Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (495)

Search Parameters:
Keywords = 3D seismic data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3965 KB  
Article
A Digital Twin Approach to Sustainable Disaster Management: Case of Cayirova
by Mustafa Korkmaz, Yasemin Ezgi Akyildiz, Sevilay Demirkesen, Selcuk Toprak, Paweł Nowak and Bunyamin Ciftci
Sustainability 2025, 17(21), 9626; https://doi.org/10.3390/su17219626 - 29 Oct 2025
Abstract
Disaster management requires the development of effective technologies for managing both pre-and post-disaster processes. Therefore, utilizing effective tools and techniques to mitigate the disaster risks or lower the adversarial impacts is essential. Over the last decade, digital twin (DT) applications have found a [...] Read more.
Disaster management requires the development of effective technologies for managing both pre-and post-disaster processes. Therefore, utilizing effective tools and techniques to mitigate the disaster risks or lower the adversarial impacts is essential. Over the last decade, digital twin (DT) applications have found a wider implementation area for varying purposes, but most importantly, they are utilized for simulating disaster impacts. This study aims to develop an open-source digital twin (DT) framework for earthquake disaster management in the Cayirova district of Kocaeli, Türkiye, one of the country’s most seismically active regions. The primary objective is to enhance local resilience by integrating multi-source data into a unified digital environment that supports risk assessment, response planning, and recovery coordination. The digital model developed using QGIS (3.40.9 Bratislava), Autodesk InfraWorks 2025 software for DT modeling integrates various data types, including geospatial, environmental, transportation, utility, and demographic data. As a result, the developed model is expected to be used as a digital database for disaster management, storing both geospatial and building data in a unified structure. The developed model also aims to contribute to sustainable practices in cities, where disaster risks are particularly critical. In this respect, the developed model is expected to create sustainable logistics chains and sustainable targets aiming to reduce the number of people affected by disasters, reducing the direct economic losses caused by disasters. In this framework, the developed model is expected to further assess seismic risk and mitigate risks with DTs. These capabilities enable the project to establish an open-source district-level DT system implemented for the first time in Cayirova, provide an alternative disaster model focused on region-specific earthquakes, and integrate 2D/3D assets into an operational, ready-to-respond digital database. In terms of practical importance, the model provides a digital database (digital backup) that can be used in emergencies, helping decision-makers make faster, data-driven decisions. The significance of this study lies in bridging the gap between urban digitalization and disaster resilience by providing a scalable and transparent tool for local governments. Ultimately, the developed DT contributes to sustainable urban management, enhancing preparedness, adaptive capacity, and post-disaster recovery efficiency. Full article
Show Figures

Figure 1

19 pages, 9887 KB  
Article
Bridging the Seismic Vulnerability Data Gap Through UAV and 360° Imagery: The Case of Nejapa, El Salvador
by Yolanda Torres, Jorge M. Gaspar-Escribano, Joaquín Martín, Sandra Martínez-Cuevas and Alejandra Staller
Appl. Sci. 2025, 15(21), 11350; https://doi.org/10.3390/app152111350 - 23 Oct 2025
Viewed by 308
Abstract
In Latin America, high seismic activity drives countries to develop disaster risk reduction policies based on seismic risk studies. This work demonstrates the feasibility of creating a seismic exposure and vulnerability database using remotely sensed data. In Nejapa, El Salvador, a drone flight [...] Read more.
In Latin America, high seismic activity drives countries to develop disaster risk reduction policies based on seismic risk studies. This work demonstrates the feasibility of creating a seismic exposure and vulnerability database using remotely sensed data. In Nejapa, El Salvador, a drone flight and 360° photo capture were conducted to generate a 3D model of the city. Buildings were identified, characterised, and assigned a vulnerability model. This database was used to estimate seismic risk for a simulated Mw 6.7 earthquake on the Guaycume fault near the city. Results show that 71% of buildings would suffer complete damage and 68% of the population would be homeless, with losses exceeding USD 15 million. Findings were shared with relevant institutions in El Salvador through a dashboard. The country is currently collecting the same type of data used in the present study to update its cadastre and census. This is an opportunity to replicate this pilot experience in many other cities across the country and to provide open data access, positioning El Salvador at the forefront of civil protection in the Latin American region. Full article
Show Figures

