Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,041)

Search Parameters:
Keywords = 1H NMR spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2151 KiB  
Article
Unveiling Adulterated Cheese: A 1H-NMR-Based Lipidomic Approach
by Maria-Cristina Todașcă, Mihaela Tociu and Fulvia-Ancuța Manolache
Foods 2025, 14(16), 2789; https://doi.org/10.3390/foods14162789 - 11 Aug 2025
Viewed by 254
Abstract
The main objective of this research consists in finding a rapid method for cheese lipidomics based on NMR data. This study plays an important role in differentiation and characterization of cheese samples in accordance with fat composition, especially in the case of fat [...] Read more.
The main objective of this research consists in finding a rapid method for cheese lipidomics based on NMR data. This study plays an important role in differentiation and characterization of cheese samples in accordance with fat composition, especially in the case of fat substitution with exogenous animal or vegetal fat. Our findings play an important role in relation to religious requirements regarding non-allowed foods (pork fat, for example, in some cultures) and in the correct characterization of foods according to their lipidic profile. The approach consists in establishing a fingerprint region (0.86–0.93 ppm from 1H-NMR spectra) and then creating a database of the results obtained. The evaluation of the long-chain saturated fatty acids and the saturated short-chain fatty acids (C4 to C8) was established with a newly developed set of equations that make the computation possible even when mixtures of fats from different sources are present. This was accomplished by developing a new method for quantification of the fatty acid composition of different types of cheese, based on 1H-NMR spectroscopy. Principal component analysis (PCA) was applied to 40 cheese samples with varying degrees (0%, 5%, 12%, or 15%) of milk fat substitution (pork fat, vegetable fat, hydrogenated oils) and different clotting agents (calcium chloride or citric acid). The best sample discrimination was achieved using fatty acid profiles estimated from 1H-NMR data (using a total of six variables), explaining 89.7% of the total variance. Clear separation was observed between samples containing only milk fat and those with added fats. These results demonstrate that the integration of 1H-NMR spectroscopy with principal component analysis (PCA) provides a reliable approach for discriminating cheese samples according to their fat composition. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

17 pages, 3345 KiB  
Article
Novel Tetraphenolic Porphyrazine Capable of MRSA Photoeradication
by Wojciech Szczolko, Eunice Zuchowska, Tomasz Koczorowski, Michal Kryjewski, Jolanta Dlugaszewska and Dariusz T. Mlynarczyk
Molecules 2025, 30(15), 3069; https://doi.org/10.3390/molecules30153069 - 22 Jul 2025
Viewed by 346
Abstract
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic [...] Read more.
This work presents the synthesis, characterization and evaluation of physicochemical and biological properties of two new aminoporphyrazine derivatives bearing magnesium(II) cations in their cores and peripheral pyrrolyl groups. The synthesis was carried out in several stages, using classical methods and the Microwave-Assisted Organic Synthesis (MAOS) approach. The obtained compounds were characterized using spectral techniques: UV-Vis spectrophotometry, mass spectrometry, 1H and 13C NMR spectroscopy. The porphyrazine derivatives were tested for their electrochemical properties (CV and DPV), which revealed four redox processes, of which in compound 7 positive shifts of oxidation potentials were observed, resulting from the presence of free phenolic hydroxyl groups. In spectroelectrochemical measurements, changes in UV-Vis spectra associated with the formation of positive-charged states were noted. Photophysical studies revealed the presence of characteristic absorption Q and Soret bands, low fluorescence quantum yields and small Stokes shifts. The efficiency of singlet oxygen generation (ΦΔ) was higher for compound 6 (up to 0.06), but compound 7, despite its lower efficiency (0.02), was distinguished by a better biological activity profile. Toxicity tests using the Aliivibrio fischeri bacteria indicated the lower toxicity of 7 compared to 6. The most promising result was the strong photodynamic activity of porphyrazine 7 against the Methicillin-resistant Stapylococcus aureus (MRSA) strain, leading to a more-than-5.6-log decrease in viable counts after the colony forming units (CFU) after light irradiation. Compound 6 did not show any significant antibacterial activity. The obtained data indicate that porphyrazine 7 is a promising candidate for applications in photodynamic therapy of bacterial infections. Full article
Show Figures

