Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,668)

Search Parameters:
Keywords = 3D technology measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4815 KB  
Article
Utilizing High-Speed 3D DIC for Displacement and Strain Measurement of Rotating Components
by Kamil Pazur, Paweł Bogusz and Wiesław Krasoń
Materials 2025, 18(17), 3974; https://doi.org/10.3390/ma18173974 (registering DOI) - 25 Aug 2025
Abstract
This study explores the effectiveness of 3D Digital Image Correlation (DIC) for measuring displacement and strain of a propeller undergoing angular motion. Traditional methods, such as strain gauges, face limitations including physical interference, technical difficulties in sensor connections, and restricted measurement points, leading [...] Read more.
This study explores the effectiveness of 3D Digital Image Correlation (DIC) for measuring displacement and strain of a propeller undergoing angular motion. Traditional methods, such as strain gauges, face limitations including physical interference, technical difficulties in sensor connections, and restricted measurement points, leading to inaccuracies in capturing true conditions. To overcome these challenges, this research utilizes non-contact 3D DIC technology, enabling measurement of surface displacements and deformations without interfering with the tested component. Experiments were conducted using the model aircraft propellers mounted on a custom-built test stand for partial angular motion. The 1 Mpx high-speed cameras captured strain and displacement data across the propeller blades during motion. The DIC strain measurements were then compared to strain gauge data to evaluate their accuracy and reliability. The results demonstrate that 3D DIC enables precise displacement measurements, while strain measurements are subject to certain limitations. Displacement measurements were achieved with a noise level of ±10 μm, while strain measurement noise ranged from 26 to 174 µm/m depending on direction. Strain gauge measurements were also performed for verification of the DIC measurements and calibration of the filtering procedure. Two types of non-metallic materials were used in the study: Nylon LGF60 PA6 for the propeller and 3D-printed PC ABS for the cantilever beam used in strain measurement validation. This study underscores the potential of DIC for monitoring rotating components, with a particular focus on measuring strains that are often overlooked in publications addressing similar topics. Additionally, it focuses on comparing DIC strain measurements with strain gauge data on rotating components, addressing a critical gap in existing literature, as strain measurement in rotating structures remains underexplored in current research. Full article
Show Figures

Figure 1

10 pages, 800 KB  
Article
A Comparison Between the Expansion Force Exerted by Thermo-Printed Aligners and 3D Printed Aligners: An In Vitro Study
by Samuele Avolese, Simone Parrini, Andrea Tancredi Lugas, Cristina Bignardi, Mara Terzini, Valentina Cantù, Tommaso Castroflorio, Emanuele Grifalconi, Nicola Scotti and Fabrizio Sanna
Bioengineering 2025, 12(9), 912; https://doi.org/10.3390/bioengineering12090912 (registering DOI) - 25 Aug 2025
Abstract
Background: The fabrication of orthodontic aligners directly via three-dimensional (3D) printing presents potential to increase the efficiency of aligner production relative to traditional workflows; however, several aspects of the 3D printing process might affect the dimensional fidelity of the fabricated appliances. The aim [...] Read more.
Background: The fabrication of orthodontic aligners directly via three-dimensional (3D) printing presents potential to increase the efficiency of aligner production relative to traditional workflows; however, several aspects of the 3D printing process might affect the dimensional fidelity of the fabricated appliances. The aim of this study is to measure the forces expressed by a 3D printed aligner made with TC-85 DAC resin (Grapy Inc., Seoul, Republic of Korea) when an expansion movement of the entire upper dental arch is programmed, comparing the measured forces with those obtained by a common thermoformed aligner (Smart Track®, Align Technology, Santa Clara, CA, USA). Materials and methods: A patient in transitional mixed dentition was selected, with the presence of all the first molars and permanent upper and lower incisors, and the canines and premolars have not started the exchange. From this patient, a virtual set up of the upper arch has been planned with an expansion of 0.2 mm and 0.4 mm per side; 3 mm horizontal rectangular attachments were added to the set up on the vestibular surface of the permanent molars, deciduous premolars, and deciduous canines. On this set up, 10 Smart Track aligners and 10 3D printed aligners with TC-85 DAC resin were produced. The fabricated aligners were mounted on the machinery used for the test (ElectroForce® Test Bench; TA Instruments, New Castle, DE, USA) by means of specific supports that simulate the upper arch of the patient (divided into two sides: right and left). To simulate the intraoral environment, the measurements were carried out in a thermostatic bath at a temperature of 37 °C. Results: The key results of this paper showed differences between Smart Track® and TC-85 DAC. In particular, the expanding force exerted by the 0.2 mm per side expanded Smart Track® aligners was on average +0.2162 N with a D.S. of ±0.0051 N during the 8 h; meanwhile, the force exerted by the 0.2 mm per side expanded TC-85 DAC 3D printed aligners was on average −0.0034 N with a D.S. of ±0.0036 N during the 8 h. The force exerted by the 0.4 mm per side expanded Smart Track® aligners was on average +0.7159 N with a D.S. of ±0.0543 N during the 8 h; meanwhile, the force exerted by the 0.4 mm per side expanded TC-85 DAC 3D printed aligners was on average +0.0141 N with a D.S. of ±0.004 N during the 8 h. Conclusions: Smart Track® aligners express a quantitatively measurable force in Newtons during the programmed movements to obtain a posterior expansion of the dental arches; on the contrary, aligners made with TC-85 DAC resin, in light of the results obtained from this study, express forces close to 0 during the realization of the movements programmed to obtain a posterior expansion of the dental arches. Full article
Show Figures