Figure 1

21 pages, 42110 KB  
Article
Application of Vertical Seismic Profiling to Improve Seismic Interpretation of the Rotliegend Formation in Western Poland
by Robert Bartoń, Andrzej Urbaniec and Anna Łaba-Biel
Appl. Sci. 2025, 15(21), 11339; https://doi.org/10.3390/app152111339 - 22 Oct 2025
Viewed by 267
Abstract
Exploration for hydrocarbon reservoirs is currently focused on increasingly difficult targets and geological structures, thus stimulating a growing requirement for new measurement methods and techniques that can provide more detailed information about lithology and reservoir parameter distribution in the vicinity of the target [...] Read more.
Exploration for hydrocarbon reservoirs is currently focused on increasingly difficult targets and geological structures, thus stimulating a growing requirement for new measurement methods and techniques that can provide more detailed information about lithology and reservoir parameter distribution in the vicinity of the target zone. This publication presents a method for increasing the resolution of the recorded surface seismic wavefield in the vicinity of example borehole Well-1 (western Poland) for reservoir horizons of the Rotliegend and Zechstein formations. The main stage of the research was the introduction of frequencies from vertical seismic profiling (VSP) into seismic traces. The shape filter deconvolution procedure was applied based on the operator calculated from VSP data, which was applied to seismic profiles extracted from 3D data. The procedure applied allowed for the reconstruction of higher-frequency spectrum necessary for a detailed imaging of the geological framework of the analyzed reservoir formations. In the next stage, seismic inversion calculations were conducted, both on VSP data (corridor stack and VSP-CDP transformation) and on surface seismic time sections. The results obtained as an acoustic impedance distribution enabled a more comprehensive structural interpretation and detailed analysis of the variability of reservoir properties in the analyzed well area. Full article
Show Figures

Figure 1

28 pages, 7823 KB  
Article
Numerical Investigation of Seismic Soil–Structure–Excavation Interaction in Sand
by Tarek N. Salem, Mahmoud S. Elmahdy, Dušan Katunský, Erika Dolníková and Ahmed Abu El Ela
Buildings 2025, 15(20), 3732; https://doi.org/10.3390/buildings15203732 - 16 Oct 2025
Viewed by 393
Abstract
The dynamic loads affecting earth-retaining structures may increase in seismically active regions. Therefore, studying the soil–structure interaction among the soil, shoring systems, and adjacent structures is crucial. However, there is limited research on this important topic. This study investigates the seismic performance of [...] Read more.
The dynamic loads affecting earth-retaining structures may increase in seismically active regions. Therefore, studying the soil–structure interaction among the soil, shoring systems, and adjacent structures is crucial. However, there is limited research on this important topic. This study investigates the seismic performance of a deep braced excavation and a nearby 10-story building in sandy soil formation. The main focus of this study is the consideration of the influence of varying foundation depths of adjacent structures on the seismic response of the shoring system and the performance of the shoring system and adjacent structure under different earthquake records. PLAXIS 2D software (Version 22.02) was used to carry out the numerical analysis. Sandy soil was modeled using the Hardening Soil with small-strain stiffness model (HS-small). Back analysis of observation data extracted from a real case study of a deep braced excavation in the central district of Kaohsiung City, adjacent to the O7 Station on the Orange Line of the Kaohsiung MRT system in Taiwan, was used to validate the numerical analysis. Beyond model validation, a parametric study was conducted to address the effect of the foundation level of the building adjacent to the excavation on both the seismic behavior of the shoring system and the structure itself, using the Loma-Prieta (1989) earthquake record. The parametric study was further extended to assess the responses of the shoring system and the adjacent structure under the influence of the earthquake records of Loma-Prieta (1989), Northridge (1994), and El-Centro (1940). The results show that the maximum lateral displacement of the diaphragm wall occurred at the top of the wall in all studied cases. The maximum dynamic bending moment in the retaining structure was more than three times the static one on average. In contrast, the dynamic shear force was more than 2.85 times the static one on average. In addition, the dynamic axial force of the first and second struts was 1.38 and 3.17 times the static forces, respectively. The results also reveal large differences in the behavior of the shoring system and the adjacent structure between the different earthquake records. Full article
(This article belongs to the Special Issue Constructions in Europe: Current Issues and Future Challenges)
Show Figures

