Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = 3D nuclear telomere organization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2827 KB  
Article
Telomere Dysfunction Is Associated with Altered DNA Organization in Trichoplein/Tchp/Mitostatin (TpMs) Depleted Cells
by Angela Lauriola, Pierpaola Davalli, Gaetano Marverti, Andrea Caporali, Sabine Mai and Domenico D’Arca
Biomedicines 2022, 10(7), 1602; https://doi.org/10.3390/biomedicines10071602 - 5 Jul 2022
Cited by 5 | Viewed by 2284
Abstract
Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant [...] Read more.
Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant transformation as it allows for the cells acquiring new functional capabilities to proliferate and disseminate. Here, the effect of TpMs depletion was investigated in different TpMs-depleted cell lines by means of 3D imaging and 3D Structured illumination Microscopy. We show that TpMs depletion causes alterations in the 3D architecture of telomeres in colon cancer HCT116 cells. These findings are consistent with chromosome alterations that lead to genomic instability. Furthermore, TpMs depletion changes the spatial arrangement of chromosomes and other nuclear components. Modified nuclear architecture and organization potentially induce variations that precede the onset of genomic instability and are considered as markers of malignant transformation. Our present observations connect the tumor suppression ability of TpMs with its novel functions in maintaining the proper chromosomal segregation as well as the proper telomere and nuclear architecture. Further investigations will investigate the connection between alterations in telomeres and nuclear architecture with the progression of human tumors with the aim of developing personalized therapeutic interventions. Full article
(This article belongs to the Special Issue Advances in Molecular Cytogenetics)
Show Figures

Figure 1

16 pages, 2888 KB  
Article
Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma
by Aline Rangel-Pozzo, Pak Lok Ivan Yu, Sadhana LaL, Yasmin Asbaghi, Luiza Sisdelli, Pille Tammur, Anu Tamm, Mari Punab, Ludger Klewes, Sherif Louis, Hans Knecht, Adebayo Olujohungbe and Sabine Mai
Cancers 2021, 13(8), 1969; https://doi.org/10.3390/cancers13081969 - 19 Apr 2021
Cited by 14 | Viewed by 3679
Abstract
The prognosis of multiple myeloma (MM), an incurable B-cell malignancy, has significantly improved through the introduction of novel therapeutic modalities. Myeloma prognosis is essentially determined by cytogenetics, both at diagnosis and at disease progression. However, for a large cohort of patients, cytogenetic analysis [...] Read more.
The prognosis of multiple myeloma (MM), an incurable B-cell malignancy, has significantly improved through the introduction of novel therapeutic modalities. Myeloma prognosis is essentially determined by cytogenetics, both at diagnosis and at disease progression. However, for a large cohort of patients, cytogenetic analysis is not always available. In addition, myeloma patients with favorable cytogenetics can display an aggressive clinical course. Therefore, it is necessary to develop additional prognostic and predictive markers for this disease to allow for patient risk stratification and personalized clinical decision-making. Genomic instability is a prominent characteristic in MM, and we have previously shown that the three-dimensional (3D) nuclear organization of telomeres is a marker of both genomic instability and genetic heterogeneity in myeloma. In this study, we compared in a longitudinal prospective study blindly the 3D telomeric profiles from bone marrow samples of 214 initially treatment-naïve patients with either monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), or MM, with a minimum follow-up of 5 years. Here, we report distinctive 3D telomeric profiles correlating with disease aggressiveness and patient response to treatment in MM patients, and also distinctive 3D telomeric profiles for disease progression in smoldering multiple myeloma patients. In particular, lower average intensity (telomere length, below 13,500 arbitrary units) and increased number of telomere aggregates are associated with shorter survival and could be used as a prognostic factor to identify high-risk SMM and MM patients. Full article
(This article belongs to the Special Issue Multiple Myeloma: Targeted Therapy and Immunotherapy)
Show Figures

