Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = 3D spacer panels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5393 KB  
Article
Effect of Natural Fiber and Biomass on Acoustic Performance of 3D Hybrid Fabric-Reinforced Composite Panels
by Shabnam Nazari, Tatiana Alexiou Ivanova, Rajesh Kumar Mishra, Miroslav Müller, Mehdi Akhbari and Zohreh Esfahani Hashjin
Materials 2024, 17(23), 5695; https://doi.org/10.3390/ma17235695 - 21 Nov 2024
Cited by 7 | Viewed by 2253
Abstract
This research investigated the sound insulation performance of 3D woven hybrid fabric-reinforced composites using natural fibers, such as jute, along with E-glass and biomass derived from agro-waste, e.g., coffee husk and waste palm fiber. The composites made from pure E-glass, pure jute, and [...] Read more.
This research investigated the sound insulation performance of 3D woven hybrid fabric-reinforced composites using natural fibers, such as jute, along with E-glass and biomass derived from agro-waste, e.g., coffee husk and waste palm fiber. The composites made from pure E-glass, pure jute, and hybrid glass–jute configurations were tested for sound absorbance at frequencies of 1000 Hz and 10,000 Hz. A sound insulation chamber was used for measuring the sound reduction levels. Results show that the sound insulation performance of the panels was remarkably enhanced with composites containing natural fiber reinforcements. The jute-based composites provided the maximum insulation of sound, with waste palm fiber fillers in particular. At a frequency of 10,000 Hz, a noise reduction reaching 44.9 dB was observed. The highest sound absorption was observed in the 3D woven jute composites with the additive of waste palm fiber, which outperformed the other samples. When comparing the effect of coffee husk and palm fiber as biomass fillers, both exhibited notable improvements in sound insulation, but the palm fiber generally performed better across different samples. Although panels containing palm fiber additives appeared to reduce sound more than those containing coffee husk, statistical analysis revealed no significant difference between the two, indicating that both are efficient and eco-friendly fillers for soundproofing applications. One-way analysis of variance (ANOVA) confirmed the significance of the effect of reinforcing structures and biofillers on acoustic performance. This study demonstrated the possibility of using sustainable green materials for soundproofing applications within various industries. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

13 pages, 6802 KB  
Article
Improving the Anchorage in Textile Reinforced Cement Composites by 3D Spacer Connections: Experimental Study of Flexural and Cracking Behaviors
by Michael El Kadi, Danny Van Hemelrijck and Tine Tysmans
J. Compos. Sci. 2022, 6(12), 357; https://doi.org/10.3390/jcs6120357 - 23 Nov 2022
Cited by 2 | Viewed by 2025
Abstract
Textile-reinforced cement (TRC) composites can lead to significant material (and dimensional) savings compared to steel-reinforced concrete, particularly when applied in thin-walled structures such as façade panels, shells, etc. In conditions where the geometrical restrictions do not allow for sufficient anchorage, however, the exploitation [...] Read more.
Textile-reinforced cement (TRC) composites can lead to significant material (and dimensional) savings compared to steel-reinforced concrete, particularly when applied in thin-walled structures such as façade panels, shells, etc. In conditions where the geometrical restrictions do not allow for sufficient anchorage, however, the exploitation of this reinforcement may be suboptimal and the TRC’s mechanical properties may decrease. As shown in the literature, the use of 3D textile reinforcement can lead to an improved anchorage in the reinforcement points and superior post-cracking behavior in terms of bending. The question remains as to whether similar improvements can be achieved using 3D spacer connections, inserted post-manufacturing of the textiles. Therefore, this research experimentally investigated the effect of discretely inserted spacer connections on the flexural properties and cracking behavior of TRCs. Six different TRC beam configurations—varying in the placement of the spacer connections over the span—were investigated. Moreover, a comparison was made with two additional configurations: one equivalent 2D TRC system (using the same in-plane textiles but without through-thickness connections) and one 3D TRC system using knitted 3D textiles (with spacer yarns uniformly distributed). The four-point bending tests were monitored via digital image correlation (DIC) to visualize the full-field cracking pattern. The experimental results showed that the spacer connections could strongly improve the post-cracking bending stiffness and the modulus of rupture (MOR) when placed close to the free end of the sample and could also lead to reduced crack widths when placed around the midspan. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2022)
Show Figures

Figure 1

20 pages, 1711 KB  
Article
Establishing the Secondary Metabolite Profile of the Marine Fungus: Tolypocladium geodes sp. MF458 and Subsequent Optimisation of Bioactive Secondary Metabolite Production
by Bethlehem Kebede, Stephen K. Wrigley, Anjali Prashar, Janina Rahlff, Markus Wolf, Jeanette Reinshagen, Philip Gribbon, Johannes F. Imhoff, Johanna Silber, Antje Labes and Bernhard Ellinger
Mar. Drugs 2017, 15(4), 84; https://doi.org/10.3390/md15040084 - 23 Mar 2017
Cited by 30 | Viewed by 7602
Abstract
As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed [...] Read more.
As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A (1), efrapeptin D (2), pyridoxatin (3), terricolin A (4), malettinins B and E (5 and 6), and tolypocladenols A1/A2 (8), we identified a new secondary metabolite which we termed tolypocladenol C (7). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E (5 and 6) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields. Full article
(This article belongs to the Special Issue Marine Fungal Natural Products)
Show Figures

Graphical abstract

26 pages, 911 KB  
Article
Design, Synthesis, and Cytotoxicity of Perbutyrylated Glycosides of 4β-Triazolopodophyllotoxin Derivatives
by Cheng-Ting Zi, Zhen-Hua Liu, Gen-Tao Li, Yan Li, Jun Zhou, Zhong-Tao Ding, Jiang-Miao Hu and Zi-Hua Jiang
Molecules 2015, 20(2), 3255-3280; https://doi.org/10.3390/molecules20023255 - 16 Feb 2015
Cited by 18 | Viewed by 6719
Abstract
A series of novel perbutyrylated glycosides of 4β-triazolopodophyllotoxin derivatives were synthesized by utilizing the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Evaluation of cytotoxicity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480) using the MTT assay shows that some [...] Read more.
A series of novel perbutyrylated glycosides of 4β-triazolopodophyllotoxin derivatives were synthesized by utilizing the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Evaluation of cytotoxicity against a panel of five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, SW480) using the MTT assay shows that some of these glycosylated derivatives have good anticancer activity. Among the synthesized compounds, compound 21a shows the highest activity, with IC50 values ranging from 0.49 to 6.70 μM, which is more potent than the control drugs etoposide and cisplatin. Compound 21a is characterized by a perbutyrylated α-D(+)-galactosyl residue, the absence of an additional linking spacer between the sugar residue and the triazole ring, as well as a 4'-OH group on the E ring of the podophyllotoxin scaffold. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop