Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (983)

Search Parameters:
Keywords = 3D-printed scaffold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2133 KB  
Review
Harnessing Plant Bioactive Compounds in Biomaterial Scaffolds for Advanced Wound Healing: A Comprehensive Review
by Nur Syazana Sabarudin, Norshazliza Ab Ghani, Nazeha Ahmat, Eka Wahyuni Harlin, Looi Qi Hao, Juni Handajani, Fatimah Mohd Nor, Nur Izzah Md Fadilah, Manira Maarof and Mh Busra Fauzi
Biomedicines 2025, 13(10), 2414; https://doi.org/10.3390/biomedicines13102414 (registering DOI) - 2 Oct 2025
Abstract
Wound healing remains a significant clinical challenge due to antibiotic-resistant pathogens, persistent inflammation, oxidative stress, and impaired tissue regeneration. Conventional therapies are often inadequate, necessitating alternative strategies. Plant bioactive compounds, including flavonoids, tannins, terpenoids, and alkaloids, offer antimicrobial, anti-inflammatory, antioxidant, and pro-angiogenic properties [...] Read more.
Wound healing remains a significant clinical challenge due to antibiotic-resistant pathogens, persistent inflammation, oxidative stress, and impaired tissue regeneration. Conventional therapies are often inadequate, necessitating alternative strategies. Plant bioactive compounds, including flavonoids, tannins, terpenoids, and alkaloids, offer antimicrobial, anti-inflammatory, antioxidant, and pro-angiogenic properties that directly address these challenges in wound healing therapy. However, their poor solubility, instability, and rapid degradation at the wound site limit clinical translation. Biomaterial-based scaffolds such as hydrogels, electrospun nanofibers, lyophilized dressings, and 3D-bioprinted constructs have emerged as promising delivery platforms to enhance bioavailability, stability, and sustained release of bioactive compounds while providing structural support for cell adhesion, proliferation, and tissue repair. This review was conducted through a structured literature search using PubMed, Scopus, and Web of Science databases, covering studies published between 1998 and 2025, with keywords including wound healing, phytochemicals, plant bioactive compounds, scaffolds, hydrogels, electrospinning, and 3D bioprinting. The findings highlight how incorporation of plant bioactive compounds onto scaffolds can combat resistant microbial infections, mitigate oxidative stress, promote angiogenesis, and accelerate tissue regeneration. Despite these promising outcomes, further optimization of scaffold design, standardization of bioactive formulations, and translational studies are needed to bridge laboratory research with clinical applications for next generation wound healing therapies. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

