Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = 2D/2D heterojunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 7098 KB  
Review
Recent Advances in Optoelectronic Synaptic Devices for Neuromorphic Computing
by Heeseong Jang, Seohyeon Ju, Seeun Lee, Jaewoo Choi, Ungbin Byun, Kyeongjun Min, Maria Rasheed and Sungjun Kim
Biomimetics 2025, 10(9), 584; https://doi.org/10.3390/biomimetics10090584 - 3 Sep 2025
Viewed by 461
Abstract
We explore recent advancements in optoelectronic synaptic devices across four key aspects: mechanisms, materials, synaptic properties, and applications. First, we discuss fundamental working principles, including oxygen vacancy ionization, defect trapping, and heterojunction-based charge modulation, which contribute to synaptic plasticity. Next, we examine the [...] Read more.
We explore recent advancements in optoelectronic synaptic devices across four key aspects: mechanisms, materials, synaptic properties, and applications. First, we discuss fundamental working principles, including oxygen vacancy ionization, defect trapping, and heterojunction-based charge modulation, which contribute to synaptic plasticity. Next, we examine the role of 0D, 1D, and 2D materials in optimizing device performance, focusing on their unique electronic, optical, and mechanical properties. We then analyze synaptic properties such as excitatory post-synaptic current (EPSC), visual adaptation, transition from short-term to long-term plasticity (STP to LTP), nociceptor-inspired responses, and associative learning mechanisms. Finally, we highlight real-world applications, including artificial vision systems, reservoir computing for temporal data processing, adaptive neuromorphic computing for exoplanet detection, and colored image recognition. By consolidating recent developments, this paper provides insights into the potential of optoelectronic synaptic devices for next-generation computing architectures, bridging the gap between optics and neuromorphic engineering. Full article
(This article belongs to the Special Issue Bio-Inspired Machine Learning and Evolutionary Computing)
Show Figures

Figure 1

11 pages, 1787 KB  
Article
Multi-Step Spin-Coating with In Situ Crystallization for Growing 2D/3D Perovskite Films
by Meihong Liu, Yafeng Hao, Fupeng Ma, Pu Zhu, Huijia Wu, Ziwei Li, Wenyu Niu, Yujie Huang, Guitian Huangfu, Junye Li, Fengchao Li, Jiangang Yu, Longlong Zhang, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(9), 774; https://doi.org/10.3390/cryst15090774 - 29 Aug 2025
Viewed by 337
Abstract
Developing perovskite solar cells (PSCs) with both high performance and long-term stability remains a critical challenge and research focus in the field of photovoltaic devices. Herein, we report a multi-step spin-coating strategy for high-efficiency 2D/3D perovskite heterojunction solar cells by sequentially depositing low-concentration [...] Read more.
Developing perovskite solar cells (PSCs) with both high performance and long-term stability remains a critical challenge and research focus in the field of photovoltaic devices. Herein, we report a multi-step spin-coating strategy for high-efficiency 2D/3D perovskite heterojunction solar cells by sequentially depositing low-concentration 3-pyridine methylamine iodine solutions onto 3D perovskite films. This approach enables controlled Ostwald ripening and forms graded 2D/3D heterointerfaces rather than insulating capping layers, yielding a champion device with a PCE of 22.7%, significantly outperforming conventional 2D/3D planar counterparts. The optimized structure exhibits enhanced carrier extraction, suppressed recombination, and exceptional humidity stability; the hydrophobic structure further enabled >85% initial efficiency retention after 800 h at 45% relative humidity (RH) for target devices. This study establishes a novel research paradigm for developing high-performance and stable 2D/3D perovskite solar cells through gradient dimensionality engineering. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

