Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 2-carboxyethylphenylphosphinic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5527 KB  
Article
The Biological Impact of Some Phosphonic and Phosphinic Acid Derivatives on Human Osteosarcoma
by Zakzak Khaled, Gheorghe Ilia, Claudia Watz, Ioana Macașoi, George Drăghici, Vasile Simulescu, Petru Eugen Merghes, Narcis Ion Varan, Cristina Adriana Dehelean, Lavinia Vlaia and Laurențiu Sima
Curr. Issues Mol. Biol. 2024, 46(5), 4815-4831; https://doi.org/10.3390/cimb46050290 - 15 May 2024
Cited by 5 | Viewed by 1965
Abstract
Osteosarcoma malignancy currently represents a major health problem; therefore, the need for new therapy approaches is of great interest. In this regard, the current study aims to evaluate the anti-neoplastic potential of a newly developed phosphinic acid derivative (2-carboxyethylphenylphosphinic acid) and, subsequently, to [...] Read more.
Osteosarcoma malignancy currently represents a major health problem; therefore, the need for new therapy approaches is of great interest. In this regard, the current study aims to evaluate the anti-neoplastic potential of a newly developed phosphinic acid derivative (2-carboxyethylphenylphosphinic acid) and, subsequently, to outline its pharmaco-toxicological profile by employing two different in vitro human cell cultures (keratinocytes—HaCaT—and osteosarcoma SAOS-2 cells), employing different techniques (MTT assay, cell morphology assessment, LDH assay, Hoechst staining and RT-PCR). Additionally, the results obtained are compared with three commercially available phosphorus-containing compounds (P1, P2, P3). The results recorded for the newly developed compound (P4) revealed good biocompatibility (cell viability of 77%) when concentrations up to 5 mM were used on HaCaT cells for 24 h. Also, the HaCaT cultures showed no significant morphological alterations or gene modulation, thus achieving a biosafety profile even superior to some of the commercial products tested herein. Moreover, in terms of anti-osteosarcoma activity, 2-carboxyethylphenylphosphinic acid expressed promising activity on SAOS-2 monolayers, the cells showing viability of only 55%, as well as apoptosis features and important gene expression modulation, especially Bid downregulation. Therefore, the newly developed compound should be considered a promising candidate for further in vitro and in vivo research related to osteosarcoma therapy. Full article
Show Figures

Figure 1

16 pages, 3070 KB  
Article
Hybrid Coordination Networks for Removal of Pollutants from Wastewater
by Marko Marganovici, Bianca Maranescu, Aurelia Visa, Lavinia Lupa, Iosif Hulka, Vlad Chiriac and Gheorghe Ilia
Int. J. Mol. Sci. 2022, 23(20), 12611; https://doi.org/10.3390/ijms232012611 - 20 Oct 2022
Cited by 1 | Viewed by 2153
Abstract
The adsorption properties of two coordination polymers, resulting from the reaction of divalent metal (Ca2+ or Co2+) salts with (2-carboxyethyl)(phenyl)phosphinic acid, are presented in this paper. The structural and textural characterization before and after adsorption experiments is presented. The adsorbent [...] Read more.
The adsorption properties of two coordination polymers, resulting from the reaction of divalent metal (Ca2+ or Co2+) salts with (2-carboxyethyl)(phenyl)phosphinic acid, are presented in this paper. The structural and textural characterization before and after adsorption experiments is presented. The adsorbent materials were prepared using the hydrothermal procedure. The compound Ca[O2P(CH2CH2COOH)(C6H5)]2 (CaCEPPA) has a layered topology, with the phenyl groups oriented into the interlayer space and crystallizes in the monoclinic system. Compound Co2[(O2P(CH2CH2COO)(C6H5)(H2O)]2·2H2O (CoCEPPA) has a 1D structure composed of zig-zag chains. The adsorption performances of CaCEPPA and CoCEPPA materials were tested in the removal of cadmium and lead from aqueous solutions. The optimum pH of ions adsorption was found to be five for both adsorbent materials. Pseudo-first and second-order kinetic models were used for fitting kinetic experimental data, and Langmuir and Freundlich isotherms were used for modeling the equilibrium experimental data. The pseudo-second-order kinetic model and Langmuir isotherm best described the adsorption of Cd and Pb ions onto the studied materials, judging from the results of the error function (correlation coefficient, sum of square error, chi-square test, and average relative error) analysis. The studied materials present a higher affinity for Cd ions compared with the adsorption capacity developed for the removal of Pb ions from aqueous solutions. CoCEPPA showed the highest adsorption performance in the removal process of metal ions from aqueous solutions compared with CaCEPPA (qm = 54.9 mg Cd2+/g of CoCEPPA, qm = 36.5 mg Cd2+/g of CaCEPPA). Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

Back to TopTop