27 pages, 981 KB  
Review
Organ-on-a-Chip Models of the Female Reproductive System: Current Progress and Future Perspectives
by Min Pan, Huike Chen, Kai Deng and Ke Xiao
Micromachines 2025, 16(10), 1125; https://doi.org/10.3390/mi16101125 - 30 Sep 2025
Abstract
The female reproductive system represents a highly complex regulatory network governing critical physiological functions, encompassing reproductive capacity and endocrine regulation that maintains female physiological homeostasis. The in vitro simulation system provides a novel tool for biomedical research and can be used as physiological [...] Read more.
The female reproductive system represents a highly complex regulatory network governing critical physiological functions, encompassing reproductive capacity and endocrine regulation that maintains female physiological homeostasis. The in vitro simulation system provides a novel tool for biomedical research and can be used as physiological and pathological models to study the female reproductive system. Recent advances in this technology have evolved from 2D and 3D printing to organ-on-a-chip (OOC) and microfluidic systems, which has emerged as a transformative platform for modeling the female reproductive system. These microphysiological systems integrate microfluidics, 3D cell culture, and biomimetic scaffolds to replicate key functional aspects of reproductive organs and tissues. They have enabled precise simulation of hormonal regulation, embryo-endometrium interactions, and disease mechanisms such as endometriosis and gynecologic cancers. This review highlights the current state of female reproductive OOCs, including ovary-, uterus-, and fallopian tube-on-a-chip system, their applications in assisted reproduction and disease modeling, and the technological hurdles to their widespread application. Though significant barriers remain in scaling OOCs for high-throughput drug screening, standardizing protocols for clinical applications, and validating their predictive value against human patient outcomes, OOCs have emerged as a transformative platform to model complex pathologies, offering unprecedented insights into disease mechanisms and personalized therapeutic interventions. Future directions, including multi-organ integration for systemic reproductive modeling, incorporation of microbiome interactions, and clinical translation for mechanisms of drug action, will facilitate unprecedented insights into reproductive physiology and pathology. Full article
(This article belongs to the Special Issue Microfluidics in Biomedical Research)
19 pages, 307 KB  
Review
State of Research on Tissue Engineering with 3D Printing for Breast Reconstruction
by Gioacchino D. De Sario Velasquez, Yousef Tanas, Francesca Taraballi, Tanya Herzog and Aldona Spiegel
J. Clin. Med. 2025, 14(19), 6737; https://doi.org/10.3390/jcm14196737 - 24 Sep 2025
Viewed by 189
Abstract
Background: Three-dimensional (3-D) printing paired with tissue-engineering strategies promises to overcome the volume, contour, and donor-site limitations of traditional breast reconstruction. Patient-specific, bioabsorbable constructs could enable one-stage procedures that better restore aesthetics and sensation. Methods: A narrative review was conducted following a targeted [...] Read more.
Background: Three-dimensional (3-D) printing paired with tissue-engineering strategies promises to overcome the volume, contour, and donor-site limitations of traditional breast reconstruction. Patient-specific, bioabsorbable constructs could enable one-stage procedures that better restore aesthetics and sensation. Methods: A narrative review was conducted following a targeted PubMed search (inception—April 2025) using combinations of “breast reconstruction,” “tissue engineering,” “3-D printing,” and “scaffold.” Pre-clinical and clinical studies describing polymer-based chambers or scaffolds for breast mound or nipple regeneration were eligible. Data was extracted on scaffold composition, animal/human model, follow-up, and volumetric or histological outcomes. Results: Forty-three publications met inclusion criteria: 35 pre-clinical, six early-phase clinical, and two device reports. The predominant strategy (68% of studies) combined a vascularized fat flap with a custom 3-D-printed chamber to guide adipose expansion. Poly-lactic acid, poly-glyceric acid, poly-lactic-co-glycolic acid, poly-4-hydroxybutyrate, polycarbonate, and polycaprolactone were the principal polymers investigated; only poly-4-hydroxybutyrate and poly-lactic acid have been tested for nipple scaffolds. Bioabsorbable devices supported up to 140% volume gain in large-animal models, but even the best human series (≤18 months) achieved sub-mastectomy volumes and reported high seroma rates. Mechanical testing showed elastic moduli (5–80 MPa) compatible with native breast tissue, yet long-term load-bearing data are scarce. Conclusions: Current evidence demonstrates biocompatibility and incremental adipose regeneration, but clinical translation is constrained by small sample sizes, incomplete resorption profiles, and regulatory uncertainty. Standardized large-animal protocols, head-to-head polymer comparisons, and early human feasibility trials with validated outcome measures are essential next steps. Nevertheless, the convergence of 3-D printing and tissue engineering represents a paradigm shift that could ultimately enable bespoke, single-stage breast reconstruction with superior aesthetic and functional outcomes. Full article
21 pages, 4703 KB  
Article
Development of Bioceramic Bone-Inspired Scaffolds Through Single-Step Melt-Extrusion 3D Printing for Segmental Defect Treatment
by Aikaterini Dedeloudi, Pietro Maria Bertelli, Laura Martinez-Marcos, Thomas Quinten, Imre Lengyel, Sune K. Andersen and Dimitrios A. Lamprou
J. Funct. Biomater. 2025, 16(10), 358; https://doi.org/10.3390/jfb16100358 - 23 Sep 2025
Viewed by 182
Abstract
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic [...] Read more.
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic solutions. Although Fused Filament Fabrication (FFF) and Direct Ink Writing (DIW) are widely utilised for fabricating bone-like implants, the need for multiple processing steps often prolongs the overall production time. In this study, a single-step melt-extrusion 3DP technique was performed to develop multi-material scaffolds including bioceramics, hydroxyapatite (HA), and β-tricalcium phosphate (TCP) in both their bioactive and calcined forms at 10% and 20% w/w, within polycaprolactone (PCL) matrices. Printing parameters were optimised, and physicochemical properties of all biomaterials and final forms were evaluated. Thermal degradation and surface morphology analyses assessed the consistency and distribution of the ceramics across the different formulations. The tensile testing of the scaffolds defined the impact of each ceramic type and wt% on scaffold flexibility performance, while in vitro cell studies determined the cytocompatibility efficiency. Hence, all 3D-printed PCL–ceramic composite scaffolds achieved structural integrity and physicochemical and thermal stability. The mechanical profile of extruded samples was relevant to the ceramic consistency, providing valuable insights for further mechanotransduction investigations. Notably, all materials showed high cell viability and proliferation, indicating strong biocompatibility. Therefore, this additive manufacturing (AM) process is a precise and fast approach for developing biomaterial-based scaffolds, with potential applications in surgical restoration and support of segmental bone defects. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Graphical abstract