Figure 1

17 pages, 2607 KiB  
Article
One-Pot Synthesis of Phenylboronic Acid-Based Microgels for Tunable Gate of Glucose-Responsive Insulin Release at Physiological pH
by Prashun G. Roy, Jiangtao Zhang, Koushik Bhattacharya, Probal Banerjee, Jing Shen and Shuiqin Zhou
Molecules 2025, 30(15), 3059; https://doi.org/10.3390/molecules30153059 - 22 Jul 2025
Viewed by 388
Abstract
Glucose-responsive insulin delivery systems that effectively regulate insulin retention and release in response to real-time fluctuation of glucose levels are highly desirable for diabetes care with minimized risk of hypoglycemia. Herein, we report a class of glucose-sensitive copolymer microgels, prepared from a simple [...] Read more.
Glucose-responsive insulin delivery systems that effectively regulate insulin retention and release in response to real-time fluctuation of glucose levels are highly desirable for diabetes care with minimized risk of hypoglycemia. Herein, we report a class of glucose-sensitive copolymer microgels, prepared from a simple one-pot precipitation copolymerization of 4-vinylphenylboronic acid (VPBA), 2-(dimethylamino) ethyl acrylate (DMAEA), and oligo(ethylene glycol) methyl ether methacrylate (Mw = 300, MEO5MA), for gated glucose-responsive insulin release within the physiologically desirable glucose level range. The composition of the p(VPBA-DMAEA-MEO5MA) copolymer microgels were analyzed using NMR and FTIR spectra. The cis-diols of glucose can reversibly bind with the −B(OH)2 groups of the VPBA component in the microgels, resulting in the formation of negatively charged boronate esters that induce the volume phase transition of the microgels. The DMAEA component is incorporated to reduce the pKa of VPBA, thus improving the glucose sensitivity of the microgels at physiological pH. The neutral hydrophilic MEO5MA component is used to tune the onset of the glucose responsiveness of the microgels to the physiologically desirable levels. The more the MEO5MA component copolymerized in the microgels, the greater the glucose concentration required to initiate the swelling of the microgels to trigger the release of insulin. When the onset of the glucose response was tuned to 4−5 mM, the copolymer microgels retained insulin effectively in the hypo-/normo-glycemic range but also released insulin efficiently in response to the elevation of glucose levels in the hyperglycemic range, which is essential for diabetes management. The copolymer microgels display no cytotoxicity in vitro. Full article
Show Figures

Figure 1

7 pages, 636 KiB  
Short Note
Benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate
by Lucrezia Spinelli, Matteo Mori and Laura Fumagalli
Molbank 2025, 2025(3), M2040; https://doi.org/10.3390/M2040 - 21 Jul 2025
Viewed by 646
Abstract
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties [...] Read more.
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties make them indispensable in drug design. This study focuses on the synthesis of a key heterocyclic intermediate: benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate. This molecule incorporates a thiazole ring, known for its rigidity and electronic properties, that enhances target interactions. The 2-position bears a Cbz-protected amine, enabling orthogonal deprotection, while the 4-position features a hydroxyethyl side chain, providing a handle for further chemical modifications via nucleophilic substitution. Herein, we report the successful synthesis of this intermediate along with its full 1H and 13C NMR spectra, melting point, and crystal structure, confirming its identity and purity. Full article
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water
by Zeineb Baatout, Achref Jebnouni, Nawfel Sakly, Safa Teka, Nuzaiha Mohamed, Sayda Osman, Raoudha Soury, Mabrouka El Oudi, Salman Hamdan Alsaqri, Nejmeddine Smida Jaballah and Mustapha Majdoub
Polymers 2025, 17(14), 1937; https://doi.org/10.3390/polym17141937 - 15 Jul 2025
Viewed by 461
Abstract
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H [...] Read more.
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H NMR, 13C NMR, 31P NMR, and FT-IR spectroscopies combined with AFM and contact angle measurements demonstrate how the enhanced solubility of modified cyclodextrin improves thin film quality. The innovation lies in the synergistic combination of two detection mechanisms: the “Host-Guest” inclusion in the cyclodextrin cavity and anionic exchange between the bromide ions of the phosphonium groups and perchlorate anions. Under optimized functionalization conditions, EIS reveals high sensitivity and selectivity, achieving a record-low detection limit (LOD) of ~10−12 M and a wide linear range of detection (10−11 M–10−4 M). Sensing mechanisms at the functionalized transducer interfaces are examined through numerical fitting of Cole-Cole impedance spectra via a single relaxation equivalent circuit. Real water sample analysis confirms the sensor’s practical applicability, with recoveries between 96.9% and 109.8% and RSDs of 2.4–4.8%. Finally, a comparative study with reported membrane sensors shows that β-CDP offers superior performance, wider range, higher sensitivity, lower LOD, and simpler synthesis. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

