Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (148,471)

Search Parameters:
Keywords = 3D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 938 KB  
Short Note
N-[(2H-1,3-benzodioxol-5-yl)methyl]-2-(2,2,2-trichloroacetamido)benzamide
by Plamen Penchev and Dimitar Stoitsov
Molbank 2025, 2025(3), M2052; https://doi.org/10.3390/M2052 (registering DOI) - 25 Aug 2025
Abstract
The structure of N-[(2H-1,3-benzodioxol-5-yl)methyl]-2-(2,2,2-trichloroacetamido)benzamide was verified by using a combination of 1D and 2D NMR techniques. Fully assigned data from 1D NMR (1H, 13C and DEPT 135) and 2D NMR (COSY, HMQC, HMBC) spectra was presented for [...] Read more.
The structure of N-[(2H-1,3-benzodioxol-5-yl)methyl]-2-(2,2,2-trichloroacetamido)benzamide was verified by using a combination of 1D and 2D NMR techniques. Fully assigned data from 1D NMR (1H, 13C and DEPT 135) and 2D NMR (COSY, HMQC, HMBC) spectra was presented for the compound. The 1H NMR spectrum of the ABX spin system in the benzodioxol moiety was simulated to predict the corresponding nJHH coupling constants. The spectral assignments for the structure were supported by interpretive library search and HOSE predictions. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

12 pages, 408 KB  
Article
Effects of Different Thermo-Hygrometric Conditions on Ecological Interactions Between the Warehouse Pirate Bug, Xylocoris flavipes (Hemiptera: Anthocoridae), and Its Prey, Liposcelis decolor (Psocodea: Liposcelididae)
by Augustine Bosomtwe, George Opit, Brad Kard, Kristopher Giles and Carla Goad
Insects 2025, 16(9), 888; https://doi.org/10.3390/insects16090888 (registering DOI) - 25 Aug 2025
Abstract
Physical conditions in grain storage environments influence trophic interactions between predators and their prey and can affect the effectiveness of biocontrol agents. The study aimed to assess the potential of Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae), to manage Liposcelis decolor (Pearman) (Psocodea: Liposcelididae). Liposcelis [...] Read more.
Physical conditions in grain storage environments influence trophic interactions between predators and their prey and can affect the effectiveness of biocontrol agents. The study aimed to assess the potential of Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae), to manage Liposcelis decolor (Pearman) (Psocodea: Liposcelididae). Liposcelis decolor population suppression and X. flavipes progeny production were assessed at five predator–prey (P-P) ratios (0:240, 1:240, 2:240, 3:240, and 5:240), four temperatures (20, 24, 28, and 32 °C), and three relative humidities (RH) (63, 75, and 85%) over 40 days at 0:24 (L:D) photoperiod in the laboratory. Compared with the Control P-P ratio of 0:240 (no predators), prey suppression >97% was achieved across all predator release ratios. At 32 °C and 75% RH, which are the optimal conditions for L. decolor, 3985.13 ± 255.45 prey survived in the Control P-P ratio compared with 19.85 ± 2.47–115.73 ± 8.99 found for the four P-P ratios with the predator, representing prey reduction of 97.10–99.50%. Temperature influenced X. flavipes progeny production, which was greatest at 28 °C and a P-P ratio of 1:240. Suppression caused by X. flavipes demonstrates its potential as a biological control agent to manage psocid infestations in stored commodities. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
23 pages, 3736 KB  
Article
Accelerating Thermally Safe Operating Area Assessment of Ignition Coils for Hydrogen Engines via AI-Driven Power Loss Estimation
by Federico Ricci, Mario Picerno, Massimiliano Avana, Stefano Papi, Federico Tardini and Massimo Dal Re
Vehicles 2025, 7(3), 90; https://doi.org/10.3390/vehicles7030090 (registering DOI) - 25 Aug 2025
Abstract
In order to determine thermally safe driving parameters of ignition coils for hydrogen internal combustion engines (ICE), a reliable estimation of internal power losses is essential. These losses include resistive winding losses, magnetic core losses due to hysteresis and eddy currents, dielectric losses [...] Read more.