Figure 1

18 pages, 4462 KB  
Article
Finite Element Modelling Approaches for Assessing Column Stability in Heritage Structures: A Case Study of the Mosque–Cathedral of Córdoba
by Maria-Victoria Requena-Garcia-Cruz, Jose-Carlos Gómez-Sánchez, Isabel Gónzalez-de-León and Antonio Morales-Esteban
Modelling 2025, 6(4), 130; https://doi.org/10.3390/modelling6040130 - 16 Oct 2025
Viewed by 299
Abstract
This study has investigated the structural and seismic performance of monolithic stone columns in the historical Mosque–Cathedral of Córdoba, with a focus on the earliest section constructed during the reign of Abd al-Rahman I (VIII century). An advanced 3D finite element (FE) model [...] Read more.
This study has investigated the structural and seismic performance of monolithic stone columns in the historical Mosque–Cathedral of Córdoba, with a focus on the earliest section constructed during the reign of Abd al-Rahman I (VIII century). An advanced 3D finite element (FE) model has been developed to assess the effects of geometric imperfections and component interactions on the stability of columns under both vertical and horizontal static loading. Three distinct modelling strategies have been employed in OpenSees 3.7.1, incorporating column inclination and contact elements to simulate mortar interfaces. Material properties have been calibrated using experimental data and in situ observations. The gravitational analysis has shown no significant damage in any of the configurations, aligning with the observed undamaged state of the structure. Conversely, horizontal analyses have revealed that tensile damage has predominantly occurred at the lower shaft. The inclusion of contact elements has led to a significant reduction in lateral resistance, highlighting the importance of accounting for friction and interface behaviour. Column inclination has been found to have a significant influence on failure patterns. These findings have highlighted the critical role of detailed modelling in evaluating structural vulnerabilities. Such features are generally included in the numerical modelling and evaluation of heritage buildings. Consequently, they can contribute to a better understanding of the seismic behaviour of historic masonry structures. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

15 pages, 2694 KB  
Article
Seismic Facies Recognition Based on Multimodal Network with Knowledge Graph
by Binpeng Yan, Mutian Li, Rui Pan and Jiaqi Zhao
Appl. Sci. 2025, 15(20), 11087; https://doi.org/10.3390/app152011087 - 16 Oct 2025
Viewed by 208
Abstract
Seismic facies recognition constitutes a fundamental task in seismic data interpretation, playing an essential role in characterizing subsurface geological structures, sedimentary environments, and hydrocarbon reservoir distributions. Conventional approaches primarily depend on expert interpretation, which often introduces substantial subjectivity and operational inefficiency. Although deep [...] Read more.
Seismic facies recognition constitutes a fundamental task in seismic data interpretation, playing an essential role in characterizing subsurface geological structures, sedimentary environments, and hydrocarbon reservoir distributions. Conventional approaches primarily depend on expert interpretation, which often introduces substantial subjectivity and operational inefficiency. Although deep learning-based methods have been introduced, most rely solely on unimodal data—namely, seismic images—and encounter challenges such as limited annotated samples and inadequate generalization capability. To overcome these limitations, this study proposes a multimodal seismic facies recognition framework named GAT-UKAN, which integrates a U-shaped Kolmogorov–Arnold Network (U-KAN) with a Graph Attention Network (GAT). This model is designed to accept dual-modality inputs. By fusing visual features with knowledge embeddings at intermediate network layers, the model achieves knowledge-guided feature refinement. This approach effectively mitigates issues related to limited samples and poor generalization inherent in single-modality frameworks. Experiments were conducted on the F3 block dataset from the North Sea. A knowledge graph comprising 47 entities and 12 relation types was constructed to incorporate expert knowledge. The results indicate that GAT-UKAN achieved a Pixel Accuracy of 89.7% and a Mean Intersection over Union of 70.6%, surpassing the performance of both U-Net and U-KAN. Furthermore, the model was transferred to the Parihaka field in New Zealand via transfer learning. After fine-tuning, the predictions exhibited strong alignment with seismic profiles, demonstrating the model’s robustness under complex geological conditions. Although the proposed model demonstrates excellent performance in accuracy and robustness, it has so far been validated only on 2D seismic profiles. Its capability to characterize continuous 3D geological features therefore remains limited. Full article
Show Figures