13 pages, 250 KB  
Review
Nanocomposite Biomaterials for Tissue-Engineered Hernia Repair: A Review of Recent Advances
by Octavian Andronic, Alexandru Cosmin Palcau, Alexandra Bolocan, Alexandru Dinulescu, Daniel Ion and Dan Nicolae Paduraru
Biomolecules 2025, 15(9), 1348; https://doi.org/10.3390/biom15091348 - 22 Sep 2025
Viewed by 331
Abstract
Hernia repair is among the most frequent procedures in general surgery, traditionally performed with synthetic meshes such as polypropylene. While effective in reducing recurrence, these materials are biologically inert and often trigger chronic inflammation, fibrosis, pain, and impaired abdominal wall function, with a [...] Read more.
Hernia repair is among the most frequent procedures in general surgery, traditionally performed with synthetic meshes such as polypropylene. While effective in reducing recurrence, these materials are biologically inert and often trigger chronic inflammation, fibrosis, pain, and impaired abdominal wall function, with a significant impact on long-term quality of life. A comprehensive literature search was conducted in PubMed, Web of Science, and Scopus databases, and relevant preclinical, clinical, and review articles were synthesized within a narrative review framework. Recent advances in tissue engineering propose a shift from passive reinforcement to regenerative strategies based on biomimetic scaffolds, nanomaterials, and nanocomposites that replicate the extracellular matrix, enhance cell integration, and provide controlled drug delivery. Nanotechnology enables localized release of anti-inflammatory, antimicrobial, and pro-angiogenic agents, while electrospun nanofibers and composite scaffolds improve strength and elasticity. In parallel, 3D printing allows for patient-specific implants with tailored architecture and regenerative potential. Although preclinical studies show encouraging results, clinical translation remains limited by cost, regulatory constraints, and long-term safety uncertainties. Overall, these innovations highlight a transition toward personalized and regenerative hernia repair, aiming to improve durability, function, and patient quality of life. Full article
11 pages, 2071 KB  
Article
Composite Electroforming of a Binder-Free Porous Ni/S-PTh Electrode for Li–S Batteries by Combining 3D Printing, Pulse Plating, and Composite Electrodeposition
by Wassima El Mofid, Robin Arnet, Oliver Kesten and Timo Sörgel
Batteries 2025, 11(9), 343; https://doi.org/10.3390/batteries11090343 - 19 Sep 2025
Viewed by 318
Abstract
A novel process for the synthesis of binder-free, porous nickel/polythiophene-functionalized sulfur (Ni/S-PTh) composite cathodes for lithium–sulfur (Li–S) batteries is introduced in this paper. Initially, a polyvinyl butyl polymer scaffold is 3D printed, then coated with a graphite-based conducting layer, and, finally, it is [...] Read more.
A novel process for the synthesis of binder-free, porous nickel/polythiophene-functionalized sulfur (Ni/S-PTh) composite cathodes for lithium–sulfur (Li–S) batteries is introduced in this paper. Initially, a polyvinyl butyl polymer scaffold is 3D printed, then coated with a graphite-based conducting layer, and, finally, it is pulse-plated for nickel deposition to produce a high-surface-area, mechanically stable current collector. S-PTh particles are afterwards co-deposited into the Ni matrix through composite electrodeposition. After the dissolution of the polymer template, the resulting self-standing electrodes still maintain porous structure with uniform sulfur distribution and a distinct transition between the dense Ni layer and the Ni/S-PTh composite layer. Electrochemical characterization of the Ni/S-PTh composite cathodes by galvanostatic cycling at C/10 rate results in an initial specific discharge capacity of ~1120 mAh·g−1 and a specific capacity of ~910 mAh·g−1 after 200 cycles, resulting in a high capacity retention of ~81 %. For our novel approach, no steps at high temperatures or toxic solvents are involved and the need for polymer binders and conductive additives is avoided. These results demonstrate the potential of composite electrodeposition in combination with 3D printing for producing sustainable, high-performance sulfur cathodes with tunable architecture. Full article
Show Figures