In order to determine thermally safe driving parameters of ignition coils for hydrogen internal combustion engines (ICE), a reliable estimation of internal power losses is essential. These losses include resistive winding losses, magnetic core losses due to hysteresis and eddy currents, dielectric losses in the insulation, and electronic switching losses. Direct experimental assessment is difficult because the components are inaccessible, while conventional computer-aided engineering (CAE) approaches face challenges such as the need for accurate input data, the need for detailed 3D models, long computation times, and uncertainties in loss prediction for complex structures. To address these limitations, we propose an artificial intelligence (AI)-based framework for estimating internal losses from external temperature measurements. The method relies on an artificial neural network (ANN), trained to capture the relationship between external coil temperatures and internal power losses. The trained model is then employed within an optimization process to identify losses corresponding to experimental temperature values. Validation is performed by introducing the identified power losses into a CAE thermal model to compare predicted and experimental temperatures. The results show excellent agreement, with errors below 3% across the −30°C to 125°C range. This demonstrates that the proposed hybrid ANN–CAE approach achieves high accuracy while reducing experimental effort and computational demand. Furthermore, the methodology allows for a straightforward determination of the coil safe operating area (SOA). Starting from estimates derived from fitted linear trends, the SOA limits can be efficiently refined through iterative verification with the CAE model. Overall, the ANN–CAE framework provides a robust and practical tool to accelerate thermal analysis and support coil development for hydrogen ICE applications. Full article
35 pages, 4640 KB  
Article
Electric Strategy: Evolutionary Game Analysis of Pricing Strategies for Battery-Swapping Electric Logistics Vehicles
by Guohao Li and Mengjie Wei
Sustainability 2025, 17(17), 7666; https://doi.org/10.3390/su17177666 (registering DOI) - 25 Aug 2025
Abstract
Driven by the urgent need to decarbonize the logistics sector—where conventional vehicles exhibit high energy consumption and emissions, posing significant environmental sustainability challenges—electrification represents a pivotal strategy for reducing emissions and achieving sustainable urban freight transport. Despite rising global electric vehicle sales, the [...] Read more.
Driven by the urgent need to decarbonize the logistics sector—where conventional vehicles exhibit high energy consumption and emissions, posing significant environmental sustainability challenges—electrification represents a pivotal strategy for reducing emissions and achieving sustainable urban freight transport. Despite rising global electric vehicle sales, the penetration rate of electric logistics vehicles (ELVs) remains comparatively low, impeding progress toward sustainable logistics objectives. Battery-swapping mode (BSM) has emerged as a potential solution to enhance operational efficiency and economic viability, thereby accelerating sustainable adoption. This model improves ELV operational efficiency through rapid battery swaps at centralized stations. This study constructs a tripartite evolutionary game model involving government, consumers, and BSM-ELV manufacturers to analyze market dynamics under diverse strategies. Key considerations include market scale, government environmental benefits, battery leasing/purchasing costs, lifecycle cost analysis (via discount rates), and resource efficiency (reserve battery ratio λ). MATLAB-2021b-based simulations predict participant strategy evolution paths. Findings reveal that market size and manufacturer expectations significantly influence governmental and manufacturing strategies. Crucially, incorporating discount rates demonstrates that battery leasing reduces consumer enterprises’ initial investment, enhancing economic sustainability and cash flow while offering superior total cost of ownership. Furthermore, gradual reduction of government subsidies effectively stimulates market self-regulation, incentivizes leasing adoption, and bolsters long-term economic/operational sustainability. Market feedback can guide policy adjustments toward fiscally sustainable support mechanisms. This study proposes the following management implications for advancing sustainable logistics: 1. Governments should phase out subsidies systematically to foster market resilience; 2. Manufacturers must invest in BSM R&D to improve efficiency and resource circularity; 3. Consumer enterprises can achieve economic benefits and emission reductions by adopting BSM-ELVs. Full article
Show Figures

Figure 1

31 pages, 8190 KB  
Article
Sustainable MnO2/MgO Bimetallic Nanoparticles Capped with Sword Fern Methanol Extract Attain Antioxidant/Anti-Biofilm Potential: A UPLC-ESI/LC/MS and Network Pharmacology-Supported Study
by Esraa A. Elhawary, Raya Soltane, Mohamed H. Moustafa, Amer Morsy Abdelaziz, Mohamed A. Said and Eman Maher Zahran
Pharmaceuticals 2025, 18(9), 1262; https://doi.org/10.3390/ph18091262 (registering DOI) - 25 Aug 2025
Abstract
Background: Nephrolepis exaltata (sword fern) possesses a considerable amount of phytochemicals and different biological activities. The current study investigates the anti-biofilm potential of greenly synthesized bimetallic nanoparticles of Nephrolepis exaltata leaf methanol extract (NEME-MnO2-MgO BNPs). Methods: The NEME was [...] Read more.