12 pages, 2771 KiB  
Article
A Supramolecular Extension of Mosher’s Method: Absolute Configuration Assignment of N-Amino Acid Derivatives via Bis-Thiourea Chiral Solvating Agent
by Virginia Rondinini, Federica Aiello, Federica Cefalì, Alessandra Recchimurzo, Gloria Uccello Barretta and Federica Balzano
Molecules 2025, 30(14), 2930; https://doi.org/10.3390/molecules30142930 - 11 Jul 2025
Viewed by 418
Abstract
The bis-thiourea chiral solvating agent (CSA) BTDA enables the NMR-based determination of absolute configuration in N-3,5-dinitrobenzoyl (DNB) amino acid derivatives without requiring covalent derivatization. A reliable trend of the sense of nonequivalence and absolute configuration is found in both 1H and [...] Read more.
The bis-thiourea chiral solvating agent (CSA) BTDA enables the NMR-based determination of absolute configuration in N-3,5-dinitrobenzoyl (DNB) amino acid derivatives without requiring covalent derivatization. A reliable trend of the sense of nonequivalence and absolute configuration is found in both 1H and 13C NMR spectra. A dual-enantiomer approach, using (R,R)- and (S,S)-BTDA, generates diastereomeric complexes with the enantiopure substrate, and distinct spatial arrangements are reflected in consistent and interpretable Δδ values. The observed chemical shift differences correlate reliably with the stereochemistry of the chiral center and are further supported by ROESY (Rotating-frame Overhauser Enhancement SpectroscopY) experiments and binding constants’ measurements, confirming the formation of stereoselective non-covalent complexes. This methodology extends the logic of Mosher’s analysis to solvating agents and remains effective even in samples containing single pure enantiomers of the amino acid derivative. The BTDA-based dual-CSA system thus represents a robust, non-derivatizing strategy for stereochemical assignment by NMR, combining operational simplicity with broad applicability to DNB derivatives of amino acids with free carboxyl function. Full article
Show Figures

Graphical abstract

22 pages, 3797 KiB  
Article
Structurally Ordered NIPUs via Catalyst-Free Synthesis with Hard Segments Based on Erythritol and a Long-Chain Diamine
by Edyta Hebda, Karolina Wróbel, Aleksandra Cieślik, Kinga Szołdrowska, Jan Ozimek, Paulina Zając, Konstantinos N. Raftopoulos and Krzysztof Pielichowski
Molecules 2025, 30(14), 2912; https://doi.org/10.3390/molecules30142912 - 10 Jul 2025
Viewed by 833
Abstract
A series of linear isocyanate-free polyurethanes (NIPUs) were obtained via the aminolysis of erythritol dicarbonate (EDC) with polyethers (diamino-PEG, diamino-PPO, and diamino-PEG/PPO) and 1,12-diaminododecane (DADD), which acts as a chain extender to form hard segments. The obtained NIPUs contained different concentrations of DADD [...] Read more.
A series of linear isocyanate-free polyurethanes (NIPUs) were obtained via the aminolysis of erythritol dicarbonate (EDC) with polyethers (diamino-PEG, diamino-PPO, and diamino-PEG/PPO) and 1,12-diaminododecane (DADD), which acts as a chain extender to form hard segments. The obtained NIPUs contained different concentrations of DADD relative to the polyether (72.5–80 wt%). A detailed chemical structure analysis of the synthesized NIPU was performed using a combination of FTIR and 1H NMR. FTIR spectra confirmed that the EDC/DADD segments formed a network of hydrogen bonds. This is reflected in WAXD diffractograms showing ordered crystalline domains originating in DADD. The reflections assigned to the EDC/DADD segments exhibited changes in their position and intensity with decreasing concentration, indicating an increase in interplanar spacing and a loss of higher-order order. WAXD also showed that the soft segments of PEG and PEG/PPO retain their ordered crystal structure regardless of the EDC/DADD content. At a larger length scale, SAXS revealed similar micromorphology for the different polyethers, with a broad peak indicating long-range order in the EDC/DADD-rich segments and a weak separation of the soft and hard phases. DSC analyses confirmed the complex phase behavior, where the PEG-based materials showed melting of crystalline fragments, and the amorphous PPO showed a glass transition. DMA indicated the stability of the glass transition temperature in the PPO samples and the presence of an unusual structural transition. The results emphasize the influence of the type of poly(ether) on the thermal and microphase properties of the studied non-isocyanate polyurethanes. Full article
Show Figures

Graphical abstract

31 pages, 3723 KiB  
Review
Chemical Profiling and Quality Assessment of Food Products Employing Magnetic Resonance Technologies
by Chandra Prakash and Rohit Mahar
Foods 2025, 14(14), 2417; https://doi.org/10.3390/foods14142417 - 9 Jul 2025
Viewed by 792
Abstract
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR [...] Read more.
Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) are powerful techniques that have been employed to analyze foodstuffs comprehensively. These techniques offer in-depth information about the chemical composition, structure, and spatial distribution of components in a variety of food products. Quantitative NMR is widely applied for precise quantification of metabolites, authentication of food products, and monitoring of food quality. Low-field 1H-NMR relaxometry is an important technique for investigating the most abundant components of intact foodstuffs based on relaxation times and amplitude of the NMR signals. In particular, information on water compartments, diffusion, and movement can be obtained by detecting proton signals because of H2O in foodstuffs. Saffron adulterations with calendula, safflower, turmeric, sandalwood, and tartrazine have been analyzed using benchtop NMR, an alternative to the high-field NMR approach. The fraudulent addition of Robusta to Arabica coffee was investigated by 1H-NMR Spectroscopy and the marker of Robusta coffee can be detected in the 1H-NMR spectrum. MRI images can be a reliable tool for appreciating morphological differences in vegetables and fruits. In kiwifruit, the effects of water loss and the states of water were investigated using MRI. It provides informative images regarding the spin density distribution of water molecules and the relationship between water and cellular tissues. 1H-NMR spectra of aqueous extract of kiwifruits affected by elephantiasis show a higher number of small oligosaccharides than healthy fruits do. One of the frauds that has been detected in the olive oil sector reflects the addition of hazelnut oils to olive oils. However, using the NMR methodology, it is possible to distinguish the two types of oils, since, in hazelnut oils, linolenic fatty chains and squalene are absent, which is also indicated by the 1H-NMR spectrum. NMR has been applied to detect milk adulterations, such as bovine milk being spiked with known levels of whey, urea, synthetic urine, and synthetic milk. In particular, T2 relaxation time has been found to be significantly affected by adulteration as it increases with adulterant percentage. The 1H spectrum of honey samples from two botanical species shows the presence of signals due to the specific markers of two botanical species. NMR generates large datasets due to the complexity of food matrices and, to deal with this, chemometrics (multivariate analysis) can be applied to monitor the changes in the constituents of foodstuffs, assess the self-life, and determine the effects of storage conditions. Multivariate analysis could help in managing and interpreting complex NMR data by reducing dimensionality and identifying patterns. NMR spectroscopy followed by multivariate analysis can be channelized for evaluating the nutritional profile of food products by quantifying vitamins, sugars, fatty acids, amino acids, and other nutrients. In this review, we summarize the importance of NMR spectroscopy in chemical profiling and quality assessment of food products employing magnetic resonance technologies and multivariate statistical analysis. Full article
(This article belongs to the Special Issue Quantitative NMR and MRI Methods Applied for Foodstuffs)
Show Figures

Figure 1

9 pages, 1055 KiB  
Short Note
A Pyrene-Anchored Nickel N-Heterocyclic Carbene–Isoquinoline Complex Promotes CO2 Reduction
by Xue Chen, Li-Li Yu, Shu-Ying Chen, Tong Wang and Quan Zhou
Molbank 2025, 2025(3), M2035; https://doi.org/10.3390/M2035 - 8 Jul 2025
Viewed by 389
Abstract
In this study, on the basis of a previous report, a pyrene-anchored nickel complex was designed and synthesized via five steps. The NMR spectra of the synthesized complex were found to exhibit significant proton and carbon chemical shift anisotropy. Cyclic voltammetry spectra showed [...] Read more.
In this study, on the basis of a previous report, a pyrene-anchored nickel complex was designed and synthesized via five steps. The NMR spectra of the synthesized complex were found to exhibit significant proton and carbon chemical shift anisotropy. Cyclic voltammetry spectra showed that the introduction of pyrene slightly influenced the onset potential of CO2 reduction. Lastly, controlled-potential electrolysis experiments disclosed that a pyrene-anchored nickel carbene–isoquinoline (Ni2) complex selectively converted CO2 into CH4 with a TON value of 2.3 h−1. Full article
(This article belongs to the Topic Heterocyclic Carbene Catalysis)
Show Figures

