the characterization studies, in vitro release and ex vivo permeation and penetration studies were performed. Firstly, the dried aerial parts of E. telmateia were macerated in methanol, followed by partitioning with solvents of increasing polarity: n-hexane, chloroform, ethyl acetate, and n-butanol. Antioxidant activity was assessed using DPPH, FRAP, CUPRAC, and TOAC assays, while enzyme inhibition was analyzed for collagenase, elastase, hyaluronidase, and tyrosinase. LC-MS/MS analysis identified 53 phytochemical compounds. Protocatechuic acid, the main phenolic compound, was quantitatively analyzed in each subfraction by HPTLC. The in vitro release studies showed sustained release of the reference substance (protocatechuic acid) and the kinetic modeling of the release was fitted to the Higuchi model. The ex vivo permeation and penetration studies showed that the formulation exhibited a retention of 3.06 ± 0.21 µg.cm−2 after 24 h, whereas the suspended extract demonstrated a skin retention of 1.28 ± 0.47 µg.cm−2. Both the extracts and the formulated emulgel exhibited inhibitory effects on skin-related enzymes. Our finding suggested that E. telmateia might be a valuable ingredient for wrinkle care and skin-regenerating cosmetics. Full article
(This article belongs to the Special Issue Properties and Structure of Plant-Based Emulsion Gels)
Show Figures

Figure 1

14 pages, 1466 KB  
Article
Anti-Helicobacter pylori Compounds of Sambucus williamsii Hance Branch
by Woo-Jin Jeong, Dong-Min Kang, Atif Ali Khan Khalil, Bashu Dev Neupane, Seong-Joon Cho, Na-In Yang, Ki-Hyun Kim and Mi-Jeong Ahn
Plants 2025, 14(16), 2558; https://doi.org/10.3390/plants14162558 - 17 Aug 2025
Viewed by 485
Abstract
Sambucus williamsii Hance (Viburnaceae), the Korean elderberry, is widely used in herbal medicine and in the food industry. It is known to have various pharmacological effects, including antitumor, antioxidant, anti-inflammatory, and antimicrobial activities. During our search for anti-Helicobacter pylori compounds from natural [...] Read more.
Sambucus williamsii Hance (Viburnaceae), the Korean elderberry, is widely used in herbal medicine and in the food industry. It is known to have various pharmacological effects, including antitumor, antioxidant, anti-inflammatory, and antimicrobial activities. During our search for anti-Helicobacter pylori compounds from natural resources, the methanol extract of the S. williamsii branch significantly inhibited the growth of H. pylori. Three phenolic and four lignan compounds were isolated from the methylene chloride fraction that had shown the most potent anti-H. pylori activity among the hexane, methylene chloride, ethyl acetate, butanol, and water fractions. The chemical structures were identified to be three phenolics of sylvopinol (1), dihydroconiferyl alcohol (2), and (7S,8R)-guaiacylglycerol (3) and four lignans of boehmenan (4), (7S,8S)-guaiacylglycerol β-coniferyl ether (6) and lawsonicin (7) with a new lignan, (7R,8R)-sambucanol (5), the structure of which was established by 1H- and 13C-NMR, and HRESI-MS, as well as quantum chemical electronic circular dichroism (ECD) calculations. Among the isolates, compounds 3 and 4 exhibited significant anti-H. pylori activity against strains 51 and 26695. Compound 3 displayed more potent antibacterial activity with MIC values of 3.13 and 6.25 μM, and MIC50 values of 28.5 and 56.8 μM against the two strains, respectively. Their inhibitory activities were higher than those of a positive control, quercetin. Furthermore, these two compounds showed moderate urease inhibitory activity. A molecular docking simulation revealed the high binding ability of 3 and 4 to the active site of H. pylori urease. These results will provide further insights into the design of more potent natural products for eradicating H. pylori. Full article
Show Figures