Background: Nephrolepis exaltata (sword fern) possesses a considerable amount of phytochemicals and different biological activities. The current study investigates the anti-biofilm potential of greenly synthesized bimetallic nanoparticles of Nephrolepis exaltata leaf methanol extract (NEME-MnO2-MgO BNPs). Methods: The NEME was subjected to UPLC/MS analysis, followed by characterization of its NPs by size, zeta potential, FTIR, entrapment efficiency, and release. Then, antioxidant, antimicrobial and antibiofilm assays were employed, followed by in silico studies. Results: The UPLC/MS analysis of NEME led to the tentative identification of 27 metabolites, mostly phenolics. The MnO2-MgO BNPs presented a uniform size and distribution and exhibited IC50 values of 350 and 215.6 μg/mL, in the DPPH and ABTS assays, respectively. Moreover, the NPs exhibited antimicrobial and anti-biofilm efficacies against Pseudomonas aeruginosa, Klebsiella pneumonia (ATCC-9633), Staphylococcus aureus (ATCC-6538), Escherichia coli, Bacillus cereus, and C. albicans, with MIC values of 250–500 μg/mL. The MnO2-MgO BNPs inhibited Candida albicans biofilms with a % inhibition of 66.83 ± 2.45% at 1/2 MIC. The network pharmacology highlighted epigallocatechin and hyperoside to be the major compounds responsible for the anti-biofilm potential. The ASKCOS facilitated the prediction of the redox transformations that occurred in the green synthesis, while the docking analysis revealed enhanced binding affinities of the oxidized forms of both compounds towards the outer membrane porin OprD of P. aeruginosa, with binding scores of −4.6547 and −5.7701 kcal/mol., respectively. Conclusions: The greenly synthesized Nephrolepis exaltata bimetallic nanoparticles may provide a promising, eco-friendly, and sustainable source for antimicrobial agents of natural origin with potential biofilm inhibition. Full article
Show Figures

Graphical abstract

29 pages, 13368 KB  
Article
Systems Network Integration of Transcriptomic, Proteomic, and Bioinformatic Analyses Reveals the Mechanism of XuanYunNing Tablets in Meniere’s Disease via JAK-STAT Pathway Modulation
by Zhengsen Jin, Chunguo Wang, Yifei Gao, Xiaoyu Tao, Chao Wu, Siyu Guo, Jiaqi Huang, Jiying Zhou, Chuanqi Qiao, Keyan Chai, Hua Chang, Chun Li, Xun Zou and Jiarui Wu
Pharmaceuticals 2025, 18(9), 1266; https://doi.org/10.3390/ph18091266 (registering DOI) - 25 Aug 2025
Abstract
Background: Meniere’s disease (MD) is a rare inner ear disorder characterized by endolymphatic hydrops and symptoms such as vertigo and hearing loss, with no curative treatment currently available. XuanYunNing tablets (XYN) have been clinically used to treat MD, but their molecular mechanisms remain [...] Read more.
Background: Meniere’s disease (MD) is a rare inner ear disorder characterized by endolymphatic hydrops and symptoms such as vertigo and hearing loss, with no curative treatment currently available. XuanYunNing tablets (XYN) have been clinically used to treat MD, but their molecular mechanisms remain unclear. Objective: This study aimed to systematically evaluate the pharmacological effects of XYN in a guinea pig model of MD and to elucidate the underlying molecular mechanisms of both MD pathogenesis and XYN intervention through integrated multi-omics analyses, including transcriptomics, proteomics, and bioinformatics. Methods: A guinea pig model of endolymphatic hydrops was induced by intraperitoneal injection of desmopressin acetate (dDAVP). Pharmacodynamic efficacy was evaluated via behavioral scoring and histopathological analysis. The differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) modulated by XYN treatment were identified using high-throughput transcriptomic and proteomic sequencing. These data were integrated through multi-omics bioinformatic analysis. Key molecular targets and signaling pathways were further validated using RT-qPCR and Western blotting. Results: Pharmacological evaluations showed that guinea pigs in the model group exhibited a 26% increase in endolymphatic hydrops area, while high-dose XYN treatment reduced this area by 19% and significantly improved functional parameters, including overall physiological condition (e.g., weight and general appearance), auricular reflexes to low-, medium-, and high-frequency sound stimuli, nystagmus, and the righting reflex. High-throughput sequencing combined with integrative omics analysis identified 513 potential molecular targets of XYN. Subsequent network and module analyses pinpointed the JAK-STAT signaling pathway as the central axis. Mendelian randomization (MR) analysis further supported