Figure 1

17 pages, 543 KB  
Review
The Application of Biologic and Synthetic Bone Grafts in Scoliosis Surgery: A Scoping Review of Emerging Technologies
by Nikolaos Trygonis, Ioannis I. Daskalakis and Christos Tsagkaris
Healthcare 2025, 13(18), 2359; https://doi.org/10.3390/healthcare13182359 - 19 Sep 2025
Viewed by 353
Abstract
Background: Spinal deformity correction surgery, particularly in scoliosis, often necessitates long fusion constructs and complex osteotomies that create significant structural bone defects. These defects threaten the integrity of spinal fusion, potentially compromising surgical outcomes. Bone grafting remains the cornerstone of addressing these [...] Read more.
Background: Spinal deformity correction surgery, particularly in scoliosis, often necessitates long fusion constructs and complex osteotomies that create significant structural bone defects. These defects threaten the integrity of spinal fusion, potentially compromising surgical outcomes. Bone grafting remains the cornerstone of addressing these defects, traditionally relying on autologous bone. However, limitations such as donor site morbidity and insufficient graft volume have made urgent the development and adoption of biologic substitutes and synthetic alternatives. Additionally, innovations in three-dimensional (3D) printing offer emerging solutions for graft customization and improved osseointegration. Objective: This scoping review maps the evidence of the effectiveness of the use of biologic and synthetic bone grafts in scoliosis surgery. It focusses on the role of novel technologies, particularly osteobiologics in combination with 3D-printed scaffolds, in enhancing graft performance and surgical outcomes. Methods: A comprehensive literature search was conducted using PubMed, Scopus, and the Cochrane Library to identify studies published within the last 15 years. Inclusion criteria focused on clinical and preclinical research involving biologic grafts (e.g., allografts, demineralized bone matrix-DBM, bone morphogenetic proteins-BMPs), synthetic substitutes (e.g., ceramics, polymers), and 3D-printed grafts in the context of scoliosis surgery. Data were extracted on graft type, clinical application, outcome measures, and complications. The review followed PRISMA-ScR guidelines and employed the Arksey and O’Malley methodological framework. Results: The included studies revealed diverse grafting strategies across pediatric and adult populations, with varying degrees of fusion success, incorporation rates, and complication profiles. It also included some anime studies. Emerging 3D technologies demonstrated promising preliminary results but require further validation. Conclusions: Osteobiologic and synthetic bone grafts, including those enhanced with 3D technologies, represent a growing area of interest in scoliosis surgery. Despite promising outcomes, more high-quality comparative clinical studies are needed to guide clinical decision-making and standardize practice. Full article
Show Figures