Figure 1

22 pages, 10743 KB  
Article
Prediction of Favorable Sand Bodies in Fan Delta Deposits of the Second Member in Baikouquan Formation, X Area of Mahu Sag, Junggar Basin
by Jingyuan Wang, Xu Chen, Xiaohu Liu, Yuxuan Huang and Ao Su
Appl. Sci. 2025, 15(20), 10908; https://doi.org/10.3390/app152010908 - 10 Oct 2025
Viewed by 350
Abstract
The prediction of thin-bedded, favorable sand bodies within the Triassic Baikouquan Formation fan delta on the western slope of the Mahu Sag is challenging due to their strong spatial heterogeneity. To address this, we propose an integrated workflow that synergizes seismic sedimentology with [...] Read more.
The prediction of thin-bedded, favorable sand bodies within the Triassic Baikouquan Formation fan delta on the western slope of the Mahu Sag is challenging due to their strong spatial heterogeneity. To address this, we propose an integrated workflow that synergizes seismic sedimentology with geologically constrained seismic inversion. This study leverages well logging, core data, and 3D seismic surveys. Initially, seismic attribute analysis and stratal slicing were employed to delineate sedimentary microfacies, revealing that the fan delta front subfacies comprises subaqueous distributary channels, interdistributary bays, and distal bars. Subsequently, the planform distribution of these microfacies served as a critical constraint for the Seismic Waveform Indicative Inversion (SWII), effectively enhancing the resolution for thin sand body identification. The results demonstrate the following: (1). Two NW-SE trending subaqueous distributary channel systems, converging near the BAI65 well, form the primary reservoirs. (2). The SWII, optimized by our workflow, successfully predicts high-quality sand bodies with a cumulative area of 159.2 km2, primarily located in the MAXI1, AIHU10, and AICAN1 well areas, as well as west of the MA18 well. This study highlights the value of integrating sedimentary facies boundaries as a geological constraint in seismic inversion, providing a more reliable method for predicting heterogeneous thin sand bodies and delineating future exploration targets in the Mahu Sag. Full article
Show Figures

Figure 1

19 pages, 36886 KB  
Article
Topographic Inversion and Shallow Gas Risk Analysis in the Canyon Area of Southeastern Qiongdong Basin Based on Multi-Source Data Fusion
by Hua Tao, Yufei Li, Qilin Jiang, Bigui Huang, Hanqiong Zuo and Xiaolei Liu
J. Mar. Sci. Eng. 2025, 13(10), 1897; https://doi.org/10.3390/jmse13101897 - 3 Oct 2025
Viewed by 387
Abstract
The submarine topography in the canyon area of the Qiongdongnan Basin is complex, with severe risks of shallow gas hazards threatening marine engineering safety. To accurately characterize seabed morphology and assess shallow gas risks, this study employed multi-source data fusion technology, integrating 3D [...] Read more.
The submarine topography in the canyon area of the Qiongdongnan Basin is complex, with severe risks of shallow gas hazards threatening marine engineering safety. To accurately characterize seabed morphology and assess shallow gas risks, this study employed multi-source data fusion technology, integrating 3D seismic data, shipborne multibeam bathymetry data, and high-precision AUV topographic data from key areas to construct a refined seabed terrain inversion model. For the first time, the spatial distribution characteristics of complex geomorphological features such as scarps, mounds, fissures, faults, and mass transport deposits (MTDs) were systematically delineated. Based on attribute analysis of 3D seismic data and geostatistical methods, the enrichment intensity of shallow gas was quantified, its distribution patterns were systematically identified, and risk level evaluations were conducted. The results indicate: (1) multi-source data fusion significantly improved the resolution and accuracy of terrain inversion, revealing intricate geomorphological details in deep-water regions; and (2) seismic attribute analysis effectively delineated shallow gas enrichment zones, clarifying their spatial distribution patterns and risk levels. This study provides critical technical support for deep-water drilling platform site selection, submarine pipeline route optimization, and engineering geohazard prevention, offering significant practical implications for ensuring the safety of deep-water energy development in the South China Sea. Full article
Show Figures