Figure 1

13 pages, 2780 KB  
Article
Enhancement on KCl Flotation at Low Temperature by a Novel Amine-Alcohol Compound Collector: Experiment and Molecular Dynamic Simulation
by Bo Wang, Jintai Tian, Biao Fan, Xin Wang and Enze Li
Minerals 2025, 15(8), 862; https://doi.org/10.3390/min15080862 - 15 Aug 2025
Viewed by 285
Abstract
To address the challenges of low KCl recovery and high collector consumption during flotation at low temperature, a novel approach with utilizing a compound collector consisting of octadecylamine hydrochloride (ODA) and alcohols (butanol, octanol, and dodecanol) to enhance low-temperature KCl flotation recovery was [...] Read more.
To address the challenges of low KCl recovery and high collector consumption during flotation at low temperature, a novel approach with utilizing a compound collector consisting of octadecylamine hydrochloride (ODA) and alcohols (butanol, octanol, and dodecanol) to enhance low-temperature KCl flotation recovery was proposed in this study. The flotation performance and underlying mechanisms of this novel amine–alcohol compound collector were investigated through combination of micro-flotation tests, contact angle measurements, and molecular dynamics simulations. The results revealed that KCl flotation recovery decreased with declining temperature using single ODA as the collector, and the maximum KCl flotation recovery was approximately 40% with an ODA concentration of 1 × 10−5 mol/L at the temperature of 0 °C. Moreover, amine–alcohol compound collector shows different KCl flotation recovery; among them, dodecanol (DOD) presents the best performance at 25 °C with an ODA concentration of 3 × 10−6 mol/L. The KCl flotation recovery initially increased and then gradually decreased with increasing the DOD concentration, and 90% KCl recovery was achieved with a DOD concentration of 1.5 × 10−5 mol/L (DOD:ODA = 5:1 in mole) under 25 °C. Furthermore, this compound collector exhibited high selectivity for KCl/NaCl flotation. Mechanism studies indicated that the trend in contact angle changes on the KCl crystal surface closely mirrored the trend in flotation recovery. Molecular dynamics simulations demonstrated that at 0 °C, the presence of DOD resulted in a higher diffusion coefficient for ODA molecules compared to the system without DOD. Additionally, the water molecules in System 3 exhibited a lower diffusion coefficient and a greater number of hydrogen bonds. This novel compound collector offers a potential solution for improving KCl recovery and reducing ODA consumption during low-temperature flotation. It holds significant theoretical and practical implications for advancing low-temperature KCl flotation technology. Full article
(This article belongs to the Special Issue Extraction of Valuable Elements from Salt Lake Brine)
Show Figures

Figure 1

15 pages, 2063 KB  
Article
Research on Combustion, Emissions, and Fault Diagnosis of Ternary Mixed Fuel Marine Diesel Engine
by Peng Geng, Xiong Hu and Xiaolu Chang
J. Mar. Sci. Eng. 2025, 13(8), 1561; https://doi.org/10.3390/jmse13081561 - 14 Aug 2025
Viewed by 195
Abstract
This study aimed to investigate the effects of diesel/ethanol/n-butanol mixed fuel on the marine diesel engine combustion and emissions at different ethanol blending ratios, different single injection times, and pre-injection times. In addition, this study takes the injector fault phenomenon as an example, [...] Read more.
This study aimed to investigate the effects of diesel/ethanol/n-butanol mixed fuel on the marine diesel engine combustion and emissions at different ethanol blending ratios, different single injection times, and pre-injection times. In addition, this study takes the injector fault phenomenon as an example, simulates the three fault phenomena of the injector, and uses a variety of algorithms to optimize the probabilistic neural network model to achieve the fault state identification and diagnosis of the injector. The results of research showed that, with the increase in the ethanol blending ratio, the peak cylinder pressure shows a decreasing trend. The ignition delay period is extended, and the peak instantaneous heat release rate increases. Compared with D100, the nitrogen oxide (NOx) emissions of D50E40B10 mixed fuel are reduced by 12.3%, soot emissions are reduced by 29.18%, and carbon monoxide (CO) emissions are increased by 5.7 times. With the injection time advances, the peak values of cylinder pressure and heat release rate show an increasing trend, soot emissions gradually decrease, and NOx and CO emissions gradually increase. The peaks of the cylinder pressure and heat release rate in the pilot injection stage gradually decrease as the pilot injection time advances, while the peak heat release rate in the main injection stage increases. In terms of emissions, NOx emissions first decrease and then increase as the pilot injection time advances, while soot emissions gradually increase. The average accuracy of the PSO-PNN neural network model reaches 90%, and the average accuracy of the WOA-PNN neural network model reaches 95%. Therefore, the WOA-PNN neural network model is determined to be the optimal injector fault diagnosis model, which can be applied to the identification and diagnosis of injector fault states of diesel engines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 3845 KB  
Review
Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques
by Zehao Feng, Junlong Zhang, Jiechong Gu, Xianyin Leng, Zhixia He and Keiya Nishida
Processes 2025, 13(8), 2527; https://doi.org/10.3390/pr13082527 - 11 Aug 2025
Viewed by 422
Abstract
The escalating challenges of greenhouse gas emissions, coupled with the severe depletion of oil reserves and the surging global energy demand, have emerged as critical concerns requiring urgent attention. Against this backdrop, biodiesel has been recognized as a viable alternative fuel for compression [...] Read more.
The escalating challenges of greenhouse gas emissions, coupled with the severe depletion of oil reserves and the surging global energy demand, have emerged as critical concerns requiring urgent attention. Against this backdrop, biodiesel has been recognized as a viable alternative fuel for compression ignition (CI) engines. The primary objective of this research is to review the application of biodiesel in CI engines, with a focus on enhancing fuel properties and improving atomization performance. This article examines the spray and atomization characteristics of biodiesel fuels and conducts a comparative analysis with diesel fuel. The results show that biodiesel has a longer spray tip penetration, smaller spray cone angle, larger Sauter mean diameter (SMD) and faster droplet velocity due to its higher viscosity and surface tension. Blending with other fuels, such as ethanol, butanol, dimethyl ether (DME) and di-n-butyl ether, results in reduced viscosity and surface tension in these mixed fuels, representing a simple and effective approach for improving biodiesel atomization performance. A comprehensive analysis of spray and droplet impingement is also conducted. The findings reveal that biodiesel exhibits a higher probability of fuel–wall impingement, suggesting that future research should focus on two key directions: first, developing combined strategies to enhance impact-induced secondary atomization while minimizing fuel deposition; and second, investigating single-droplet impingement, specifically that of microscale biodiesel droplets and blended fuel droplets under real engine operating conditions. This paper also presents several advanced techniques, including air-assisted atomization, dual-fuel impingement, nano-biodiesel, and water-emulsified biodiesel, aimed at mitigating the atomization limitations of biodiesel, thereby facilitating the broader adoption of biodiesel in compression ignition engines. Full article
Show Figures