Figure 1

7 pages, 1961 KiB  
Short Note
3′H-Spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one
by Brian A. Chalmers, David B. Cordes, Aidan P. McKay, Iain L. J. Patterson, Nadiia Vladymyrova and Iain A. Smellie
Molbank 2025, 2025(3), M2033; https://doi.org/10.3390/M2033 - 7 Jul 2025
Viewed by 303
Abstract
Target compound 3′H-spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one (1) has long been known to be a by-product obtained from the preparation of naphtholphthalein. The structure of compound 1 was elucidated in the early 20th century; however, this compound has not [...] Read more.
Target compound 3′H-spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one (1) has long been known to be a by-product obtained from the preparation of naphtholphthalein. The structure of compound 1 was elucidated in the early 20th century; however, this compound has not previously been fully characterized using modern techniques. In this report, 1H NMR and 13C NMR spectra are provided. X-ray crystallography is also used to characterize the title compound for the first time. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

19 pages, 2636 KiB  
Article
Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties
by Pradip K. Bhowmik, David King, Haesook Han, András F. Wacha and Matti Knaapila
Polymers 2025, 17(13), 1785; https://doi.org/10.3390/polym17131785 - 27 Jun 2025
Viewed by 393
Abstract
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium [...] Read more.
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium salt)s-fluorene containing 9,9-bis(4-aminophenyl)fluorene moieties with various organic counterions that were synthesized using ring-transmutation polymerization and metathesis reactions, which are non-conjugated polyelectrolytes. Their chemical structures were characterized by Fourier transform infrared (FTIR), proton (1H) and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers, and elemental analysis. They exhibited polyelectrolytic behavior in dimethyl sulfoxide. Their lyotropic liquid-crystalline phases were examined by polarizing optical microscopy (POM) and small angle X-ray scattering (SAXS) studies. Their emission spectra exhibited a positive solvatochromism on changing the polarity of solvents. They emitted greenish-yellow lights in polar organic solvents. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0–90%), whose λem peaks were blue shifted. Full article
(This article belongs to the Special Issue Smart Polymers for Stimuli-Responsive Devices)
Show Figures

Graphical abstract

24 pages, 2997 KiB  
Article
Selective Air Oxidation of Bis- and Trisphosphines Adsorbed on Activated Carbon Surfaces
by Ehsan Shakeri, John C. Hoefler and Janet Blümel
Molecules 2025, 30(13), 2737; https://doi.org/10.3390/molecules30132737 - 25 Jun 2025
Viewed by 312
Abstract
Bis- and trisphosphines incorporating methylene and aryl spacers readily adsorb on the surface of porous activated carbon (AC). The adsorption can be performed in the absence of solvents, even when the phosphines have high melting points, or from solutions. The diverse phosphines Ph [...] Read more.
Bis- and trisphosphines incorporating methylene and aryl spacers readily adsorb on the surface of porous activated carbon (AC). The adsorption can be performed in the absence of solvents, even when the phosphines have high melting points, or from solutions. The diverse phosphines Ph2PCH2PPh2 (dppm), Ph2P(CH2)2PPh2 (dppe), Ph2P(CH2)3PPh2 (dppp), Ph2P(p-C6H4)PPh2 (dppbz), and (Ph2PCH2)3CCH3 (tdme) were adsorbed in submonolayers on AC. The adsorbed phosphines were studied by 31P MAS (magic angle spinning) NMR spectroscopy, and their mobilities on the surface were confirmed by determining the 31P T1 relaxation times. All phosphine groups of each bis- and trisphosphine molecule are in contact with the surface, and the molecules exhibit translational mobility as one unit. All phosphines used here are air-stable. Once a submonolayer is created on the AC surface, oxygen from the air is co-adsorbed and transforms all phosphines quantitatively into phosphine oxides at room temperature. The oxidation proceeds in a consecutive manner with the oxidation of one phosphine group after another until the fully oxidized species are formed. Studies of the kinetics are based on integrating the signals in the solution 31P NMR spectra. High temperatures and low surface coverages increase the speed of the oxidation, while light and acid have no impact. The oxidation is fast and complete within one hour for 10% surface coverage at room temperature. In order to study the mechanism and slow down the oxidation, a higher surface coverage of 40% was applied. No unwanted P(V) side products or water adducts were observed. The clean phosphine oxides could be recovered in high yields by washing them off of the AC surface. The oxidation is based on radical activation of O2 on the AC surface due to delocalized electrons on the AC surface. This is corroborated by the result that AIBN-derived radicals enable the air oxidation of PPh3 in solution at 65 °C. When the air-stable complex (CO)2Ni(PPh3)2 is applied to the AC surface and exposed to the air, OPPh3 forms quantitatively. The new surface-assisted air oxidation of phosphines adsorbed on AC renders expensive and hazardous oxidizers obsolete and opens a synthetic pathway to the selective mono-oxidation of bis- and trisphosphines. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