12 pages, 3494 KB  
Proceeding Paper
A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation
by Serap Yigit Gezgin, Yasemin Gundogdu Kabakci and Hamdi Sukur Kilic
Eng. Proc. 2025, 104(1), 36; https://doi.org/10.3390/engproc2025104036 - 25 Aug 2025
Viewed by 202
Abstract
CZTS (C-I/C-II) ultrathin films in 61 nm and 313 nm thicknesses were grown on microscopic glass and n-Si wafer substrates via laser ablation, respectively. C-II ultrathin film with higher thickness has a more developed crystal structure and consists of larger particles compared to [...] Read more.
CZTS (C-I/C-II) ultrathin films in 61 nm and 313 nm thicknesses were grown on microscopic glass and n-Si wafer substrates via laser ablation, respectively. C-II ultrathin film with higher thickness has a more developed crystal structure and consists of larger particles compared to C-I ultrathin film with reduced thickness. C-II ultrathin film absorbs more photons and has a lower band gap. The photovoltaic performance of the produced Ag/CZTS (C-II)/n-Si/Al solar cell is higher compared to the other solar cell-based C-I ultrathin film. The more improved crystal structure of C-II ultrathin film has increased the efficiency of the solar cell. The calculated photovoltaic parameters of the solar cells modeled with the SCAPS-1D simulation program were found to be compatible with the experimental parameters. This situation has proven that the operating performance of solar cells is reliable. Full article
Show Figures

Figure 1

16 pages, 3710 KB  
Article
Janus Ga2SSe-Based van der Waals Heterojunctions as a Class of Promising Candidates for Photocatalytic Water Splitting: A DFT Investigation
by Fan Yang, Marie-Christine Record and Pascal Boulet
Crystals 2025, 15(8), 728; https://doi.org/10.3390/cryst15080728 - 16 Aug 2025
Viewed by 465
Abstract
Addressing global energy and environmental issues calls for the development of effective photocatalysts capable of enabling solar-driven water splitting, a key route toward sustainable hydrogen generation. In this work, we conducted a detailed density functional theory (DFT) study on three bilayer van der [...] Read more.
Addressing global energy and environmental issues calls for the development of effective photocatalysts capable of enabling solar-driven water splitting, a key route toward sustainable hydrogen generation. In this work, we conducted a detailed density functional theory (DFT) study on three bilayer van der Waals (vdW) heterojunctions, Ga2SSe/GaP, Ga2SSe/PtSSe, and Ga2SSe/SnSSe, each explored in four distinct stacking configurations, with Ga2SSe serving as the base monolayer. We assessed their structural stability, electronic properties, and optical responses to determine their suitability for photocatalytic water splitting. The analysis showed that Ga2SSe/GaP and Ga2SSe/SnSSe exhibit type-II band alignment, while Ga2SSe/PtSSe displays a type-I alignment. Electrostatic potential profiles and Bader charge calculations identified SeGa2S/SSnSe and SeGa2S/SeSnS as direct Z-scheme systems, offering efficient charge carrier separation and robust redox potential. For effective water splitting, the band edges must straddle the water redox potentials. Our results indicate that configurations A and B in Ga2SSe/GaP, along with C and D in Ga2SSe/SnSSe, fulfill this requirement. These four configurations also exhibit strong absorption in both the visible and ultraviolet spectral ranges. Notably, configurations C and D of Ga2SSe/SnSSe achieve high solar-to-hydrogen (STH) efficiencies, reaching 38.44% and 21.75%, respectively. Overall, our findings suggest that these direct Z-scheme heterostructures are promising candidates for water splitting photocatalysis. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

12 pages, 2884 KB  
Article
High-Detectivity Organic Photodetector with InP Quantum Dots in PTB7-Th:PC71BM Ternary Bulk Heterojunction
by Eunki Baek, Sung-Yoon Joe, Hyunbum Kang, Chanho Jeong, Hyunjong Lee, Insung Choi, Sohee Kim, Sangjun Park, Dongwook Kim, Jaehoon Park, Jae-Hyeon Ko, Gae Hwang Lee and Youngjun Yun
Polymers 2025, 17(16), 2214; https://doi.org/10.3390/polym17162214 - 13 Aug 2025
Viewed by 714
Abstract
Organic photodetectors (OPDs) offer considerable promise for low-power, solution-processable biosensing and imaging applications; however, their performance remains limited by spectral mismatch and interfacial trap states. In this study, a highly sensitive polymer photodiode was developed via trace incorporation (0.8 wt%) of InP/ZnSe/ZnS quantum [...] Read more.
Organic photodetectors (OPDs) offer considerable promise for low-power, solution-processable biosensing and imaging applications; however, their performance remains limited by spectral mismatch and interfacial trap states. In this study, a highly sensitive polymer photodiode was developed via trace incorporation (0.8 wt%) of InP/ZnSe/ZnS quantum dots (QDs) into a PTB7-Th:PC71BM bulk heterojunction (BHJ) matrix. This QD doping approach enhanced the external quantum efficiency (EQE) across the 540–660 nm range and suppressed the dark current density at −2 V by passivating interface trap states. Despite a slight decrease in optical absorption at the optimized composition, the internal quantum efficiency (IQE) increased significantly from ~80% to nearly 95% resulting in a net EQE improvement. This suggests that QD incorporation improved charge transport without compromising charge separation efficiency. As a result, the device achieved a specific detectivity (D*) of 1.8 × 1013 Jones, representing a 93% improvement over binary BHJs, along with an ultra-low dark current density of 7.76 × 10−10 A/cm2. Excessive QD loading, however, led to optical losses and increased dark current, underscoring the need for precise compositional control. Furthermore, the enhanced detectivity led to a 4 dB improvement in the signal-to-noise ratio (SNR) of photoplethysmography (PPG) signals in the target wavelength range, enabling more reliable biophotonic sensing without increased power consumption. This work demonstrates that QD-based spectral and interfacial engineering offers an effective and scalable route for advancing the performance of OPDs, with broad applicability to low-power biosensors and high-resolution polymer–QD imaging systems. Full article
(This article belongs to the Special Issue Polymer Semiconductors for Flexible Electronics)
Show Figures