Figure 1

20 pages, 753 KB  
Article
Production of Vegan Ice Cream: Enrichment with Fermented Hazelnut Cake
by Levent Yurdaer Aydemir, Hande Demir, Zafer Erbay, Elif Kılıçarslan, Pelin Salum and Melike Beyza Ozdemir
Fermentation 2025, 11(8), 454; https://doi.org/10.3390/fermentation11080454 - 4 Aug 2025
Viewed by 1035
Abstract
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing [...] Read more.
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing their physicochemical, functional, and sensory properties to conventional dairy ice cream (DIC). Solid-state fermentation (72 h, 30 °C) enhanced the cake’s bioactive properties, and ice creams were characterized for composition, texture, rheology, melting behavior, antioxidant activity, and enzyme inhibition pre- and post-in vitro digestion. The results indicate that FHIC had higher protein content (64.64% vs. 58.02% in HIC) and unique volatiles (e.g., benzaldehyde and 3-methyl-1-butanol). While DIC exhibited superior overrun (15.39% vs. 4.01–7.00% in vegan samples) and slower melting, FHIC demonstrated significantly higher post-digestion antioxidant activity (4.73 μmol TE/g DPPH vs. 1.44 in DIC) and angiotensin-converting enzyme (ACE) inhibition (4.85–7.42%). Sensory evaluation ranked DIC highest for overall acceptability, with FHIC perceived as polarizing due to pronounced flavors. Despite textural challenges, HIC and FHIC offered nutritional advantages, including 18–30% lower calories and enhanced bioactive compounds. This study highlights fermentation as a viable strategy to upcycle hazelnut byproducts into functional vegan ice creams, although the optimization of texture and flavor is needed for broader consumer acceptance. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

14 pages, 2011 KB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 - 3 Aug 2025
Viewed by 560
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