21 pages, 601 KiB  
Article
Cladolosides of Groups S and T: Triterpene Glycosides from the Sea Cucumber Cladolabes schmeltzii with Unique Sulfation; Human Breast Cancer Cytotoxicity and QSAR
by Alexandra S. Silchenko, Elena A. Zelepuga, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Kseniya M. Tabakmakher, Anatoly I. Kalinovsky, Sergey A. Avilov, Roman S. Popov, Pavel S. Dmitrenok and Vladimir I. Kalinin
Mar. Drugs 2025, 23(7), 265; https://doi.org/10.3390/md23070265 - 25 Jun 2025
Cited by 1 | Viewed by 566
Abstract
Four new minor monosulfated triterpene penta- and hexaosides, cladolosides S (1), S1 (2), T (3), and T1 (4), were isolated from the Vietnamese sea cucumber Cladolabes schmeltzii (Sclerodactylidae, Dendrochirotida). The structures of the [...] Read more.
Four new minor monosulfated triterpene penta- and hexaosides, cladolosides S (1), S1 (2), T (3), and T1 (4), were isolated from the Vietnamese sea cucumber Cladolabes schmeltzii (Sclerodactylidae, Dendrochirotida). The structures of the compounds were established based on extensive analysis of 1D and 2D NMR spectra as well as HR-ESI-MS data. Cladodosides S (1), S1 (2) and T (3), T1 (4) are two pairs of dehydrogenated/hydrogenated compounds that share identical carbohydrate chains. The oligosaccharide chain of cladolosides of the group S is new for the sea cucumber glycosides due to the presence of xylose residue attached to C-4 Xyl1 in combination with a sulfate group at C-6 MeGlc4. The oligosaccharide moiety of cladolosides of the group T is unique because of the position of the sulfate group at C-3 of the terminal sugar residue instead of the 3-O-Me group. This suggests that the enzymatic processes of sulfation and O-methylation that occur during the biosynthesis of glycosides can compete with each other. This can presumably occur due to the high level of expression or activity of the enzymes that biosynthesize glycosides. The mosaicism of glycoside biosynthesis (time shifting or dropping out of some biosynthetic stages) may indicate a lack of compartmentalization inside the cells of organism producers, leading to a certain degree of randomness in enzymatic reactions; however, this also offers the advantage of providing chemical diversity of the glycosides. Analysis of the hemolytic activity of a series of 26 glycosides from C. schmeltzii revealed some patterns of structure–activity relationships: the presence or absence of 3-O-methyl groups has no significant impact, hexaosides, which are the final products of biosynthesis and predominant compounds of the glycosidic fraction of C. schmeltzii, are more active than their precursors, pentaosides, and the minor tetraosides, cladolosides of the group A, are weak membranolytics and therefore are not synthesized in large quantities. Two glycosides from C. schmeltzii, cladolosides D (18) and H1 (26), display selectivity of cytotoxic action toward triple-negative breast cancer cells MDA-MB-231, while remaining non-toxic in relation to normal mammary cells MCF-10A. Quantitative structure–activity relationships (QSAR) were calculated based on the correlational analysis of the physicochemical properties and structural features of the glycosides and their hemolytic and cytotoxic activities against healthy MCF-10A cells and cancer MCF-7 and MDA-MB-231 cell lines. QSAR highlighted the complexity of the relationships as the cumulative effect of many minor contributions from individual descriptors can have a significant impact. Furthermore, many structural elements were found to have different effects on the activity of the glycosides against different cell lines. The opposing effects were especially pronounced in relation to hormone-dependent breast cancer cells MCF-7 and triple-negative MDA-MB-231 cells. Full article
(This article belongs to the Special Issue Novel Biomaterials and Active Compounds from Sea Cucumbers)
Show Figures