Figure 1

19 pages, 3633 KB  
Article
pH-Sensitive Naproxen Delivery via ZIF and Kaolin@ZIF Nanocarriers in 3D-Printed PLA–Gelatin Hydrogels
by Reyhan Çetin, Berna Ates, Ozgul Gok and Birgül Benli
Polymers 2025, 17(18), 2497; https://doi.org/10.3390/polym17182497 - 16 Sep 2025
Viewed by 334
Abstract
This study presents a pH-responsive drug delivery platform, created based on naproxen-loaded zeolitic imidazolate frameworks (ZIF) and kaolin-ZIF (Kao@ZIF) nanocarriers embedded in a 3D-printed polylactic acid (PLA) scaffold coated with a gelatin hydrogel. The PLA discs were designed as structural tissue models to [...] Read more.
This study presents a pH-responsive drug delivery platform, created based on naproxen-loaded zeolitic imidazolate frameworks (ZIF) and kaolin-ZIF (Kao@ZIF) nanocarriers embedded in a 3D-printed polylactic acid (PLA) scaffold coated with a gelatin hydrogel. The PLA discs were designed as structural tissue models to simulate localized drug release. Kaolin (Kao), a basic mineral in the kaolin group that includes halloysite, was selected as a chemically stable and biocompatible adsorbent to enhance ZIF integrity and system reliability. To address the concerns about the safety and reproducibility of nanoscale materials in biomedical applications, structurally stable ZIF and Kao@ZIF nanocarriers were synthesized and characterized using FT-IR, SEM-EDS, and LC-M/MS, measuring drug loading efficiencies over 90% for ZIF and slightly higher for Kao@ZIF. In vitro release profiles showed strong pH sensitivity, with greater naproxen release at acidic pH (5.4) and more sustained release from Kao@ZIF. Cytotoxicity assays using L929 fibroblasts demonstrated improved biocompatibility, with cell viabilities of approximately 75% for ZIF–naproxen, 82% for Kao@ZIF–naproxen, and 90% for gelatin-coated PLA–Kao@ZIF scaffolds, for 24 h incubation. Incorporating kaolin-stabilized ZIF nanocarriers into 3D-printed biodegradable scaffolds offers a promising and safer approach for pH-sensitive, tissue-targeted drug delivery, while laying the groundwork for future studies involving halloysite-derived nanotubular systems. Full article
Show Figures

Figure 1

20 pages, 1212 KB  
Review
An Update Regarding the Use of Contemporary Dental Materials in Periodontal Regeneration
by Dragos Ioan Virvescu, Ovidiu-Sebastian Nicolaiciuc, Gabriel Rotundu, Florinel Cosmin Bida, Oana-Maria Butnaru, Zinovia Surlari, Mihaela Scurtu, Dana Gabriela Budala and Ionut Luchian
Materials 2025, 18(18), 4278; https://doi.org/10.3390/ma18184278 - 12 Sep 2025
Viewed by 265
Abstract
Background: Periodontal regeneration has become a focal point in modern dental therapy, aiming to restore the form and function of lost periodontal structures. A literature search was conducted on the PubMed, Scopus, and Web of Science databases, focusing on studies published between 2000 [...] Read more.
Background: Periodontal regeneration has become a focal point in modern dental therapy, aiming to restore the form and function of lost periodontal structures. A literature search was conducted on the PubMed, Scopus, and Web of Science databases, focusing on studies published between 2000 and 2025 that addressed the clinical use of dental biomaterials in periodontal regeneration. Emphasis was placed on the use of bone grafts, guided tissue regeneration (GTR) membranes, enamel matrix derivatives, scaffolds, growth factors, and stem cell-based technologies. The review also outlines the limitations of current strategies, including unpredictable clinical responses, the rapid degradation of bioactive components, and variability in healing. Emerging directions, such as nanotechnology, gene-activated matrices, and 3D-printed scaffolds, are highlighted for their potential to improve predictability and personalization in periodontal therapy. This synthesis underscores both the progress and ongoing challenges in the field, emphasizing the need for continued research into material innovation and patient-specific solutions. Full article
Show Figures