Figure 1

14 pages, 776 KB  
Article
Oxidative Stress Is Associated with Telomere Interaction Impairment and Chromatin Condensation Defects in Spermatozoa of Infertile Males
by Benoit Berby, Cynthia Bichara, Aurélie Rives-Feraille, Fanny Jumeau, Pierre Di Pizio, Véronique Sétif, Louis Sibert, Ludovic Dumont, Chistine Rondanino and Nathalie Rives
Antioxidants 2021, 10(4), 593; https://doi.org/10.3390/antiox10040593 - 12 Apr 2021
Cited by 32 | Viewed by 4016
Abstract
Telomere length can be influenced by reactive oxygen species (ROS) generated by lifestyle factors or environmental exposure. We sought to determine whether oxidative stress has an impact on sperm nuclear alterations, especially on chromatin organization and telomere interactions in the spermatozoa of infertile [...] Read more.
Telomere length can be influenced by reactive oxygen species (ROS) generated by lifestyle factors or environmental exposure. We sought to determine whether oxidative stress has an impact on sperm nuclear alterations, especially on chromatin organization and telomere interactions in the spermatozoa of infertile males. We performed an observational and prospective study including fifty-two males, allocated in the “case group” (30 infertile males presenting conventional semen parameter alterations) and the “control group” (22 males with normal conventional semen parameters). ROS detection was determined on spermatozoa using CellROX© probes. Sperm nuclear damage was assessed using quantitative fluorescence in situ hybridization (Q-FISH) for relative telomere length and telomere number, aniline blue staining for chromatin condensation, terminal deoxynucleotidyl transferase dUTP nick-end labeling for DNA fragmentation, and FISH for aneuploidy and 8-hydroxy-2′-deoxyguanosine immunostaining for oxidative DNA damages. Infertile males had significantly increased levels of cytoplasmic ROS and chromatin condensation defects as well as a higher mean number of telomere signals per spermatozoon in comparison with controls. In addition, the mean number of sperm telomere signals were positively correlated with the percentage of spermatozoa with chromatin condensation defect. In infertile males with conventional semen parameter alterations, oxidative stress is associated with telomere interaction impairment and chromatin condensation defects. Full article
(This article belongs to the Special Issue Antioxidants and Male Infertility)
Show Figures

Figure 1

22 pages, 7463 KB  
Article
p53 CRISPR Deletion Affects DNA Structure and Nuclear Architecture
by Aline Rangel-Pozzo, Samuel Booth, Pak Lok Ivan Yu, Madhurendra Singh, Galina Selivanova and Sabine Mai
J. Clin. Med. 2020, 9(2), 598; https://doi.org/10.3390/jcm9020598 - 22 Feb 2020
Cited by 6 | Viewed by 5095
Abstract
The TP53 gene is a key tumor suppressor. Although the tumor suppressor p53 was one of the first to be characterized as a transcription factor, with its main function potentiated by its interaction with DNA, there are still many unresolved questions about its [...] Read more.
The TP53 gene is a key tumor suppressor. Although the tumor suppressor p53 was one of the first to be characterized as a transcription factor, with its main function potentiated by its interaction with DNA, there are still many unresolved questions about its mechanism of action. Here, we demonstrate a novel role for p53 in the maintenance of nuclear architecture of cells. Using three-dimensional (3D) imaging and spectral karyotyping, as well as super resolution microscopy of DNA structure, we observe significant differences in 3D telomere signatures, DNA structure and DNA-poor spaces as well gains or losses of chromosomes, between normal and tumor cells with CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-deleted or wild-type TP53. Additionally, treatment with Nutlin-3 results in differences in nuclear architecture of telomeres in wild-type but not in p53 knockout MCF-7 (Michigan Cancer Foundation-7) cells. Nutlin-3 binds to the p53-binding pocket of mouse double minute 2 (MDM2) and blocks the p53-MDM2 interaction. Moreover, we demonstrate that another p53 stabilizing small molecule, RITA (reactivation of p53 and induction of tumor cell apoptosis), also induces changes in 3D DNA structure, apparently in a p53 independent manner. These results implicate p53 activity in regulating nuclear organization and, additionally, highlight the divergent effects of the p53 targeting compounds Nutlin-3 and RITA. Full article
(This article belongs to the Special Issue CRISPR, Cancer, and p53)
Show Figures

Figure 1

15 pages, 2756 KB  
Article
Distinct Nuclear Organization of Telomeres and Centromeres in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma
by Pak Lok Ivan Yu, Rachel R. Wang, Grace Johnston, Yaqiong Wang, Pille Tammur, Anu Tamm, Mari Punab, Aline Rangel-Pozzo and Sabine Mai
Cells 2019, 8(7), 723; https://doi.org/10.3390/cells8070723 - 15 Jul 2019
Cited by 3 | Viewed by 3602
Abstract
Both multiple myeloma (MM) and its precursor state of monoclonal gammopathy of undetermined significance (MGUS) are characterized by an infiltration of plasma cells into the bone marrow, but the mechanisms underlying the disease progression remain poorly understood. Previous research has indicated that 3D [...] Read more.
Both multiple myeloma (MM) and its precursor state of monoclonal gammopathy of undetermined significance (MGUS) are characterized by an infiltration of plasma cells into the bone marrow, but the mechanisms underlying the disease progression remain poorly understood. Previous research has indicated that 3D nuclear telomeric and centromeric organization may represent important structural indicators for numerous malignancies. Here we corroborate with previously noted differences in the 3D telomeric architecture and report that modifications in the nuclear distribution of centromeres may serve as a novel structural marker with potential to distinguish MM from MGUS. Our findings improve the current characterization of the two disease stages, providing two structural indicators that may become altered in the progression of MGUS to MM. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Multiple Myeloma)
Show Figures