Figure 1

14 pages, 3180 KB  
Article
Real-Time Structural Health Monitoring of Reinforced Concrete Under Seismic Loading Using Dynamic OFDR
by Jooyoung Lee, Hyoyoung Jung, Myoung Jin Kim and Young Ho Kim
Sensors 2025, 25(18), 5818; https://doi.org/10.3390/s25185818 - 18 Sep 2025
Viewed by 569
Abstract
This paper presents a compact dynamic optical frequency domain reflectometry (D-OFDR) platform enabling millimeter-scale, distributed strain sensing for real-time structural health monitoring (SHM) of reinforced concrete subjected to seismic loading. The proposed D-OFDR interrogator employs a dual-interferometer architecture: a main interferometer for strain [...] Read more.
This paper presents a compact dynamic optical frequency domain reflectometry (D-OFDR) platform enabling millimeter-scale, distributed strain sensing for real-time structural health monitoring (SHM) of reinforced concrete subjected to seismic loading. The proposed D-OFDR interrogator employs a dual-interferometer architecture: a main interferometer for strain sensing and an auxiliary interferometer for nonlinear frequency sweep compensation. Both signals are detected by photodetectors and digitized via a dual-channel FPGA-based DAQ board, enabling high-speed embedded signal processing. A dual-edge triggering scheme exploits both the up-chirp and down-chirp of a 50 Hz bidirectional sweep to achieve a 100 Hz interrogation rate without increasing the sweep speed. Laboratory validation tests on stainless steel cantilever beams showed sub-hertz frequency fidelity (an error of 0.09 Hz) relative to conventional strain gauges. Shake-table tests on a 2 m RC column under incremental seismic excitations (scaled 10–130%, peak acceleration 0.864 g) revealed distinct damage regimes. Distributed strain data and frequency-domain analysis revealed a clear frequency reduction from approximately 3.82 Hz to 1.48 Hz, signifying progressive stiffness degradation and structural yielding prior to visible cracking. These findings demonstrate that the bidirectional sweep-triggered D-OFDR method offers enhanced real-time monitoring capabilities, substantially outperforming traditional point sensors in the early and precise detection of seismic-induced structural damage. Full article
(This article belongs to the Special Issue Sensor-Based Structural Health Monitoring of Civil Infrastructure)
Show Figures

Figure 1

20 pages, 4621 KB  
Article
Innovative Application of High-Precision Seismic Interpretation Technology in Coalbed Methane Exploration
by Chunlei Li, Lijiang Duan, Xidong Wang, Xiuqin Lu, Ze Deng and Liyong Fan
Processes 2025, 13(9), 2971; https://doi.org/10.3390/pr13092971 - 18 Sep 2025
Viewed by 356
Abstract
Exploration of coalbed methane (CBM) has long been plagued by critical technical challenges, including a low signal-to-noise (S/N) ratio in seismic data, difficulty identifying thin coal seams, and inadequate accuracy in interpreting complex structures. This study presents an innovative methodological framework that integrates [...] Read more.
Exploration of coalbed methane (CBM) has long been plagued by critical technical challenges, including a low signal-to-noise (S/N) ratio in seismic data, difficulty identifying thin coal seams, and inadequate accuracy in interpreting complex structures. This study presents an innovative methodological framework that integrates artificial intelligence (AI) with advanced seismic processing and interpretation techniques. Its effectiveness is verified through a case study in the North Bowen Basin, Australia. A multi-scale seismic data enhancement approach combining dynamic balancing and blue filtering significantly improved data quality, increasing the S/N ratio by 53%. Using deep learning-driven, multi-attribute fusion analysis, we achieved a prediction error of less than ±1 m for the thickness of thin coal seams (4–7 m thick). Integrating 3D coherence and ant-tracking techniques improved the accuracy of fault identification, increasing the fault recognition rate by 30% and reducing the spatial localization error to below 3%. Additionally, a finely tuned, spatially variable velocity model limited the depth conversion error to 0.5%. Validation using horizontal well trajectories revealed that the rate of reservoir encounters exceeded 95%, with initial gas production in the predicted sweet spots zone being 25–30% higher than with traditional methods. Notably, this study established a quantitative model linking structural curvature to fracture intensity, providing a robust scientific basis for accurately predicting CBM sweet spots. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