Figure 1

24 pages, 7981 KB  
Article
A Flexible and Compact UWB MIMO Antenna with Dual-Band-Notched Double U-Shaped Slot on Mylar® Polyester Film
by Vanvisa Chutchavong, Wanchalerm Chanwattanapong, Norakamon Wongsin, Paitoon Rakluea, Maleeya Tangjitjetsada, Chawalit Rakluea, Chatree Mahatthanajatuphat and Prayoot Akkaraekthalin
Electronics 2025, 14(17), 3363; https://doi.org/10.3390/electronics14173363 - 24 Aug 2025
Abstract
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article [...] Read more.
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article discusses the development of small, high-performance MIMO UWB antennas with mutual suppression capabilities to fully use the benefits of both technologies. Additionally, the suggested antenna features a straightforward design and dual-band-notched characteristics. The antenna structure includes two radiating elements measuring 85 × 45 mm2. These elements use a rectangular patch provided by a coplanar waveguide (CPW). Double U-shaped slots are incorporated into the rectangular patch to introduce dual-band-notched properties, which help mitigate interference from WiMAX and WLAN communication systems. The antenna is fabricated on a Mylar® polyester film substrate of 0.3 mm in thickness, with a dielectric constant of 3.2. According to the measurement results, the suggested antenna functions efficiently across the frequency spectrum of 2.29 to 20 GHz, with excellent impedance matching throughout the bandwidth. Furthermore, it provides dual-band-notched coverage at 3.08–3.8 GHz for WiMAX and 4.98–5.89 GHz for WLAN. The antenna exhibits impressive performance, including favorable radiation attributes, consistent gain, and little mutual coupling (less than −20 dB). Additionally, the envelope correlation coefficient (ECC) is extremely low (ECC < 0.01) across the working bandwidth, which indicates excellent UWB MIMO performance. This paper offers an appropriate design methodology for future flexible and compact UWB MIMO systems that can serve as interference-resilient antennas for next-generation wireless applications. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