a causal relationship between MD and metabolic, immune, and inflammatory traits, reinforcing the central role of JAK-STAT signaling in both MD progression and XYN-mediated intervention. Mechanistic studies confirmed that XYN downregulated IFNG, IFNGR1, JAK1, p-STAT3/STAT3, and AOX at both mRNA and protein levels, thereby inhibiting aberrant JAK-STAT pathway activation in MD model animals. In addition, a total of 125 chemical constituents were identified in XYN by UHPLC-MS analysis. ZBTB20 and other molecules were identified as potential blood-based biomarkers for MD. Conclusions: This study reveals that XYN alleviates MD symptoms by disrupting a pathological cycle driven by JAK-STAT signaling, inflammation, and metabolic dysfunction. These findings support the clinical potential of XYN in the treatment of Meniere’s disease and may inform the development of novel therapeutic strategies. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

23 pages, 933 KB  
Review
Leveraging Multimodal Foundation Models in Biliary Tract Cancer Research
by Yashbir Singh, Jesper B. Andersen, Quincy A. Hathaway, Diana V. Vera-Garcia, Varekan Keishing, Sudhakar K. Venkatesh, Sara Salehi, Davide Povero, Michael B. Wallace, Gregory J. Gores, Yujia Wei, Natally Horvat, Bradley J. Erickson and Emilio Quaia
Tomography 2025, 11(9), 96; https://doi.org/10.3390/tomography11090096 (registering DOI) - 25 Aug 2025
Abstract
This review explores how multimodal foundation models (MFMs) are transforming biliary tract cancer (BTC) research. BTCs are aggressive malignancies with poor prognosis, presenting unique challenges due to difficult diagnostic methods, molecular complexity, and rarity. Importantly, intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), and distal [...] Read more.
This review explores how multimodal foundation models (MFMs) are transforming biliary tract cancer (BTC) research. BTCs are aggressive malignancies with poor prognosis, presenting unique challenges due to difficult diagnostic methods, molecular complexity, and rarity. Importantly, intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), and distal bile duct cholangiocarcinoma (dCCA) represent fundamentally distinct clinical entities, with iCCA presenting as mass-forming lesions amenable to biopsy and targeted therapies, while pCCA manifests as infiltrative bile duct lesions with challenging diagnosis and primarily palliative management approaches. MFMs offer potential to advance research by integrating radiological images, histopathology, multi-omics profiles, and clinical data into unified computational frameworks, with applications tailored to these distinct BTC subtypes. Key applications include enhanced biomarker discovery that identifies previously unrecognizable cross-modal patterns, potential for improving currently limited diagnostic accuracy—though validation in BTC-specific cohorts remains essential—accelerated drug repurposing, and advanced patient stratification for personalized treatment. Despite promising results, challenges such as data scarcity, high computational demands, and clinical workflow integration remain to be addressed. Future research should focus on standardized data protocols, architectural innovations, and prospective validation studies. The integration of artificial intelligence (AI)-based methodologies offers new solutions for these historically challenging malignancies. However, current evidence for BTC-specific applications remains largely theoretical, with most studies limited to proof-of-concept designs or related cancer types. Comprehensive clinical validation studies and prospective trials demonstrating patient benefit are essential prerequisites for clinical implementation. The timeline for evidence-based clinical adoption likely extends 7–10 years, contingent on successful completion of validation studies addressing current evidence gaps. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

15 pages, 616 KB  
Article
A Micro-Computed Tomography Analysis of Void Formation in Apical Plugs Created with Calcium Silicate-Based Materials Using Various Application Techniques in 3D-Printed Simulated Immature Teeth
by Krasimir Hristov and Ralitsa Bogovska-Gigova
Dent. J. 2025, 13(9), 385; https://doi.org/10.3390/dj13090385 (registering DOI) - 25 Aug 2025
Abstract
Background/Objectives: The management of immature teeth with wide apical foramina presents significant challenges in endodontic treatment due to difficulties in achieving a hermetic seal. The aim of this study was to evaluate void formation in apical plugs created using three calcium silicate-based [...] Read more.