Figure 1

15 pages, 3667 KB  
Article
3D Telomere Structure Analysis to Detect Genomic Instability and Cytogenetic Evolution in Myelodysplastic Syndromes
by Aline Rangel-Pozzo, Daiane Corrêa de Souza, Ana Teresa Schmid-Braz, Ana Paula de Azambuja, Thais Ferraz-Aguiar, Tamara Borgonovo and Sabine Mai
Cells 2019, 8(4), 304; https://doi.org/10.3390/cells8040304 - 2 Apr 2019
Cited by 7 | Viewed by 3619
Abstract
The disease course of myelodysplastic syndromes (MDS) features chromosome instability and clonal evolution, leading to the sequential acquisition of novel cytogenetic aberrations and the accumulation of these abnormalities in the bone marrow. Although clonal cytogenetic abnormalities can be detected by conventional cytogenetics in [...] Read more.
The disease course of myelodysplastic syndromes (MDS) features chromosome instability and clonal evolution, leading to the sequential acquisition of novel cytogenetic aberrations and the accumulation of these abnormalities in the bone marrow. Although clonal cytogenetic abnormalities can be detected by conventional cytogenetics in 50% of patients with MDS, such distinguishing patterns are lacking in the other 50%. Despite the increase in the prognostic value of some biomarkers, none of them is specific and able to discriminate between stable and unstable patients that subsequently progress to acute myeloid leukemia. This pilot study aimed to investigate the potential use of the 3D telomere profiling to detect genomic instability in MDS patients with or without clonal cytogenetic evolution. The comparison between different time points in patients with cytogenetic changes showed that in the CD34+ MDS cells, there was a significant decrease in the total number of telomeric signals, the average intensity of signals and the total intensity of telomeres. By contrast, the number of aggregates increased during cytogenetic evolution (p < 0.001). This pattern was observed only for MDS patients with cytogenetic evolution but was absent in patients without cytogenetic changes. In conclusion, we demonstrated that the 3D nuclear telomere organization was significantly altered during the MDS disease course, and may have contributed to cytogenetic clonal evolution. Full article
(This article belongs to the Special Issue The Role of Telomere Biology in Aging and Human Disease)
Show Figures

Figure 1

12 pages, 883 KB  
Article
Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin’s Lymphoma
by Hans Knecht, Christiaan Righolt and Sabine Mai
Cancers 2013, 5(2), 714-725; https://doi.org/10.3390/cancers5020714 - 5 Jun 2013
Cited by 17 | Viewed by 7815
Abstract
In classical Hodgkin’s lymphoma (HL) the malignant mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells are rare and generally make up <3% of the total cellular mass of the affected lymph nodes. During recent years, the introduction of laser micro-dissection techniques at [...] Read more.
In classical Hodgkin’s lymphoma (HL) the malignant mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells are rare and generally make up <3% of the total cellular mass of the affected lymph nodes. During recent years, the introduction of laser micro-dissection techniques at the single cell level has substantially improved our understanding of the molecular pathogenesis of HL. Gene expression profiling, comparative genomic hybridization analysis, micro-RNA expression profiling and viral oncogene sequencing have deepened our knowledge of numerous facets of H- and RS-cell gene expression deregulation. The question remains whether disturbed signaling pathways and deregulated transcription factors are at the origin of refractory/relapsing Hodgkin’s lymphoma or whether these hallmarks are at least partially related to another major factor. We recently showed that the 3D nuclear organization of telomeres and chromosomes marked the transition from H- to RS-cells in HL cell lines. This transition is associated with progression of telomere dysfunction, shelterin disruption and progression of complex chromosomal rearrangements. We reported analogous findings in refractory/relapsing HL and identified the shelterin proteins TRF1, TRF2 and POT1 as targets of the LMP1 oncogene in post-germinal center B-cells. Here we summarize our findings, including data not previously published, and propose a model in which progressive disruption of nuclear integrity, a form of genomic instability, is the key-player in refractory/relapsing HL. Therapeutic approaches should take these findings into account. Full article
(This article belongs to the Special Issue Genomic Instability and Cancers)
Show Figures

Figure 1

Back to TopTop