2906 KB  
Proceeding Paper
Study of Influence of Printing Speed and Layer Height on Dimensional Accuracy of 3D-Printed Carbon Fiber-Reinforced Polyamide Parts
by Valeri Bakardzhiev, Sabi Sabev and Konstantin Chukalov
Eng. Proc. 2025, 104(1), 8; https://doi.org/10.3390/engproc2025104008 - 22 Aug 2025
Abstract
Engineering parts have increasingly higher requirements for geometric accuracy and shape deviation. In 3D printing, optimal physical and mechanical properties and dimensional accuracy are often sought, as parts produced with this technology are increasingly used not only for prototypes but also for responsible [...] Read more.
Engineering parts have increasingly higher requirements for geometric accuracy and shape deviation. In 3D printing, optimal physical and mechanical properties and dimensional accuracy are often sought, as parts produced with this technology are increasingly used not only for prototypes but also for responsible technical products. This requires precise studies of 3D printing parameters of engineering filaments. Accuracy is how close the measured size is to the CAD model. Carbon fiber-reinforced polymers are characterized by high strength and stiffness. In this article, dimensional accuracy of 3D-printed parts made of carbon fiber-reinforced polyamide was studied. For this purpose, eight samples were produced in the shape of a rectangular prism with two types of through holes—hexagonal and round. The dimensional accuracy of the overall dimensions and the holes was studied. The data was processed statistically with the aim of building an adequate mathematical model that analytically synthesizes the expected dimensional accuracy for different combinations of the selected 3D-printed parameters. Full article
Show Figures

Figure 1

20 pages, 6859 KB  
Article
Experimental Investigation of Thermal Conductivity of Selected 3D-Printed Materials
by Maria Tychanicz-Kwiecień, Sebastian Grosicki and Marek Markowicz
Materials 2025, 18(17), 3950; https://doi.org/10.3390/ma18173950 - 22 Aug 2025
Viewed by 216
Abstract
This study presents the results of experimental studies on the thermal conductivity of specimens made from selected pure polymer filaments manufactured with the use of FFF 3D-printing technology. The tested samples were made of polylactic acid (PLA), polyethylene terephthalate glycol (PET-G), and acrylonitrile [...] Read more.
This study presents the results of experimental studies on the thermal conductivity of specimens made from selected pure polymer filaments manufactured with the use of FFF 3D-printing technology. The tested samples were made of polylactic acid (PLA), polyethylene terephthalate glycol (PET-G), and acrylonitrile butadiene styrene (ABS). In particular, the effects of the infill patterns and infill density on the tested samples were examined in order to characterize the influence of these parameters on the materials’ effective thermal conductivity. Honeycomb and grid infill patterns of the tested samples with infill densities of 40%, 60%, 80%, and 100% were examined. The influence of temperature on thermal conductivity was studied as well. Thermal conductivity was measured using the guarded heat flow method, according to the ASTM E1530 standard within the defined temperature ranges of 20–60 °C for ABS and PET-G and 20–50 °C for PLA material. Samples of the tested materials were manufactured with the use of the Fused Filament Fabrication method (FFF), and filaments with a uniform black color were used. The obtained results were analyzed in terms of thermal conductivity variation after samples’ infill pattern and infill density modifications, which provides extended thermal property characterization of the polymeric filaments adopted for 3D printing. Full article
Show Figures