Background/Objectives: The management of immature teeth with wide apical foramina presents significant challenges in endodontic treatment due to difficulties in achieving a hermetic seal. The aim of this study was to evaluate void formation in apical plugs created using three calcium silicate-based materials—Biodentine, NuSmile NeoPUTTY, and Well-Root PT—applied with the help of manual, ultrasonic, or rotary file condensation (XP-endo Shaper) in 3D-printed immature teeth. Methods: Micro-computed tomography analysis was used to assess the internal, external, and total void percentage of material volume. The statistical analysis was performed using two-way ANOVA and the post hoc Bonferroni test. Statistical significance was set at p < 0.05. Results: The materials and techniques used individually do not significantly influence the formation of internal voids, but their combination does (F(4, 99) = 2.717, p = 0.034). Both factors and their interaction are significant for external voids (F(4, 99) = 4.169, p = 0.004), and all have a notable effect on total void percentages (F(4, 99) = 3.456, p = 0.012). No significant differences were observed in internal voids across the groups (p > 0.05), ranging from 0.635% to 1.078%. External voids varied significantly, with Well-Root PT and ultrasonic condensation showing the highest values with a significant difference (p < 0.05), while NeoPUTTY and Biodentine with XP-endo Shaper exhibited the lowest. Total voids remained below 4%, with no significant differences among manual condensation groups. Neither material type nor application technique consistently influenced void formation, except for Well-Root PT with ultrasonic condensation. Conclusions: These findings suggest that modern bioceramic materials and application techniques produce comparable, low-void apical plugs, with XP-endo Shaper showing promise for minimizing external voids. The interaction between material and application technique plays a crucial role during the creation of apical plugs. Full article
10 pages, 1107 KB  
Article
Post-Surgical Outcomes of Kidney-Sparing Surgery vs. Radical Nephroureterectomy for Upper-Tract Urothelial Cancer in a Propensity-Weighted Cohort
by Thomas Büttner, Armin Pooyeh, Manuel Ritter and Stefan Hauser
Surgeries 2025, 6(3), 71; https://doi.org/10.3390/surgeries6030071 (registering DOI) - 25 Aug 2025
Abstract
Objectives: In localized upper-tract urothelial carcinoma (UTUC), radical nephroureterectomy (RNU) represents the surgical gold standard, but kidney-sparing surgery (KSS) offers an alternative. The surgical perspective, including complications, remains understudied in this context. This study aimed to compare KSS and RNU, assess kidney function [...] Read more.
Objectives: In localized upper-tract urothelial carcinoma (UTUC), radical nephroureterectomy (RNU) represents the surgical gold standard, but kidney-sparing surgery (KSS) offers an alternative. The surgical perspective, including complications, remains understudied in this context. This study aimed to compare KSS and RNU, assess kidney function and survival, and identify the surgical risk factors. Methods: This retrospective analysis included UTUC patients undergoing KSS (n = 46) or RNU (n = 46) at a single center from 2016 to April 2024, matched by propensity scores. The primary endpoint was Clavien–Dindo complications. Other endpoints included Days Alive and Out of the Hospital within 30 days (DAOH30), changes in the eGFR, cancer-specific survival (CSS), and disease-free survival (DFS). A UTUC Surgery Risk Score was developed to identify the surgical risk factors for severe complications. Results: KSS was significantly associated with higher rates of Clavien–Dindo grades ≥ 3 (KSS: 14; RNU: 3). DAOH30 was significantly longer following RNU. The UTUC Surgery Risk Score, based on a non-endoscopic KSS approach, an ASA score ≥ 3, and preoperative creatinine > 0.9 mg/dL, was significantly associated with overall and severe complications and DAOH30 (both p < 0.001). KSS showed significantly better early postoperative eGFR preservation (+0.55 mL/min vs. −4.3 mL/min for RNU, p = 0.015). No significant differences were observed in the median CSS or DFS between the groups. Conclusions: KSS is associated with a higher rate of certain postoperative complications, but offers superior kidney function preservation, with comparable oncological outcomes to RNU. The novel UTUC Surgery Risk Score can aid in patient counseling and personalized decision-making prior to surgery. Full article
Show Figures

Figure 1

24 pages, 13464 KB  
Article
Study on the Evolution Law of Four-Dimensional Dynamic Stress Fields in Fracturing of Deep Shale Gas Platform Wells
by Yongchao Wu, Zhaopeng Zhu, Yinghao Shen, Xuemeng Yu, Guangyu Liu and Pengyu Liu
Processes 2025, 13(9), 2709; https://doi.org/10.3390/pr13092709 (registering DOI) - 25 Aug 2025
Abstract
Compared with conventional gas reservoirs, deep shale gas reservoirs are characterized by developed faults and fractures, strong heterogeneity, high stress sensitivity, and complex in situ stress distribution. To address traditional 3D static models’ inability to predict in situ stress changes in strongly heterogeneous [...] Read more.