Figure 1

13 pages, 6309 KB  
Article
Reusable Three-Dimensional TiO2@MoS2 Core–Shell Photoreduction Material: Designed for High-Performance Seawater Uranium Extraction
by Chen Xie, Tianyi Zhao, Feng Zhou and Bohao Zhao
Catalysts 2025, 15(8), 769; https://doi.org/10.3390/catal15080769 - 13 Aug 2025
Viewed by 627
Abstract
Photocatalysis offers a cost-effective and eco-friendly approach for environmental remediation, yet traditional powdered photocatalysts suffer from poor recyclability and separation challenges. To address these limitations, we developed a recyclable carbon fiber-supported composite photocatalyst (CC/TiO2 NRs@MoS2 NPs) featuring a three-dimensional hierarchical core–shell [...] Read more.
Photocatalysis offers a cost-effective and eco-friendly approach for environmental remediation, yet traditional powdered photocatalysts suffer from poor recyclability and separation challenges. To address these limitations, we developed a recyclable carbon fiber-supported composite photocatalyst (CC/TiO2 NRs@MoS2 NPs) featuring a three-dimensional hierarchical core–shell architecture. This structure comprises a TiO2 seed layer, vertically aligned TiO2 nanorod arrays as the core, and a MoS2 nanoparticle shell, fabricated via sequential deposition. Under simulated solar irradiation, the TiO2@MoS2 heterojunction exhibited significantly enhanced uranium adsorption capacity, achieving a remarkable 97.3% photocatalytic removal efficiency within 2 h. At an initial uranium concentration of 200 ppm, the material demonstrated an exceptional extraction capacity of 976.7 mg g−1, outperforming most reported photocatalysts. These findings highlight the potential of this 3D core–shell design for efficient uranium recovery and environmental purification applications. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

20 pages, 10780 KB  
Article
Enhanced Photo-Fenton Removal of Oxytetracycline Hydrochloride via BP/Bi2MoO6 Z-Scheme Heterojunction Photocatalyst
by Jian Feng, Xiaohui Li, Xia Ran, Li Wang, Bo Xiao, Rong Li and Guangwei Feng
Int. J. Mol. Sci. 2025, 26(16), 7751; https://doi.org/10.3390/ijms26167751 - 11 Aug 2025
Viewed by 337
Abstract
Fenton oxidation technology utilizing hydrogen peroxide is recognized as an effective method for producing reactive oxygen species (ROS) to facilitate the degradation of antibiotics. However, the requirement for strongly acidic conditions during this process significantly restricts its broader applicability. In this study, we [...] Read more.
Fenton oxidation technology utilizing hydrogen peroxide is recognized as an effective method for producing reactive oxygen species (ROS) to facilitate the degradation of antibiotics. However, the requirement for strongly acidic conditions during this process significantly restricts its broader applicability. In this study, we synthesized black phosphorus (BP) nanosheets by exposing the {010} crystal planes and then constructed a 0D/2D BP/Bi2MoO6 (PBMO) heterojunction to function as a Fenton catalyst. The PBMO-75 heterojunction exhibited a remarkable increase in photo-Fenton catalytic activity towards oxytetracycline (OTC) under neutral conditions, achieving catalytic efficiencies that were 20 and 8 times greater than those of BP and Bi2MoO6 (BMO), respectively. This can be attributed to its strong absorption of visible light, the establishment of an internal electric field (IEF) at the interface, and the implementation of a Z-scheme catalytic mechanism. Additionally, the photo-Fenton system was further improved in OTC degradation through the continuous conversion of Mo6+/Mo5+ under visible light irradiation in conjunction with H2O2. Based on ERS, XPS, and active species trapping experiments, we propose a Z-scheme charge transfer mechanism for PBMO. This research offers compelling evidence that 0D/2D Z-scheme heterojunctions are promising candidates for the photo-Fenton treatment of antibiotic contaminants. Full article
(This article belongs to the Special Issue Latest Research in Photocatalysis)
Show Figures