Figure 1

24 pages, 1967 KB  
Review
A Review of 3D Shape Descriptors for Evaluating Fidelity Metrics in Digital Twin
by Md Tarique Hasan Khan, Soonhung Han, Tahir Abbas Jauhar and Chiho Noh
Machines 2025, 13(9), 750; https://doi.org/10.3390/machines13090750 - 22 Aug 2025
Viewed by 142
Abstract
Digital Twin (DTw) technology is a cornerstone of Industry 4.0, enabling real-time monitoring, predictive maintenance, and performance optimization across diverse industries. A key requirement for effective DTw implementation is high geometric fidelity—ensuring the digital model accurately represents the physical counterpart. Fidelity metrics provide [...] Read more.
Digital Twin (DTw) technology is a cornerstone of Industry 4.0, enabling real-time monitoring, predictive maintenance, and performance optimization across diverse industries. A key requirement for effective DTw implementation is high geometric fidelity—ensuring the digital model accurately represents the physical counterpart. Fidelity metrics provide a quantitative means to assess this alignment in terms of geometry, behavior, and performance. Among these, 3D shape descriptors play a central role in evaluating geometric fidelity, offering computational tools to measure shape similarity between physical and digital entities. This paper presents a comprehensive review of 3D shape descriptor methods and their applicability to geometric fidelity assessment in DTw systems. We introduce a structured taxonomy encompassing classical, structural, texture-based, and deep learning-based descriptors, and evaluate each in terms of transformation invariance, robustness to noise, computational efficiency, and suitability for various DTw applications. Building upon this analysis, we propose a conceptual fidelity metric that maps descriptor properties to the specific fidelity requirements of different application domains. This metric serves as a foundational framework for shape-based fidelity evaluation and supports the selection of appropriate descriptors based on system needs. Importantly, this work aligns with and contributes to the emerging ISO 30138 standardization initiative by offering a descriptor-driven approach to fidelity assessment. Through this integration of taxonomy, metric design, and standardization insight, this paper provides a roadmap for more consistent, scalable, and interoperable fidelity measurement in digital twin environments—particularly those demanding high precision and reliability. Full article
(This article belongs to the Special Issue Artificial Intelligence and Robotics in Manufacturing and Automation)
Show Figures

Figure 1

32 pages, 2414 KB  
Article
Can EU Countries Balance Digital Business Transformation with the Sustainable Development Goals? An Integrated Multivariate Assessment
by Emilia Herman and Maria-Ana Georgescu
Systems 2025, 13(8), 722; https://doi.org/10.3390/systems13080722 - 21 Aug 2025
Viewed by 216
Abstract
The aim of the study was to evaluate the digital business transformation across EU countries and its relationship with key Sustainable Development Goals (SDGs): SDG 8 (Decent Work and Economic Growth), SDG 9 (Industry, Innovation, and Infrastructure), and SDG 13 (Climate Action). The [...] Read more.
The aim of the study was to evaluate the digital business transformation across EU countries and its relationship with key Sustainable Development Goals (SDGs): SDG 8 (Decent Work and Economic Growth), SDG 9 (Industry, Innovation, and Infrastructure), and SDG 13 (Climate Action). The Digital Business Transformation Index, developed from eleven digital technology indicators related to e-business and e-commerce, is constructed using Principal Component Analysis to provide a comprehensive framework for assessing digitalization at the enterprise level. The results reveal substantial disparities among member states, with northern and western countries leading, while southern and eastern countries are lagging behind. Regression analyses show a strong positive relationship between digital business transformation and SDG 9 and a negative association with SDG 13. Cluster analysis identifies six groups of countries with varying levels of digital and sustainability performance and emphasizes the need for tailored policy responses. Evidence confirms a digital–green trade-off in many EU countries; however, strategic policy integration can mitigate this challenge. The findings underline the importance of targeted investments in R&D, digital infrastructure, and ICT training, particularly in underperforming regions. Tailored measures are essential to ensure that digital business transformation aligns with inclusive and sustainable development across the EU. Full article
(This article belongs to the Special Issue Sustainable Business Models and Digital Transformation)
Show Figures

Figure 1

17 pages, 4098 KB  
Article
An Open Source Validation System for Continuous Arterial Blood Pressure Measuring Sensors
by Attila Répai, Sándor Földi, Péter Sótonyi and György Cserey
Sensors 2025, 25(16), 5173; https://doi.org/10.3390/s25165173 - 20 Aug 2025
Viewed by 276
Abstract
The advancement of sensor technologies enables the measurement of high-quality continuous blood pressure signals, which has become an important area in healthcare. The development of such application-specific sensors can be time-consuming, expensive, and difficult to test or validate with known and consistent waveforms. [...] Read more.
The advancement of sensor technologies enables the measurement of high-quality continuous blood pressure signals, which has become an important area in healthcare. The development of such application-specific sensors can be time-consuming, expensive, and difficult to test or validate with known and consistent waveforms. In this manuscript, an open-source blood pressure waveform simulator with a Python validation package is described. The core part, a 3D-printed cam, can be generated based on real blood pressure waveforms. The validation software framework compares in detail the waveform used to design the cam with the time series from the sensor being validated. The simulator was validated using a 3D force sensor. The RMSE of accuracy was 1.94 (44)–2.74 (63)%, and the Pearson correlation with the nominal signal was 99.84 (13)–99.39 (18)%. As for precision, the RMSE of the repeatability of cam rotations was 1.53 (71)–2.13 (116)% and the Pearson correlation was 99.85 (16)–99.59 (57)%. The presented simulator proved to be robust and accurate in short- and long-term use, as it produced the signal waveform reliably and with high fidelity. It reduces development costs for early-stage sensor development and research, offering a solution that is easy to manufacture yet capable of continuously outputting human arterial blood pressure waveforms spanning multiple consecutive cardiac cycles. Full article
Show Figures

Figure 1

21 pages, 2712 KB  
Review
The State of the Art and Potentialities of UAV-Based 3D Measurement Solutions in the Monitoring and Fault Diagnosis of Quasi-Brittle Structures
by Mohammad Hajjar, Emanuele Zappa and Gabriella Bolzon
Sensors 2025, 25(16), 5134; https://doi.org/10.3390/s25165134 - 19 Aug 2025
Viewed by 460
Abstract
The structural health monitoring (SHM) of existing infrastructure and heritage buildings is essential for their preservation and safety. This is a review paper which focuses on modern three-dimensional (3D) measurement techniques, particularly those that enable the assessment of the structural response to environmental [...] Read more.
The structural health monitoring (SHM) of existing infrastructure and heritage buildings is essential for their preservation and safety. This is a review paper which focuses on modern three-dimensional (3D) measurement techniques, particularly those that enable the assessment of the structural response to environmental actions and operational conditions. The emphasis is on the detection of fractures and the identification of the crack geometry. While traditional monitoring systems—such as pendula, callipers, and strain gauges—have been widely used in massive, quasi-brittle structures like dams and masonry buildings, advancements in non-contact and computer-vision-based methods are increasingly offering flexible and efficient alternatives. The integration of drone-mounted systems facilitates access to challenging inspection zones, enabling the acquisition of quantitative data from full-field surface measurements. Among the reviewed techniques, digital image correlation (DIC) stands out for its superior displacement accuracy, while photogrammetry and time-of-flight (ToF) technologies offer greater operational flexibility but require additional processing to extract displacement data. The collected information contributes to the calibration of digital twins, supporting predictive simulations and real-time anomaly detection. Emerging tools based on machine learning and digital technologies further enhance damage detection capabilities and inform retrofitting strategies. Overall, vision-based methods show strong potential for outdoor SHM applications, though practical constraints such as drone payload and calibration requirements must be carefully managed. Full article
(This article belongs to the Special Issue Feature Review Papers in Fault Diagnosis & Sensors)
Show Figures

Figure 1

13 pages, 26718 KB  
Article
Design and Analysis of 3–12 GHz UWB Flat Gain LNA in 0.15 µm GaAs pHEMT Technology
by Tugba Haykir Ergin, Utku Tuncel, Serkan Topaloglu and Hüseyin Arda Ülkü
Electronics 2025, 14(16), 3272; https://doi.org/10.3390/electronics14163272 - 18 Aug 2025
Viewed by 216
Abstract
This paper presents the design and implementation of an ultra-wideband (UWB) and flat gain low noise amplifier (LNA) using 0.15 µm GaAs pHEMT technology, specifically tailored for applications that benefit from multi-band capability, such as satellite communication. The designed LNA consists of three [...] Read more.
This paper presents the design and implementation of an ultra-wideband (UWB) and flat gain low noise amplifier (LNA) using 0.15 µm GaAs pHEMT technology, specifically tailored for applications that benefit from multi-band capability, such as satellite communication. The designed LNA consists of three stages: Two stages are cascoded using source degeneration with a resistor for low noise and high linearity, and the third cascaded stage is utilized for high gain. The designed UWB LNA exhibits a measured gain of 17.4 ± 1 dB between 312 and GHz and a 3 dB bandwidth of 12.4 GHz (1.6–14 GHz). It achieves a noise figure (NF) of 2.5–4.3 dB and an output P1dB of 15 dBm. The chip size is 3×1mm2, and it operates without the need for any external components. When compared to LNAs in the literature, the proposed design stands out for its flat gain in the specified frequency band, making the LNA particularly attractive for volume-limited and power-constrained applications. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

19 pages, 3976 KB  
Article
Improving Centrifugal Pump Performance and Efficiency Using Composite Materials Through Additive Manufacturing
by Vasileios Papageorgiou, Gabriel Mansour and Ilias Chouridis
Machines 2025, 13(8), 729; https://doi.org/10.3390/machines13080729 - 17 Aug 2025
Viewed by 282
Abstract
Additive Manufacturing is a rapidly developing technology that enables the fabrication of objects with complex geometries and high levels of customization while keeping the prototyping costs relatively low. In recent years, its application has grown to include the fabrication of end-use parts, creating [...] Read more.
Additive Manufacturing is a rapidly developing technology that enables the fabrication of objects with complex geometries and high levels of customization while keeping the prototyping costs relatively low. In recent years, its application has grown to include the fabrication of end-use parts, creating new opportunities in industries such as the automotive, aerospace, mechanical, and hydraulic engineering industries. The present research paper focuses on the fabrication and evaluation of 3D-printed operational end-use parts of a water pump, which were originally made from cast iron. This approach aims to determine whether AM can be an alternative for metal parts in operational systems such as water pumps. In particular, the impeller of a centrifugal pump is remanufactured using material extrusion AM technology with PPS-CF composite polymer as a fabrication material. Subsequently, the surface roughness of the two parts is measured, and the performance of each part is predicted by creating a CFD model. Additionally, the printed part is compared to the original part by conducting a centrifugal pump performance test for each impeller. The results show that the 3D-printed impeller achieves an approximate 15% increase in overall efficiency compared to the original impeller. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

25 pages, 7740 KB  
Article
Anisotropy of Mechanical Properties of 3D-Printed Materials—Influence of Application Time of Subsequent Layers
by Marcin Maroszek, Izabela Hager, Katarzyna Mróz, Mateusz Sitarz and Marek Hebda
Materials 2025, 18(16), 3845; https://doi.org/10.3390/ma18163845 - 15 Aug 2025
Viewed by 595
Abstract
Three-dimensional concrete printing (3DCP) is an emerging additive manufacturing technology with increasing application potential in the construction industry, offering advantages such as reduced labor requirements, shortened construction time, and material efficiency. However, structural integrity remains a challenge, particularly due to weak interlayer bonding [...] Read more.
Three-dimensional concrete printing (3DCP) is an emerging additive manufacturing technology with increasing application potential in the construction industry, offering advantages such as reduced labor requirements, shortened construction time, and material efficiency. However, structural integrity remains a challenge, particularly due to weak interlayer bonding resulting from the layered manufacturing process. This study investigates the mechanical performance and anisotropy of 3D-printed mineral-based composites with respect to the time interval between successive layers. Specimens were printed with varying interlayer intervals (0, 25, and 50 min) and tested in different loading directions. Flexural, compressive, and tensile strengths (direct and splitting methods) were measured both parallel and perpendicular to the layer orientation. Results showed a clear degradation in mechanical properties with increasing interlayer time, particularly in the direction perpendicular to the layers. Flexural strength decreased by over 25% and direct tensile strength by up to 40% with a 25 min interval. Compressive strength also declined, though less dramatically. Compared to cast specimens, printed elements showed 3–4 times lower compressive strength, highlighting the significant impact of interlayer cohesion. This study confirms that both the time between layers and the loading direction strongly influence mechanical behavior, underlining the anisotropic nature of 3DCP elements and the need for process optimization to ensure structural reliability. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Graphical abstract