Figure 1

26 pages, 3759 KB  
Review
3D Bioprinted Neural Tissues: Emerging Strategies for Regeneration and Disease Modeling
by Taekyung Choi, Jinseok Park, Suvin Lee, Hee-Jae Jeon, Byeong Hee Kim, Hyun-Ouk Kim and Hyungseok Lee
Pharmaceutics 2025, 17(9), 1176; https://doi.org/10.3390/pharmaceutics17091176 - 10 Sep 2025
Viewed by 721
Abstract
Three-dimensional (3D) bioprinting has emerged as a versatile platform in regenerative medicine, capable of replicating the structural and functional intricacies of the central and peripheral nervous systems (CNS and PNS). Beyond structural repair, it enables the construction of engineered tissues that closely recapitulate [...] Read more.
Three-dimensional (3D) bioprinting has emerged as a versatile platform in regenerative medicine, capable of replicating the structural and functional intricacies of the central and peripheral nervous systems (CNS and PNS). Beyond structural repair, it enables the construction of engineered tissues that closely recapitulate neural microenvironments. This review provides a comprehensive and critical synthesis of current bioprinting strategies for neural tissue engineering, with particular emphasis on comparing natural, synthetic, and hybrid polymer-based bioinks from mechanistic and translational perspectives. Distinctively, it highlights gradient-based modulation of Schwann cell behavior and axonal pathfinding using mechanically and chemically patterned constructs. Special attention is given to printing modalities such as extrusion, inkjet, and electrohydrodynamic jet printing, examining their respective capacities for controlling spatial organization and microenvironmental cues. Representative applications include brain development models, neurodegenerative disease platforms, and glioblastoma scaffolds with integrated functional properties. Furthermore, this review identifies key translational barriers—including host tissue integration and bioink standardization—and explores emerging directions such as artificial intelligence-guided biofabrication and organ-on-chip integration, to enhance the fidelity and therapeutic potential of neural bioprinted constructs. Full article
Show Figures

Figure 1

12 pages, 5729 KB  
Communication
Biomimetic Dual-Sensing Bone Scaffolds: Characterization and In Vitro Evaluation Under Dynamic Culturing Conditions
by Damion T. Dixon, Erika N. Landree and Cheryl T. Gomillion
Biomimetics 2025, 10(9), 598; https://doi.org/10.3390/biomimetics10090598 - 8 Sep 2025
Viewed by 549
Abstract
The regeneration of large segmental bone defects remains a significant challenge. While electrical stimulation has demonstrated the potential to accelerate bone healing, clinical translation has been hindered by the lack of safe, localized delivery methods. In this study, we present a novel strategy [...] Read more.
The regeneration of large segmental bone defects remains a significant challenge. While electrical stimulation has demonstrated the potential to accelerate bone healing, clinical translation has been hindered by the lack of safe, localized delivery methods. In this study, we present a novel strategy combining piezoelectric and electrically conductive polymers with allograft demineralized bones to create stimuli-responsive, biologically relevant scaffolds via pneumatic 3D printing. These scaffolds exhibit enhanced piezoelectric potential and tunable electrical properties, enabling both electrical and mechanical stimulation of cells (without external stimulators). Under dynamic culturing conditions (i.e., ultrasound stimulation), human bone marrow-derived mesenchymal stromal cells cultured on these scaffolds displayed significantly elevated osteogenic protein expression (i.e., alkaline phosphatase and osteocalcin) and mineralization (confirmed via xylenol orange mineral staining) after two weeks. This work introduces a bioinspired, printable ink in conjunction with a simple fabrication approach for creating dual-responsive scaffolds with high potential for functional bone tissue regeneration. Full article
(This article belongs to the Special Issue Biomimetic Materials for Bone Tissue Engineering)
Show Figures