Compared with conventional gas reservoirs, deep shale gas reservoirs are characterized by developed faults and fractures, strong heterogeneity, high stress sensitivity, and complex in situ stress distribution. To address traditional 3D static models’ inability to predict in situ stress changes in strongly heterogeneous reservoirs during fracturing, this study takes the deep shale gas in the Zigong block of the Sichuan Basin as an example. By comprehensively considering the heterogeneity and anisotropy of geomechanical parameters and natural fractures in shale gas reservoirs, a 4D in situ stress multi-physics coupling model for shale gas reservoirs based on geology–engineering integration is established. Through coupling geomechanical parameters with fracturing operation data, the dynamic evolution laws of multi-scale stress fields from single-stage to platform-scale during large-scale fracturing of horizontal wells in deep shale gas reservoirs are systematically studied. The research results show the following: (1) The fracturing process has a significant impact on the magnitude and direction of the stress field. With the injection of fracturing fluid, both the minimum and maximum horizontal principal stresses increase, with the minimum horizontal principal stress rising by 1.8–6.4 MPa and the maximum horizontal principal stress by 1.1–3.2 MPa; near the wellbore, there is an obvious deflection in the direction of in situ stress. (2) As the number of fracturing stages increases, the minimum horizontal principal stress shows an obvious cumulative growth trend, with a more significant increase in the later stages, and there is a phenomenon of stress accumulation along the wellbore, with the stress difference decreasing from 15 MPa to 11 MPa. (3) The on-site adoption of the fracturing operation method featuring overall flush advancement and inter-well staggered fracture placement has achieved good stress balance; comparative analysis shows that the stress communication degree of the 400 m well spacing is weaker than that of the 300 m well spacing. This study provides a more reasonable simulation method for large-scale fracturing development of deep shale gas, which can more accurately predict and evaluate the dynamic stress field changes during fracturing, thereby guiding fracturing operations in actual production. Full article
(This article belongs to the Special Issue Advanced Fracturing Technology for Oil and Gas Reservoir Stimulation)
28 pages, 3865 KB  
Review
Recent Advances and Future Perspectives on Heat and Mass Transfer Mechanisms Enhanced by Preformed Porous Media in Vacuum Freeze-Drying of Agricultural and Food Products
by Xinkang Hu, Bo Zhang, Xintong Du, Huanhuan Zhang, Tianwen Zhu, Shuang Zhang, Xinyi Yang, Zhenpeng Zhang, Tao Yang, Xu Wang and Chundu Wu
Foods 2025, 14(17), 2966; https://doi.org/10.3390/foods14172966 (registering DOI) - 25 Aug 2025
Abstract
Preformed porous media (PPM) technology has emerged as a transformative approach to enhance heat and mass transfer in vacuum freeze-drying (VFD) of agricultural and food products. This review systematically analyzes recent advances in PPM research, with particular focus on spray freeze-drying (SFD) as [...] Read more.
Preformed porous media (PPM) technology has emerged as a transformative approach to enhance heat and mass transfer in vacuum freeze-drying (VFD) of agricultural and food products. This review systematically analyzes recent advances in PPM research, with particular focus on spray freeze-drying (SFD) as the dominant technique for precision pore architecture control. Empirical studies confirm PPM’s efficacy: drying time reductions of 20–50% versus conventional VFD while improving product quality (e.g., 15% higher ginsenoside retention in ginseng, 90% enzyme activity preservation). Key innovations include gradient porous structures and multi-technology coupling strategies that fundamentally alter transfer mechanisms through: resistance mitigation via interconnected macropores (50–500 μm, 40–90% porosity), pseudo-convection effects enabling 30% faster vapor removal, and radiation enhancement boosting absorption by 40–60% and penetration depth 2–3 times. While inherent VFD limitations (e.g., low thermal conductivity) persist, we identify PPM-specific bottlenecks: precision regulation of pore structures (<5% size deviation), scalable fabrication of gradient architectures, synergy mechanisms in multi-field coupling (e.g., microwave-PPM interactions). The most promising advancements include 3D-printed gradient pores for customized transfer paths, intelligent monitoring-feedback systems, and multiscale modeling bridging pore-scale physics to macroscale kinetics. This review provides both a critical assessment of current progress and a forward-looking perspective to guide future research and industrial adoption of PPM-enhanced VFD. Full article
Show Figures

Figure 1

14 pages, 345 KB  
Article
Presleep vs. Daytime Consumption of Casein-Enriched Milk: Effects on Muscle Function and Metabolic Health After Sleeve Gastrectomy
by Nida Yıldız, Halil Coşkun, Mert Tanal, Murat Baş and Duygu Sağlam
Nutrients 2025, 17(17), 2750; https://doi.org/10.3390/nu17172750 (registering DOI) - 25 Aug 2025
Abstract
Background/Objectives: This randomized controlled trial aimed to evaluate the effects of casein-enriched milk (CEM) consumption and its timing (presleep vs. during the day) in the early postoperative period on body composition, muscle strength, physical function, and biochemical parameters in individuals undergoing laparoscopic [...] Read more.