24 pages, 2009 KB  
Article
Artificial Intelligence and Sustainable Practices in Coastal Marinas: A Comparative Study of Monaco and Ibiza
by Florin Ioras and Indrachapa Bandara
Sustainability 2025, 17(16), 7404; https://doi.org/10.3390/su17167404 - 15 Aug 2025
Viewed by 387
Abstract
Artificial intelligence (AI) is playing an increasingly important role in driving sustainable change across coastal and marine environments. Artificial intelligence offers strong support for environmental decision-making by helping to process complex data, anticipate outcomes, and fine-tune day-to-day operations. In busy coastal zones such [...] Read more.
Artificial intelligence (AI) is playing an increasingly important role in driving sustainable change across coastal and marine environments. Artificial intelligence offers strong support for environmental decision-making by helping to process complex data, anticipate outcomes, and fine-tune day-to-day operations. In busy coastal zones such as the Mediterranean where tourism and boating place significant strain on marine ecosystems, AI can be an effective means for marinas to reduce their ecological impact without sacrificing economic viability. This research examines the contribution of artificial intelligence toward the development of environmental sustainability in marina management. It investigates how AI can potentially reconcile economic imperatives with ecological conservation, especially in high-traffic coastal areas. Through a focus on the impact of social and technological context, this study emphasizes the way in which local conditions constrain the design, deployment, and reach of AI systems. The marinas of Ibiza and Monaco are used as a comparative backdrop to depict these dynamics. In Monaco, efforts like the SEA Index® and predictive maintenance for superyachts contributed to a 28% drop in CO2 emissions between 2020 and 2025. In contrast, Ibiza focused on circular economy practices, reaching an 85% landfill diversion rate using solar power, AI-assisted waste systems, and targeted biodiversity conservation initiatives. This research organizes AI tools into three main categories: supervised learning, anomaly detection, and rule-based systems. Their effectiveness is assessed using statistical techniques, including t-test results contextualized with Cohen’s d to convey practical effect sizes. Regression R2 values are interpreted in light of real-world policy relevance, such as thresholds for energy audits or emissions certification. In addition to measuring technical outcomes, this study considers the ethical concerns, the role of local communities, and comparisons to global best practices. The findings highlight how artificial intelligence can meaningfully contribute to environmental conservation while also supporting sustainable economic development in maritime contexts. However, the analysis also reveals ongoing difficulties, particularly in areas such as ethical oversight, regulatory coherence, and the practical replication of successful initiatives across diverse regions. In response, this study outlines several practical steps forward: promoting AI-as-a-Service models to lower adoption barriers, piloting regulatory sandboxes within the EU to test innovative solutions safely, improving access to open-source platforms, and working toward common standards for the stewardship of marine environmental data. Full article
Show Figures