14 pages, 882 KB  
Article
Advancing Neonatal Screening for Pyridoxine-Dependent Epilepsy-ALDH7A1 Through Combined Analysis of 2-OPP, 6-Oxo-Pipecolate and Pipecolate in a Butylated FIA-MS/MS Workflow
by Mylène Donge, Sandrine Marie, Amandine Pochet, Lionel Marcelis, Geraldine Luis, François Boemer, Clément Prouteau, Samir Mesli, Matthias Cuykx, Thao Nguyen-Khoa, David Guénet, Aurélie Empain, Magalie Barth, Benjamin Dauriat, Cécile Laroche-Raynaud, Corinne De Laet, Patrick Verloo, An I. Jonckheere, Manuel Schiff, Marie-Cécile Nassogne and Joseph P. Dewulfadd Show full author list remove Hide full author list
Int. J. Neonatal Screen. 2025, 11(3), 59; https://doi.org/10.3390/ijns11030059 - 30 Jul 2025
Viewed by 559
Abstract
Pyridoxine-dependent epilepsy (PDE) represents a group of rare developmental and epileptic encephalopathies. The most common PDE is caused by biallelic pathogenic variants in ALDH7A1 (PDE-ALDH7A1; OMIM #266100), which encodes α-aminoadipate semialdehyde (α-AASA) dehydrogenase, a key enzyme in lysine catabolism. Affected individuals present with [...] Read more.
Pyridoxine-dependent epilepsy (PDE) represents a group of rare developmental and epileptic encephalopathies. The most common PDE is caused by biallelic pathogenic variants in ALDH7A1 (PDE-ALDH7A1; OMIM #266100), which encodes α-aminoadipate semialdehyde (α-AASA) dehydrogenase, a key enzyme in lysine catabolism. Affected individuals present with seizures unresponsive to conventional anticonvulsant medications but responsive to high-dose of pyridoxine (vitamin B6). Adjunctive lysine restriction and arginine supplementation have also shown potential in improving neurodevelopmental outcomes. Given the significant benefit of early intervention, PDE-ALDH7A1 is a strong candidate for newborn screening (NBS). However, traditional biomarkers are biochemically unstable at room temperature (α-AASA and piperideine-6-carboxylate) or lack sufficient specificity (pipecolate), limiting their utility for biomarker-based NBS. The recent identification of two novel and stable biomarkers, 2S,6S-/2S,6R-oxopropylpiperidine-2-carboxylate (2-OPP) and 6-oxo-pipecolate (oxo-PIP), offers renewed potential for biochemical NBS. We evaluated the feasibility of incorporating 2-OPP, oxo-PIP, and pipecolate into routine butylated FIA-MS/MS workflows used for biochemical NBS. A total of 9402 dried blood spots (DBS), including nine confirmed PDE-ALDH7A1 patients and 9393 anonymized controls were analyzed using a single multiplex assay. 2-OPP emerged as the most sensitive biomarker, identifying all PDE-ALDH7A1 patients with 100% sensitivity and a positive predictive value (PPV) of 18.4% using a threshold above the 99.5th percentile. Combining elevated 2-OPP (above the 99.5th percentile) with either pipecolate or oxo-PIP (above the 85.0th percentile) as secondary marker detected within the same multiplex FIA-MS/MS assay further improved the PPVs to 60% and 45%, respectively, while maintaining compatibility with butanol-derivatized method. Notably, increasing the 2-OPP threshold above the 99.89th percentile, in combination with either pipecolate or oxo-PIP above the 85.0th percentile resulted in both 100% sensitivity and 100% PPV. This study supports the strong potential of 2-OPP-based neonatal screening for PDE-ALDH7A1 within existing NBS infrastructures. The ability to multiplex 2-OPP, pipecolate and oxo-PIP within a single assay offers a robust, practical, high-throughput and cost-effective approach. These results support the inclusion of PDE-ALDH7A1 in existing biochemical NBS panels. Further prospective studies in larger cohorts are needed to refine cutoffs and confirm clinical performance. Full article
Show Figures

Figure 1

18 pages, 2981 KB  
Article
Development and Evaluation of Mesoporous SiO2 Nanoparticle-Based Sustained-Release Gel Breaker for Clean Fracturing Fluids
by Guiqiang Fei, Banghua Liu, Liyuan Guo, Yuan Chang and Boliang Xue
Polymers 2025, 17(15), 2078; https://doi.org/10.3390/polym17152078 - 30 Jul 2025
Viewed by 368
Abstract
To address critical technical challenges in coalbed methane fracturing, including the uncontrollable release rate of conventional breaker agents and incomplete gel breaking, this study designs and fabricates an intelligent controlled-release breaker system based on paraffin-coated mesoporous silica nanoparticle carriers. Three types of mesoporous [...] Read more.
To address critical technical challenges in coalbed methane fracturing, including the uncontrollable release rate of conventional breaker agents and incomplete gel breaking, this study designs and fabricates an intelligent controlled-release breaker system based on paraffin-coated mesoporous silica nanoparticle carriers. Three types of mesoporous silica (MSN) carriers with distinct pore sizes are synthesized via the sol-gel method using CTAB, P123, and F127 as structure-directing agents, respectively. Following hydrophobic modification with octyltriethoxysilane, n-butanol breaker agents are loaded into the carriers, and a temperature-responsive controlled-release system is constructed via paraffin coating technology. The pore size distribution was analyzed by the BJH model, confirming that the average pore diameters of CTAB-MSNs, P123-MSNs, and F127-MSNs were 5.18 nm, 6.36 nm, and 6.40 nm, respectively. The BET specific surface areas were 686.08, 853.17, and 946.89 m2/g, exhibiting an increasing trend with the increase in pore size. Drug-loading performance studies reveal that at the optimal loading concentration of 30 mg/mL, the loading efficiencies of n-butanol on the three carriers reach 28.6%, 35.2%, and 38.9%, respectively. The release behavior study under simulated reservoir temperature conditions (85 °C) reveals that the paraffin-coated system exhibits a distinct three-stage release pattern: a lag phase (0–1 h) caused by paraffin encapsulation, a rapid release phase (1–8 h) induced by high-temperature concentration diffusion, and a sustained release phase (8–30 h) attributed to nano-mesoporous characteristics. This intelligent controlled-release breaker demonstrates excellent temporal compatibility with coalbed methane fracturing processes, providing a novel technical solution for the efficient and clean development of coalbed methane. Full article
Show Figures