Figure 1

16 pages, 23912 KB  
Article
First-Principles Study on the Modulation of Schottky Barrier in Graphene/Janus MoSSe Heterojunctions by Interface Contact and Electric Field Effects
by Zhe Zhang, Jiahui Li, Xiaopei Xu and Guodong Shi
Nanomaterials 2025, 15(15), 1174; https://doi.org/10.3390/nano15151174 - 30 Jul 2025
Viewed by 429
Abstract
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by [...] Read more.
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by the contact of different atom planes of Janus MoSSe (JMoSSe) and graphene (Gr), and regulate the Schottky barrier of the Gr/JMoSSe heterojunction by the number of layers and the electric field. Due to the difference in atomic electronegativity and surface work function (WF), the Gr/JSMoSe heterojunction formed by the contact of S atoms with Gr exhibits an n-type Schottky barrier, whereas the Gr/JSeMoS heterojunction formed by the contact of the Se atoms with Gr reveals a p-type Schottky barrier. Increasing the number of layers of JMoSSe allows the Gr/JMoSSe heterojunction to achieve the transition from Schottky contact to Ohmic contact. Moreover, under the control of an external electric field, the Gr/JMoSSe heterojunction can realize the transition among n-type Schottky barrier, p-type Schottky barrier, and Ohmic contact. The physical mechanism of the layer number and electric field modulation effect is analyzed in detail by the change in the interface electron charge transfer. Our results will contribute to the design and application of nanoelectronics and optoelectronic devices based on Gr/JMoSSe heterojunctions in the future. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

16 pages, 2707 KB  
Article
Ultrasound-Activated BiOI/Ti3C2 Heterojunctions in 3D-Printed Piezocatalytic Antibacterial Scaffolds for Infected Bone Defects
by Juntao Xie, Zihao Zhang, Zhiheng Yu, Bingxin Sun, Yingxin Yang, Guoyong Wang and Cijun Shuai
Materials 2025, 18(15), 3533; https://doi.org/10.3390/ma18153533 - 28 Jul 2025
Viewed by 445
Abstract
Piezocatalytic therapy (PCT) is a promising strategy for combating implant-associated infections due to its high tissue penetration depth and non-invasive nature. However, its catalytic efficiency remains limited by inefficient electron–hole separation. In this work, an ultrasound-responsive heterojunction (BiOI/Ti3C2) was [...] Read more.
Piezocatalytic therapy (PCT) is a promising strategy for combating implant-associated infections due to its high tissue penetration depth and non-invasive nature. However, its catalytic efficiency remains limited by inefficient electron–hole separation. In this work, an ultrasound-responsive heterojunction (BiOI/Ti3C2) was fabricated through in situ growth of bismuth iodide oxide on titanium carbide nanosheets. Subsequently, we integrated BiOI/Ti3C2 into poly(e-caprolactone) (PCL) scaffolds using selective laser sintering. The synergistic effect between BiOI and Ti3C2 significantly facilitated the redistribution of piezo-induced charges under ultrasound irradiation, effectively suppressing electron–hole recombination. Furthermore, abundant oxygen vacancies in BiOI/Ti3C2 provide more active sites for piezocatalytic reactions. Therefore, it enables ultrahigh reactive oxygen species (ROS) yields under ultrasound irradiation, achieving eradication rates of 98.87% for Escherichia coli (E. coli) and 98.51% for Staphylococcus aureus (S. aureus) within 10 minutes while maintaining cytocompatibility for potential tissue integration. This study provides a novel strategy for the utilization of ultrasound-responsive heterojunctions in efficient PCT therapy and bone regeneration. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