23 pages, 12727 KB  
Article
Quantitative 3D Depositional Element Modeling of the Mishrif Carbonate Platform: Enhancing Reservoir Performance Prediction
by Shunming Li, Rubing Han, Zhiyang Pi, Gang Hui and Hui He
Processes 2025, 13(9), 2941; https://doi.org/10.3390/pr13092941 - 15 Sep 2025
Viewed by 581
Abstract
Qualitative schematic models of the Mishrif Formation, which have previously dominated the research, are inadequate for predicting reservoir production performance due to their inability to quantify spatial heterogeneity. In contrast to these earlier approaches, this study integrates core analysis, wireline logs, and 3D [...] Read more.
Qualitative schematic models of the Mishrif Formation, which have previously dominated the research, are inadequate for predicting reservoir production performance due to their inability to quantify spatial heterogeneity. In contrast to these earlier approaches, this study integrates core analysis, wireline logs, and 3D seismic data to not only describe but also quantitatively characterize the depositional elements and their spatial distribution. A novel methodology was developed to define nine distinct depositional elements from cored wells and then continuously identify them in uncored wells using unique pseudo-wireline log responses, a step not achieved in prior work. Furthermore, moving beyond previous qualitative models, 3D quantitative versions were constructed using Sequential Indicator Simulation (SIS) explicitly constrained by depositional geometries derived from 3D seismic inversion volumes. For the first time, these models reveal the quantitative spatial extent and evolution of these elements. Updating the 3D petrophysical property model using this new depositional framework resulted in a 15% increase in successful production history matches, demonstrating the direct and superior predictive power of this integrated quantitative approach for forecasting oil reservoir production performance. Full article
Show Figures

Figure 1

26 pages, 31941 KB  
Article
Erosion and Karst in Subsurface Middle Paleozoic Rocks in the Arkoma Basin, Oklahoma, USA
by A. Riley Brinkerhoff, John McBride, R. William Keach and Scott M. Ritter
Geosciences 2025, 15(9), 357; https://doi.org/10.3390/geosciences15090357 - 12 Sep 2025
Viewed by 517
Abstract
Seismic attribute analysis, guided by well data, reveals widespread stratigraphic anomalies caused by erosion or karstification in the late Ordovician-early Devonian Hunton Group in the Arkoma Basin, eastern Oklahoma, USA. This study shows that these strata are more extensive than previously known. Well [...] Read more.
Seismic attribute analysis, guided by well data, reveals widespread stratigraphic anomalies caused by erosion or karstification in the late Ordovician-early Devonian Hunton Group in the Arkoma Basin, eastern Oklahoma, USA. This study shows that these strata are more extensive than previously known. Well data and seismic mapping in the Red Oak petroleum field identify approximately 40 m thick Hunton lenses, averaging 3 km in diameter, surrounded by karsted rock. These lenses may be remnants of incomplete erosion during the Middle Devonian period (pre-Woodford unconformity) or result from Hunton rocks sagging into sinkholes caused by karstification and collapse of underlying Viola or Bromide carbonates. Using formation tops from wells, correlated with attribute and structure maps from a 3D seismic volume, we identify (1) areas lacking Hunton seismic markers, indicating complete removal; (2) areas with Hunton contacts, showing where Hunton remains; and (3) zones without Hunton but with a thin layer underlying carbonate strata, interpreted as an incipient karst zone, often near areas with Hunton. We also observe that the thickness of the overlying Woodford Shale, a key hydrocarbon target, correlates with karstic and erosional thinning of Hunton carbonates. Interpretation of 3D seismic data reveals a strong connection between thinned Hunton and thickened Woodford Shale. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