Figure 1

37 pages, 1832 KB  
Review
A Review of Biobutanol: Eco-Friendly Fuel of the Future—History, Current Advances, and Trends
by Victor Alejandro Serrano-Echeverry, Carlos Alberto Guerrero-Fajardo and Karol Tatiana Castro-Tibabisco
Fuels 2025, 6(3), 55; https://doi.org/10.3390/fuels6030055 - 29 Jul 2025
Viewed by 931
Abstract
Biobutanol is becoming more relevant as a promising alternative biofuel, primarily due to its advantageous characteristics. These include a higher energy content and density compared to traditional biofuels, as well as its ability to mix effectively with gasoline, further enhancing its viability as [...] Read more.
Biobutanol is becoming more relevant as a promising alternative biofuel, primarily due to its advantageous characteristics. These include a higher energy content and density compared to traditional biofuels, as well as its ability to mix effectively with gasoline, further enhancing its viability as a potential replacement. A viable strategy for attaining carbon neutrality, reducing reliance on fossil fuels, and utilizing sustainable and renewable resources is the use of biomass to produce biobutanol. Lignocellulosic materials have gained widespread recognition as highly suitable feedstocks for the synthesis of butanol, together with various value-added byproducts. The successful generation of biobutanol hinges on three crucial factors: effective feedstock pretreatment, the choice of fermentation techniques, and the subsequent enhancement of the produced butanol. While biobutanol holds promise as an alternative biofuel, it is important to acknowledge certain drawbacks associated with its production and utilization. One significant limitation is the relatively high cost of production compared to other biofuels; additionally, the current reliance on lignocellulosic feedstocks necessitates significant advancements in pretreatment and bioconversion technologies to enhance overall process efficiency. Furthermore, the limited availability of biobutanol-compatible infrastructure, such as distribution and storage systems, poses a barrier to its widespread adoption. Addressing these drawbacks is crucial for maximizing the potential benefits of biobutanol as a sustainable fuel source. This document presents an extensive review encompassing the historical development of biobutanol production and explores emerging trends in the field. Full article
Show Figures

Figure 1

19 pages, 2630 KB  
Article
Experimental and Kinetic Modelling Study of the Heterogeneous Catalytic Conversion of Bioethanol into n-Butanol Using MgO–Al2O3 Mixed Oxide Catalyst
by Amosi Makoye, Anna Vikár, András Bence Nacsa, Róbert Barthos, József Valyon, Ferenc Lónyi and Tibor Nagy
Catalysts 2025, 15(8), 709; https://doi.org/10.3390/catal15080709 - 25 Jul 2025
Viewed by 442
Abstract
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at [...] Read more.
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at 275–325 °C, 21 bar, and weight hourly space velocities of 0.25–2.5 gEtOH/(gcat·h), using helium as a carrier gas, with a 5:1 He/EtOH molar ratio. The catalyst was a MgO–Al2O3 mixed oxide (Mg/Al = 2:1), derived from a hydrotalcite precursor. A detailed kinetic model was developed, encompassing 15 species and 27 reversible steps (10 sorption and 17 reaction steps), within a 1+1D sorption–reaction–transport framework. Four C4-forming pathways were included: aldol condensation to form crotonaldehyde, semi-direct coupling to form butyraldehyde and crotyl alcohol, and direct coupling to form 1-butanol. To avoid overfitting, Arrhenius parameters were grouped by reaction type, resulting in sixty rate parameters and one active site-specific density parameter. The optimized model achieved high accuracy, with an average prediction error of 1.44 times the experimental standard deviation. The mechanistic analysis revealed aldol condensation as the dominant pathway below 335 °C, with semi-direct coupling to crotyl alcohol prevailing above 340 °C. The resulting model provides a robust framework for understanding and predicting complex reaction networks in ethanol upgrading systems. Full article
(This article belongs to the Special Issue Biomass Catalytic Conversion to Value-Added Chemicals)
Show Figures

Graphical abstract

Back to TopTop