20 pages, 7725 KB  
Article
Harmonic Distortion Peculiarities of High-Frequency SiGe HBT Power Cells for Radar Front End and Wireless Communication
by Paulius Sakalas and Anindya Mukherjee
Electronics 2025, 14(15), 2984; https://doi.org/10.3390/electronics14152984 - 26 Jul 2025
Viewed by 413
Abstract
High-frequency (h. f.) harmonic distortion (HD) of advanced SiGe heterojunction bipolar transistor (HBT)-based power cells (PwCs), featuring optimized metallization interconnections between individual HBTs, was investigated. Single tone input power (Pin) excitations at 1, 2, 5, and 10 GHz frequencies were [...] Read more.
High-frequency (h. f.) harmonic distortion (HD) of advanced SiGe heterojunction bipolar transistor (HBT)-based power cells (PwCs), featuring optimized metallization interconnections between individual HBTs, was investigated. Single tone input power (Pin) excitations at 1, 2, 5, and 10 GHz frequencies were employed. The output power (Pout) of the fundamental tone and its harmonics were analyzed in both the frequency and time domains. A rapid increase in the third harmonic of Pout was observed at input powers exceeding −8 dBm for a fundamental frequency of 10 GHz in two different PwC technologies. This increase in the third harmonic was analyzed in terms of nonlinear current waveforms, the nonlinearity of the HBT p-n junction diffusion capacitances, substrate current behavior versus Pin, and avalanche multiplication current. To assess the RF power performance of the PwCs, scalar and vectorial load-pull (LP) measurements were conducted and analyzed. Under matched conditions, the SiGe PwCs demonstrated good linearity, particularly at high frequencies. The key power performance of the PwCs was measured and simulated as follows: input power 1 dB compression point (Pin_1dB) of −3 dBm, transducer power gain (GT) of 15 dB, and power added efficiency (PAE) of 50% at 30 GHz. All measured data were corroborated with simulations using the compact model HiCuM L2. Full article
Show Figures

Figure 1

11 pages, 3627 KB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Viewed by 389
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

17 pages, 2381 KB  
Review
From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions
by Mengjiao Wu, Xiaoling Lei and Haiping Fang
Solids 2025, 6(3), 38; https://doi.org/10.3390/solids6030038 - 15 Jul 2025
Viewed by 625
Abstract
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those [...] Read more.
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those of conventional three-dimensional crystals. This unconventional crystallization is attributed to the cation–π interaction between ions and the π-conjugated system of the graphene surface. Consequently, their physical and chemical properties—including their electrical, optical, magnetic, and mechanical characteristics—often differ markedly from those of conventional crystals. This review summarizes the recent progress made in the fabrication and analysis of the structures, distinctive features, and applications of these 2D unconventional stoichiometry crystals on graphene surfaces in ambient conditions. Their special properties, including their piezoelectricity, metallicity, heterojunction, and room-temperature ferromagnetism, are given particularly close attention. Finally, some significant prospects and further developments in this exciting interdisciplinary field are proposed. Full article
Show Figures