Background/Objectives: This randomized controlled trial aimed to evaluate the effects of casein-enriched milk (CEM) consumption and its timing (presleep vs. during the day) in the early postoperative period on body composition, muscle strength, physical function, and biochemical parameters in individuals undergoing laparoscopic sleeve gastrectomy (SG). Methods: Forty-five adults (60% female, 40% male; mean age 35.1 ± 9.7 years; mean BMI 41.4 ± 4.9 kg/m2) undergoing SG were randomly assigned to three groups: (1) 15 g protein CEM (12 g casein) presleep, (2) the same CEM during the day, or (3) standard-protein diet without supplementation. The primary endpoint was change in fat-free mass (FFM) at 12 weeks; secondary endpoints included handgrip strength, 30 s sit-to-stand test, and serum total protein, albumin, and prealbumin. Assessments were performed preoperatively and at weeks 4, 8, and 12. Results: No significant differences were found between the groups in terms of body composition, muscle strength, or physical performance measurements (p > 0.05). However, a significant increase in handgrip strength was observed over time in Groups 1 and 2 (p < 0.05), which was not observed in Group 3. Prealbumin levels at week 12 were 0.3 ± 0.0 mg/dL in Group 1 and 0.2 ± 0.0 mg/dL in Group 2, both higher than 0.2 ± 0.0 mg/dL in Group 3 (p < 0.05). No significant differences were found in albumin and total protein levels (p > 0.05). Conclusions: Early postoperative CEM consumption following SG did not significantly affect body composition or physical performance; however, the higher prealbumin levels indicate that this marker may be more sensitive in detecting early protein response, highlighting its potential clinical relevance in monitoring nutritional status after bariatric surgery. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

28 pages, 15091 KB  
Article
GPSFlow/Hydrate: A New Numerical Simulator for Modeling Subsurface Multicomponent and Multiphase Flow Behavior of Hydrate-Bearing Geologic Systems
by Bingbo Xu and Keni Zhang
J. Mar. Sci. Eng. 2025, 13(9), 1622; https://doi.org/10.3390/jmse13091622 (registering DOI) - 25 Aug 2025
Abstract
Numerical simulation has played a crucial role in modeling the behavior of natural gas hydrate (NGH). However, the existing numerical simulators worldwide have exhibited limitations in functionality, convergence, and computational efficiency. In this study, we present a novel numerical simulator, GPSFlow/Hydrate, for modeling [...] Read more.
Numerical simulation has played a crucial role in modeling the behavior of natural gas hydrate (NGH). However, the existing numerical simulators worldwide have exhibited limitations in functionality, convergence, and computational efficiency. In this study, we present a novel numerical simulator, GPSFlow/Hydrate, for modeling the behavior of hydrate-bearing geologic systems and for addressing the limitations in the existing simulators. It is capable of simulating multiphase and multicomponent flow in hydrate-bearing subsurface reservoirs under ambient conditions. The simulator incorporates multiple mass components, various phases, as well as heat transfer, and sand is treated as an independent non-Newtonian flow and modeled as a Bingham fluid. The CH4 or binary/ternary gas hydrate dissociation or formation, phase changes, and corresponding thermal effects are fully accounted for, as well as various hydrate formation and dissociation mechanisms, such as depressurization, thermal stimulation, and sand flow behavior. In terms of computation, the simulator utilizes a domain decomposition technology to achieve hybrid parallel computing through the use of distributed memory and shared memory. The verification of the GPSFlow/Hydrate simulator are evaluated through two 1D simulation cases, a sand flow simulation case, and five 3D gas production cases. A comparison of the 1D cases with various numerical simulators demonstrated the reliability of GPSFlow/Hydrate, while its application in modeling the sand flow further highlighted its capability to address the challenges of gas hydrate exploitation and its potential for broader practical use. Several successful 3D gas hydrate reservoir simulation cases, based on parameters from the Shenhu region of the South China Sea, revealed the correlation of initial hydrate saturation and reservoir condition with hydrate decomposition and gas production performance. Furthermore, multithread parallel computing achieved a 2–4-fold increase in efficiency over single-thread approaches, ensuring accurate solutions for complex physical processes and large-scale grids. Overall, the development of GPSFlow/Hydrate constitutes a significant scientific contribution to understanding gas hydrate formation and decomposition mechanisms, as well as to advancing multicomponent flow migration modeling and gas hydrate resource development. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

24 pages, 874 KB  
Article
Synergistic Recovery of Dysprosium(III) from Water via an Emulsion Liquid Membrane at Low Concentrations of Cyanex 272–D2EHPA: Impact of Process Factors and Water Sources
by Ahlem Taamallah and Oualid Hamdaoui
Separations 2025, 12(9), 228; https://doi.org/10.3390/separations12090228 (registering DOI) - 25 Aug 2025
Abstract
This study reports an investigation of the synergistic extraction of dysprosium (Dy(III)) from aqueous media using a low-concentration, binary carrier mixture of Cyanex 272 and D2EHPA within an emulsion liquid membrane (ELM). Within the tested formulations, the one containing 0.42% (w/ [...] Read more.