Figure 1

17 pages, 2951 KB  
Article
Thermal Behavior of Magnetic Scaffolds for RF-Induced Hyperthermia
by Matteo Bruno Lodi, Raffaello Possidente, Andrea Melis, Armando Di Meglio, Alessandro Fanti and Roberto Baccoli
Appl. Sci. 2025, 15(17), 9782; https://doi.org/10.3390/app15179782 - 5 Sep 2025
Viewed by 1667
Abstract
Deep-seated tumors are challenging pathologies to treat. Currently available approaches are limited, prompting innovative solutions. Hyperthermia treatment (HT) is a thermal oncological therapy that raises tumor temperature (40–44 °C for 60 min), enhancing radio- and chemotherapy. Biomaterials loaded with magnetic particles, called magnetic [...] Read more.
Deep-seated tumors are challenging pathologies to treat. Currently available approaches are limited, prompting innovative solutions. Hyperthermia treatment (HT) is a thermal oncological therapy that raises tumor temperature (40–44 °C for 60 min), enhancing radio- and chemotherapy. Biomaterials loaded with magnetic particles, called magnetic scaffolds (MagSs), are used as HT agents for cancer treatment using radiofrequency (RF) heating. MagSs can be manufactured via 3D printing using fused deposition modeling to create biomimetic architectures based on triply periodic minimal surfaces (TPMSs). TPMS-based MagSs have been tested in vitro for RF HT. However, there is a lack of understanding regarding the thermal properties of TPMS MagSs for RF hyperthermia. Significant discrepancies between simulated and measured temperatures have been reported, attributed to limited knowledge of the apparent thermal conductivity of MagSs. Since planning is crucial for HT, it is fundamental to determine the thermal properties of these heterogeneous and porous composite biomaterials. Magnetic polylactic acid (PLA) scaffolds, shaped in different TPMS geometries and variable porosities, were thermally investigated in this research study. A linear relationship was found between the apparent thermal conductivity of parallelepiped and cylindrical scaffolds, and the measured values were validated using a numerical model of the RF HT test. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

30 pages, 7652 KB  
Article
Advancing Scaffold Architecture for Bone Tissue Engineering: A Comparative Study of 3D-Printed β-TCP Constructs in Dynamic Culture with pBMSC
by Yannick M. Sillmann, Ana M. P. Baggio, Pascal Eber, Benjamin R. Freedman, Cynthia Liu, Youssef Jounaidi, Alexander Schramm, Frank Wilde and Fernando P. S. Guastaldi
J. Funct. Biomater. 2025, 16(9), 327; https://doi.org/10.3390/jfb16090327 - 4 Sep 2025
Viewed by 787
Abstract
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation [...] Read more.
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation of porcine bone marrow-derived mesenchymal stem cells (pBMSCs) cultured in a rotational oxygen-permeable bioreactor system (ROBS). Three-dimensionally (3D) printed beta-tricalcium phosphate (β-TCP) scaffolds with pore sizes of 500 µm and 1000 µm were seeded with pBMSC and cultured for 7 and 14 days under dynamic perfusion conditions. Gene expression analysis revealed significantly higher levels of osteogenic markers (Runx2, BMP-2, ALP, Osx, Col1A1) in the 1000 µm group, particularly at the early time point, with the later-stage marker Osteocalcin (Ocl) rising faster and higher in the 1000 µm group, after a lower expression at 7 days. ALP activity assays corroborated these findings. Despite having lower mechanical strength, the 1000 µm scaffolds supported a homogeneous cell distribution and high viability across all regions. These results suggest that larger pore sizes enhance early osteogenic commitment by improving nutrient transport and fluid flow in dynamic culture. These findings also support the use of larger-pore scaffolds in bioreactor-based preconditioning strategies and underscore the clinical importance of promoting early osteogenic differentiation to reduce in vitro culture time, an essential consideration for the timely preparation of implantable grafts in bone tissue engineering. Full article
Show Figures