Figure 1

14 pages, 26034 KB  
Article
High-Performance Self-Powered Broadband Photodetectors Based on a Bi2Se3 Topological Insulator/ReSe2 Heterojunction for Signal Transmission
by Yun Wei, Peng Wan, Lijian Li, Tao He, Wanyu Ma, Tong Xu, Bingwang Yang, Shulin Sha, Caixia Kan and Mingming Jiang
Photonics 2025, 12(7), 709; https://doi.org/10.3390/photonics12070709 - 14 Jul 2025
Viewed by 293
Abstract
Topological insulators (TIs) hold considerable promise for the advancement of optoelectronic technologies, including spectroscopy, imaging, and communication, owing to their remarkable optical and electrical characteristics. This study proposes a novel combination of Bi2Se3 TIs and ReSe2 [...] Read more.
Topological insulators (TIs) hold considerable promise for the advancement of optoelectronic technologies, including spectroscopy, imaging, and communication, owing to their remarkable optical and electrical characteristics. This study proposes a novel combination of Bi2Se3 TIs and ReSe2 for self-powered broadband photodetectors with high sensitivity and fast response time. The Bi2Se3/ReSe2 heterojunction photodetector achieves broadband response spectra ranging for 375 nm to 1 μm. It demonstrates a significant responsivity of 64 mA/W at a wavelength of 600 nm (1 mW/cm2), exhibits a rapid response speed of 345 μs rise/336 μs fall time, and has a 3 dB bandwidth of 1.4 kHz under zero-bias conditions. The high performance can be attributed to the suitable energy band structure of Bi2Se3/ReSe2 and high carrier mobility in surface states of Bi2Se3. Excitingly, self-powered TIs photodetectors allow for high-quality signal transmission. The TIs employed in photodetectors can stimulate the production of new optoelectronic features, but they could also be used for highly integrated photonic circuits in the future. Full article
(This article belongs to the Special Issue New Perspectives in Photodetectors)
Show Figures

Figure 1

11 pages, 1373 KB  
Article
High-Performance Multilevel and Ambipolar Nonvolatile Organic Transistor Memory Using Small-Molecule SFDBAO and PS as Charge Trapping Elements
by Lingzhi Jin, Wenjuan Xu, Yangzhou Qian, Tao Ji, Kefan Wu, Liang Huang, Feng Chen, Nanchang Huang, Shu Xing, Zhen Shao, Wen Li, Yuyu Liu and Linghai Xie
Nanomaterials 2025, 15(14), 1072; https://doi.org/10.3390/nano15141072 - 10 Jul 2025
Viewed by 393
Abstract
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration [...] Read more.
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration and a donor–acceptor (D-A) structure as a molecular-scale charge storage element demonstrated significantly higher charge trapping ability than other small-molecule materials such as C60 and Alq3. The ONVM based on 10% SFDBAO/PS presents ambipolar memory behaviors with a wide memory window (146 V), a fast-switching speed (20 ms), an excellent retention time (over 5 × 104 s), and stable reversibility (36 cycles without any noticeable decay). By applying different gate voltages, the above ONVM shows reliable four-level data storage characteristics. The investigation demonstrates that the strategical bulk-heterojunction-like tunneling and trapping elements composed of small-molecule materials and polymers exhibit promising potential for high-performance ambipolar ONVMs. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 3952 KB  
Article
Rationally Designed 2D CZIS/2D Ti3CNTx Heterojunctions for Photocatalytic Hydrogen Evolution Reaction
by Peize Li, Zhiying Wang and Xiaofei Yang
Catalysts 2025, 15(7), 632; https://doi.org/10.3390/catal15070632 - 27 Jun 2025
Viewed by 555
Abstract
Highly efficient photocatalysts for solar energy conversion require effective charge carrier separation and rapid interfacial transport kinetics to maximize electron availability. Two-dimensional Ti3CNTx, a novel conductive material in the MXene family with exceptional electrical conductivity, has emerged as an [...] Read more.
Highly efficient photocatalysts for solar energy conversion require effective charge carrier separation and rapid interfacial transport kinetics to maximize electron availability. Two-dimensional Ti3CNTx, a novel conductive material in the MXene family with exceptional electrical conductivity, has emerged as an ideal electron transfer mediator due to its large specific surface area and abundant active terminal groups. In this work, we strategically integrated the 2D multi-metal sulfide Cu-Zn-In-S (CZIS) with 2D Ti3CNTx nanosheets through physical mixture, constructing a heterostructured 2D/2D CZIS/Ti3CNTx composite photocatalyst for the hydrogen evolution reaction. The unique architecture significantly accelerates electron migration from CZIS to Ti3CNTx, while synergistically promoting the spatial separation and directional transfer of photogenerated electron–hole pairs (e/h+). When the hydrogen evolution reaction is carried out under identical conditions, the hydrogen yield rate is 4.3 mmol g−1 h−1 with pristine CZIS but is improved dramatically to 14.3 mmol g−1 h−1 when the composite containing an adequate amount of 2D Ti3CNTx is used. This study offers new insight into the rational design and controllable synthesis of Ti3CNTx-based composite photocatalytic systems for efficient photocatalytic hydrogen production. Full article
Show Figures

Graphical abstract

Back to TopTop