This study reports an investigation of the synergistic extraction of dysprosium (Dy(III)) from aqueous media using a low-concentration, binary carrier mixture of Cyanex 272 and D2EHPA within an emulsion liquid membrane (ELM). Within the tested formulations, the one containing 0.42% (w/w) Cyanex 272 and 0.28% (w/w) D2EHPA yielded the best results. The impact of process factors that maximize recovery efficiency and minimize emulsion breakdown was also examined. A Span 80 loading of 0.75% (w/w) achieved 97.5% extraction with minimal breakage (less than 2.1%). An external phase pH of 5.8 achieves an optimal balance of high-throughput Dy(III) recovery and membrane stability; 0.2 N HNO3 as the stripping phase strikes the optimal balance, providing strong initial uptake with minimal emulsion degradation. As the initial Dy(III) loading increases, extraction efficiency decreases. Increasing the temperature from 15 to 45 °C accelerates mass transfer, achieving near-complete extraction in under 15 min. However, above 45 °C, emulsion breakage spikes, causing a collapse in efficiency. Similarly, increasing NaCl levels suppresses Dy(III) uptake and promotes coalescence. This reduces recovery from seawater to just over 70%. Nevertheless, the balanced mineral content of Zamzam water preserves emulsion integrity and enables 100% extraction. The activation energy was found to be 26.16 kJ/mol, suggesting that mass transfer, rather than the chemical reaction at the interface, controls the process. The results of this study highlight the synergistic efficiency advantage of the ELM system at lower carrier concentrations, even in complex water sources. Full article
(This article belongs to the Section Separation Engineering)
11 pages, 1123 KB  
Article
A Compact Dual-Band Dual-Mode Wearable Button Antenna for WBAN Applications
by Xue-Ping Li, Xue-Lin Zhang, Xue-Qing Yang, Zhen-Yong Dong, Xue-Mei Feng and Wei Li
Micromachines 2025, 16(9), 975; https://doi.org/10.3390/mi16090975 (registering DOI) - 25 Aug 2025
Abstract
A novel dual-band dual-mode wearable button antenna for wireless body area network (WBAN) applications is proposed in this paper. The antenna ingeniously integrates a monopole structure and an optimized planar inverted-F antenna (PIFA) configuration in a shared radiator, enabling dual-mode operation with a [...] Read more.
A novel dual-band dual-mode wearable button antenna for wireless body area network (WBAN) applications is proposed in this paper. The antenna ingeniously integrates a monopole structure and an optimized planar inverted-F antenna (PIFA) configuration in a shared radiator, enabling dual-mode operation with a compact size. In the low-frequency band, the monopole structure generates an omnidirectional radiation pattern, facilitating efficient on-body communication. Meanwhile, the PIFA structure in the high-frequency band exhibits directed radiation, optimizing off-body communication. To enhance bandwidth, a parasitic structure is incorporated into the design. Both numerical simulations and experimental measurements are conducted to evaluate the antenna’s bandwidth and radiation performance in free space and on-body environments, with results showing excellent agreement. The measured bandwidth of the antenna on the human tissue is 300 MHz (2.3–2.6 GHz) in the low-frequency band and 4.5 GHz (5.5–10 GHz) in the high-frequency band. The maximum radiation efficiency reaches 76% in the low band (2.4–2.4835 GHz) and 93% in the upper band (5.725–5.875 GHz). Additionally, the peak gain on the human body can achieve 2.5 dB and 6.9 dB for the low and upper bands, respectively. The results confirm that the antenna meets the design requirements for Industrial, Scientific, and Medical (ISM) band applications, making it a promising candidate for WBAN systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Back to TopTop