Graphical abstract

26 pages, 3934 KiB  
Article
Structural and Spectroscopic Properties of Magnolol and Honokiol–Experimental and Theoretical Studies
by Jacek Kujawski, Beata Drabińska, Katarzyna Dettlaff, Marcin Skotnicki, Agata Olszewska, Tomasz Ratajczak, Marianna Napierała, Marcin K. Chmielewski, Milena Kasprzak, Radosław Kujawski, Aleksandra Gostyńska-Stawna and Maciej Stawny
Int. J. Mol. Sci. 2025, 26(13), 6085; https://doi.org/10.3390/ijms26136085 - 25 Jun 2025
Viewed by 439
Abstract
This study presents an integrated experimental and theoretical investigation of two pharmacologically significant neolignans—magnolol and honokiol—with the aim of characterizing their structural and spectroscopic properties in detail. Experimental Fourier-transform infrared (FT-IR), ultraviolet–visible (UV-Vis), and nuclear magnetic resonance (1H NMR) spectra were [...] Read more.
This study presents an integrated experimental and theoretical investigation of two pharmacologically significant neolignans—magnolol and honokiol—with the aim of characterizing their structural and spectroscopic properties in detail. Experimental Fourier-transform infrared (FT-IR), ultraviolet–visible (UV-Vis), and nuclear magnetic resonance (1H NMR) spectra were recorded and analyzed. To support and interpret these findings, a series of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were conducted using several hybrid and long-range corrected functionals (B3LYP, CAM-B3LYP, M06X, PW6B95D3, and ωB97XD). Implicit solvation effects were modeled using the CPCM approach across a variety of solvents. The theoretical spectra were systematically compared to experimental data to determine the most reliable computational approaches. Additionally, natural bond orbital (NBO) analysis, molecular electrostatic potential (MEP) mapping, and frontier molecular orbital (FMO) visualization were performed to explore electronic properties and reactivity descriptors. The results provide valuable insight into the structure–spectrum relationships of magnolol and honokiol and establish a computational benchmark for further studies on neolignan analogues. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

18 pages, 2254 KiB  
Article
Didemnosides A and B: Antiproliferative Nucleosides from the Red Sea Marine Tunicate Didemnum Species
by Lamiaa A. Shaala, Diaa T. A. Youssef, Hadeel Almagthali, Ameen M. Almohammadi, Wafaa T. Arab, Torki Alzughaibi, Noor M. Bataweel and Reham S. Ibrahim
Mar. Drugs 2025, 23(7), 262; https://doi.org/10.3390/md23070262 - 23 Jun 2025
Viewed by 662
Abstract
Marine tunicates are a very attractive and abundant source of secondary metabolites with chemical diversity and biological activity. Fractionation and purification of the organic extract of the Red Sea tunicate Didemnum species resulted in the isolation and identification of three new compounds, didemnosides [...] Read more.
Marine tunicates are a very attractive and abundant source of secondary metabolites with chemical diversity and biological activity. Fractionation and purification of the organic extract of the Red Sea tunicate Didemnum species resulted in the isolation and identification of three new compounds, didemnosides A and B (1 and 2) and 1,1′,3,3′-bisuracil (3), together with thymidine (4), 2′-deoxyuridine (5), homarine (6), and acetamide (7). Planar structures of the compounds were explained through analyses of their 1D (1H and 13C) and 2D (1H–1H COSY, HSQC, and HMBC) NMR spectra and high-resolution mass spectral determinations. Compound 1 exhibited the highest growth inhibition toward the MCF-7 cancer cell line with IC50 values of 0.597 μM, while other compounds were inactive (≥50 μM) against this cell line. On the other hand, compounds 1, 2, and 47 moderately inhibited SW-1222 and PC-3 cells with IC50 values ranging between 5.25 and 9.36 μM. Molecular docking analyses of the top three active compounds on each tested cell line exposed stable interactions into the active pockets of estrogen receptor alpha (ESR1), human topoisomerase II alpha (TOP2A), and cyclin-dependent kinase 5 (CDK5) which are contemplated as essential targets in cancer treatments. Thus, compound 1 represents a scaffold for the development of more effective anticancer drugs. Full article
Show Figures

Figure 1

Back to TopTop