Figure 1

12 pages, 2161 KB  
Article
Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion
by Zhaoning Yang, Zihao Yang, Xiaoxin Shu, Wenshuai Chen, Jiaolong Liu, Keqing Chen and Yanmin Jia
ChemEngineering 2025, 9(4), 90; https://doi.org/10.3390/chemengineering9040090 - 15 Aug 2025
Viewed by 245
Abstract
Piezoelectric catalytic technology has attracted much attention in the field of dye wastewater treatment, in which inorganic piezoelectric materials have been widely studied. Its core mechanism involves utilizing the piezoelectric effect to generate positive and negative charges, which react with oxygen ions and [...] Read more.
Piezoelectric catalytic technology has attracted much attention in the field of dye wastewater treatment, in which inorganic piezoelectric materials have been widely studied. Its core mechanism involves utilizing the piezoelectric effect to generate positive and negative charges, which react with oxygen ions and hydroxyl radicals, respectively, to generate reactive oxygen species to degrade organic pollutants. Currently, while organic piezoelectric catalysts theoretically offer significant advantages such as low cost and high processability, there has been a notable lack of research in this area, which presents an innovative opportunity for the exploration of new organic piezoelectric catalytic materials. In this study, new research using natural nanocellulose (FC) suspension as an efficient organic piezoelectric catalyst is reported for the first time. The experimental results showed that the catalyst exhibited excellent degradation performance for Rhodamine B (RhB), Acid Orange 7 (AO7), and Methyl Orange (MO) under ultrasonic vibration (40 kHz, 200 W): the degradation rates reached 95.4%, 72.4%, and 31.2%, respectively, for 150 min, and the corresponding first-order reaction kinetic constants were 0.0205, 0.00858, and 0.00249 min−1, respectively. It is noteworthy that the RhB solution can achieve the optimal degradation efficiency without adjustment under neutral initial pH conditions, which significantly enhances the practical application feasibility. The experimental results showed that the catalyst, with a measurable piezoelectric coefficient (d33 = 4.4 pm/V), exhibited excellent degradation performance for Rhodamine B (RhB), Acid Orange 7 (AO7), and Methyl Orange (MO) under ultrasonic vibration (40 kHz, 200 W). This organic piezoelectric catalyst, based on renewable biomass, innovatively converts mechanical vibration energy in the environment into the power to degrade pollutants. It not only expands the application boundaries of organic piezoelectric materials but also provides a new solution for sustainable water treatment technology, demonstrating extremely promising application prospects in the field of green and environmentally friendly water treatment. Full article
Show Figures

Figure 1

11 pages, 681 KB  
Review
Lung Function Assessment in Pediatric Asthma: Selecting the Optimal Tests for Clinical and Research Applications
by Giulia Michela Pellegrino, Alessandro Gobbi, Marco Fantini, Riccardo Pellegrino and Giuseppe Francesco Sferrazza Papa
Children 2025, 12(8), 1073; https://doi.org/10.3390/children12081073 - 15 Aug 2025
Viewed by 290
Abstract
Recent documents from leading international pediatric respiratory societies have strongly encouraged the use of lung function tests in clinical practice and research. These tests can explore ventilatory function across its volumetric and temporal domains, providing information on the intrapulmonary location and extent of [...] Read more.
Recent documents from leading international pediatric respiratory societies have strongly encouraged the use of lung function tests in clinical practice and research. These tests can explore ventilatory function across its volumetric and temporal domains, providing information on the intrapulmonary location and extent of damage caused by respiratory diseases. The choice of which test to use in each case to investigate presenting respiratory symptoms depends on the patient’s symptoms and the diagnostic–therapeutic phase being addresse d. In the most common and representative chronic pediatric condition—bronchial asthma—lung function tests play an especially important role due to the disease’s complexity and the fluctuating nature of airway obstruction. This review aims to examine the potential of various lung function tests in asthma, helping clinicians and researchers to optimize diagnosis and follow-up with the most appropriate methodology. While spirometry and flow resistance measurements using the interrupter technique have historically been the cornerstones of diagnosis and clinical monitoring in childhood asthma, the advent of new technologies—such as multiple breath nitrogen washout (MBNW) and the forced oscillation technique (FOT)—is opening up the door to a more nuanced view of the disease. These tools allow for an evaluation of asthma as a structurally complex and topographically and temporally disorganized condition. FOT, in particular, facilitates measurement acceptability in less cooperative subjects, both in respiratory physiology labs and even at the patient’s home. Full article
(This article belongs to the Special Issue Lung Function and Respiratory Diseases in Children and Infants)
Show Figures

Figure 1

Back to TopTop