25 pages, 7126 KB  
Article
Integrated Petrophysical Analysis and Reservoir Characterization of Shaly Sands in the Srikail Gas Field, East Central Bengal Basin, Bangladesh
by Shireen Akhter and Nuno Pimentel
Eng 2025, 6(9), 234; https://doi.org/10.3390/eng6090234 - 8 Sep 2025
Viewed by 1380
Abstract
This study offers a comprehensive petrophysical evaluation and reservoir characterization of the Srikail Gas Field, situated on the Tripura Uplift in the east-central Bengal Basin. Utilizing well log data from four wells (Srikail-1 to Srikail-4), the analysis targets the Bhuban and Bokabil formations [...] Read more.
This study offers a comprehensive petrophysical evaluation and reservoir characterization of the Srikail Gas Field, situated on the Tripura Uplift in the east-central Bengal Basin. Utilizing well log data from four wells (Srikail-1 to Srikail-4), the analysis targets the Bhuban and Bokabil formations of the Surma Group. Standard log suites, including gamma ray, spontaneous potential, caliper, resistivity, neutron, density, and sonic logs, were interpreted using both manual techniques and digital analysis through software. Key petrophysical properties, including shale volume, effective porosity, fluid saturations, permeability, and bulk volume of water, were estimated using a combination of empirical modeling and automated interpretation workflows. Cross-plot methodologies were applied to assist in reservoir evaluation. The study integrated both qualitative and quantitative approaches to characterize each reservoir unit in detail. Results demonstrate significant heterogeneities in reservoir quality across the field. While some intervals exhibit favorable properties suitable for commercial gas production, others are characterized by high carbonate content, poor porosity, and very low permeability (Sand C with 0.05 to 0.08 mD), indicative of tight to semi-conventional reservoirs. The most productive zones, identified as the D sands, are cleaner sands with excellent permeability (102 mD to 355 mD). In contrast, deeper intervals generally exhibit tighter characteristics, with DST-derived permeability values ranging from 0.6 to 0.01 mD. The study recommends integrating core analysis, advanced petrophysical modeling, and 3D seismic interpretation with well log data to enhance reservoir delineation in the Srikail Gas Field. This combined approach would reduce uncertainties, improve input parameter accuracy, and offer a more comprehensive understanding of the Bhuban Formation’s heterogeneity, ultimately supporting more effective reservoir evaluation and hydrocarbon recovery planning. Full article
Show Figures

Figure 1

24 pages, 5303 KB  
Article
Preliminary Documentation and Radon Tracer Studies at a Tourist Mining Heritage Site in Poland’s Old Copper Basin: A Case Study of the “Aurelia” Gold Mine
by Lidia Fijałkowska-Lichwa and Damian Kasza
Appl. Sci. 2025, 15(17), 9743; https://doi.org/10.3390/app15179743 - 4 Sep 2025
Viewed by 692
Abstract
This study presents the results of preliminary documentation and radon tracer investigations conducted at the “Aurelia” Mine in Złotoryja. Measurements of 222Rn activity concentrations were carried out between 17 March and 26 August 2023, while terrestrial laser scanning (TLS) for mapping purposes [...] Read more.
This study presents the results of preliminary documentation and radon tracer investigations conducted at the “Aurelia” Mine in Złotoryja. Measurements of 222Rn activity concentrations were carried out between 17 March and 26 August 2023, while terrestrial laser scanning (TLS) for mapping purposes was performed on 16 November 2024. The radon data exhibited a consistently right-skewed distribution, with skewness coefficients ranging from 0.9 to 8.2 and substantial standard deviations, indicating significant data dispersion. Outliers and extreme outliers were identified as key factors influencing average radon activity concentrations from April through August, whereas data from March displayed homogeneity, with no detected anomalies. The average 222Rn activity concentrations recorded from March to July ranged from 51.4 Bq/m3 to 65.9 Bq/m3. In contrast, July and August showed elevated average values (75.8 Bq/m3 and 5784.8 Bq/m3, respectively) due to the presence of outliers and extreme values. Upon removal of these anomalies, the adjusted means were 73.8 Bq/m3 and 1003.6 Bq/m3, respectively, resulting in reduced skewness and improved representativeness. These findings suggest that the annual average radon concentrations at the “Aurelia” Mine remain compliant with the regulatory threshold of 300 Bq/m3 set by the Atomic Law Act, with exceedances likely related to atypical or rare geophysical phenomena requiring further statistical validation. August exhibited a significant occurrence of outliers and extreme outliers in 222Rn activity concentration data, particularly concentrated between the 13th and 17th days of the month. This anomaly is hypothesized to be associated with geological processes, notably mining-induced seismic events within the LGOM (Legnica–Głogów Copper District) region. It is proposed that periodic transitions between tensional and compressional phases within the rock mass, triggered by mining activity, may lead to abrupt increases in radon exhalation, potentially occurring before or after seismic events with a magnitude exceeding 2.5. Although the presented data provide preliminary evidence supporting the influence of tectonic kinematic changes on subsurface radon dynamics, further systematic observations are required to confirm this relationship. At the current stage, the hypothesis remains speculative but may contribute to the broader understanding of radon behavior in geologically active underground environments. Complementing the geochemical analysis, TLS enabled detailed geological mapping and 3D spatial modeling of the mine’s underground tourist infrastructure. The resulting simplified linked data model—integrating radon activity concentrations, geological structures, and spatial parameters—provides a foundational framework for developing a comprehensive GIS database. This integrative approach highlights the feasibility of combining tracer studies with spatial and cartographic data to improve radon risk assessment models and ensure regulatory compliance in underground occupational settings. Full article
(This article belongs to the Special Issue Advances in Environmental Monitoring and Radiation Protection)
Show Figures

Figure 1

18 pages, 4398 KB  
Article
Connectivity Evaluation of Fracture-Cavity Reservoirs in S91 Unit
by Yunlong Xue, Yinghan Gao and Xiaobo Peng
Appl. Sci. 2025, 15(17), 9738; https://doi.org/10.3390/app15179738 - 4 Sep 2025
Cited by 1 | Viewed by 633
Abstract
Carbonate fracture–cavity reservoirs are significant oil and gas reservoirs globally, and their efficient development is influenced by the connectivity between fracture–cavity units within the reservoir. These reservoirs primarily consist of large caves, dissolution holes, and natural fractures, which serve as the primary storage [...] Read more.
Carbonate fracture–cavity reservoirs are significant oil and gas reservoirs globally, and their efficient development is influenced by the connectivity between fracture–cavity units within the reservoir. These reservoirs primarily consist of large caves, dissolution holes, and natural fractures, which serve as the primary storage and flow spaces. The S91 unit of the Tarim Oilfield is a karstic fracture–cavity reservoir with shallow coverage. It exhibits significant heterogeneity in the fracture–cavity reservoirs and presents complex connectivity between the fracture–cavity bodies. The integration of static and dynamic data, including geology, well logging, seismic, and production dynamics, resulted in the development of a set of static and dynamic connectivity evaluation processes designed for highly heterogeneous fracture–cavity reservoirs. Methods include using structural gradient tensors and stratigraphic continuity attributes to delineate the boundaries of caves and holes; performing RGB fusion analysis of coherence, curvature, and variance attributes to characterize large-scale fault development features; applying ant-tracking algorithms and fracture simulation techniques to identify the distribution and density characteristics of fracture zones; utilizing 3D visualization technology to describe the spatial relationship between fracture–cavity units and large-scale faults and fracture development zones; and combining dynamic data to verify interwell connectivity. This process will provide a key geological basis for optimizing well network deployment, improving water and gas injection efficiency, predicting residual oil distribution, and formulating adjustment measures, thereby improving the development efficiency of such complex reservoirs. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Figure 1

Back to TopTop