Figure 1

30 pages, 6075 KB  
Article
Enhancing Cellular Interactions Through Bioactivation and Local Nanomechanical Reinforcement in Nanodiamond-Loaded 3D-Printed Gellan Gum Scaffolds
by Carmen-Valentina Nicolae, Masoumeh Jahani Kadousaraei, Elena Olăreț, Andrada Serafim, Mehmet Serhat Aydin, Ioana-Teodora Bogdan, Adriana Elena Bratu, Raluca-Elena Ginghină, Alexandra Dobranici, Sorina Dinescu, Kamal Mustafa and Izabela-Cristina Stancu
Materials 2025, 18(17), 4131; https://doi.org/10.3390/ma18174131 - 3 Sep 2025
Viewed by 873
Abstract
The integration of nanomaterials within hydrogel scaffolds offers significant promise in bone tissue engineering by improving mechanical performance and modulating cellular responses through mechanotransductive and biochemical signaling. Previous studies have demonstrated that nanodiamonds (NDs) incorporated in electrospun microfibrillar meshes enhance cellular adhesion, spreading, [...] Read more.
The integration of nanomaterials within hydrogel scaffolds offers significant promise in bone tissue engineering by improving mechanical performance and modulating cellular responses through mechanotransductive and biochemical signaling. Previous studies have demonstrated that nanodiamonds (NDs) incorporated in electrospun microfibrillar meshes enhance cellular adhesion, spreading, and cytoskeletal organization through localized mechanical reinforcement. However, the effects of ND loading into soft, bioinert three-dimensional hydrogel matrices remain underexplored. Here, we developed nanostructured 3D printing inks composed of gellan gum (GG) supplemented with a low content of ND nanoadditive (0–3% w/v). ND integration improved the shear-thinning properties of the formulation, enabling consistent filament formation and reliable extrusion-based 3D printing. Structural and mechanical assessments confirmed enhanced scaffold morphology, reduced deformation, and improved morphostructural integrity under compression and increased local stiffness at 2% ND loading (GG_ND2%). Biological assessments revealed that increasing ND content enhanced murine preosteoblast viability, proliferation, and attachment, particularly in GG_ND2%. Furthermore, bioactivation of the GG_ND2% formulation with icariin (ICA), a bioflavonoid known for its osteogenic and angiogenic activity, amplified the beneficial cellular responses of MG-63 cells to ND loading, promoting enhanced surface mineralization and improved cell–matrix interactions. Collectively, these findings highlight the potential of ND-reinforced GG scaffolds bioactivated with ICA, integrating structural reinforcement and biological functionalities that may support osteogenic responses. Full article
Show Figures

Graphical abstract

28 pages, 5018 KB  
Article
Mechanical Characterization of 3D-Printed Scaffolds: A Multi-Objective Optimization Approach Using Virtual Testing and Homogenization
by Pablo I. León, Uwe Muhlich, Pedro C. Aravena and Gabriela Martínez
Biomimetics 2025, 10(9), 580; https://doi.org/10.3390/biomimetics10090580 - 2 Sep 2025
Viewed by 540
Abstract
A method to characterize the mechanical properties of cellular materials manufactured using 3D printing, specifically employing the fused deposition modeling (FDM) technique, is developed. Numerical simulations, virtual testing, and optimization based on genetic algorithms are combined in this approach to determine the anisotropic [...] Read more.
A method to characterize the mechanical properties of cellular materials manufactured using 3D printing, specifically employing the fused deposition modeling (FDM) technique, is developed. Numerical simulations, virtual testing, and optimization based on genetic algorithms are combined in this approach to determine the anisotropic properties of the material, which are essential for biomedical applications such as tissue engineering. Homogenization using representative unit cells enabled the calculation of orthotropic properties, including elastic moduli (E1, E2, E3), Poisson’s ratios (ν12, ν13 and ν23), and shear moduli (G12, G13, G23). These results validated the virtual tests using an L-shaped beam model, based on a known state of displacements and stresses. In the virtual test of the FDM model, a significant correlation with experimental results was observed, confirming the material’s anisotropy and its influence on deformations and stresses. Meanwhile, the effective medium test demonstrated over 95% agreement between simulated and experimental values, validating the accuracy of the proposed constitutive model. The optimization process, based on multi-objective genetic algorithms, allowed the determination of the material’s mechanical properties through controlled iterations, achieving a strong correlation with the results obtained from the homogenization model. These findings present a new approach for characterizing and optimizing 3D-printed materials using FDM techniques, providing an efficient and reliable method for applications in tissue engineering. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

Back to TopTop