Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,158)

Search Parameters:
Keywords = 3c-4e-bonds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7771 KB  
Article
Kinetic and Mechanistic Study of Polycarbodiimide Formation from 4,4′-Methylenediphenyl Diisocyanate
by Marcell D. Csécsi, R. Zsanett Boros, Péter Tóth, László Farkas and Béla Viskolcz
Int. J. Mol. Sci. 2025, 26(17), 8570; https://doi.org/10.3390/ijms26178570 (registering DOI) - 3 Sep 2025
Abstract
In the polyurethane industry, catalytically generated carbodiimides can modify the properties of isocyanate and, thus, the resulting foams. In this work, a kinetic reaction study was carried out to investigate the formation of a simple, bifunctional carbodiimide from a widely used polyurethane raw [...] Read more.
In the polyurethane industry, catalytically generated carbodiimides can modify the properties of isocyanate and, thus, the resulting foams. In this work, a kinetic reaction study was carried out to investigate the formation of a simple, bifunctional carbodiimide from a widely used polyurethane raw material: 4,4′-methylenediphenyl diisocyanate (MDI). The experimental section outlines a catalytic process, using a 3-methyl-1-phenyl-2-phospholene-1-oxide (MPPO) catalyst in ortho-dichlorobenzene (ODCB) solvent, to model industrial circumstances. The reaction produces carbon dioxide, which was observed using gas volumetry at between 50 and 80 °C to obtain kinetic data. A detailed regression analysis with linear and novel nonlinear fits showed that the initial stage of the reaction is second-order, and the temperature dependence of the rate constant is k(T)=(3.4±3.8)106e7192±389T. However, the other isocyanate group of MDI reacts with new isocyanate groups and the reaction deviates from the second-order due to oligomer (polycarbodiimide) formation and other side reactions. A linearized Arrhenius equation was used to determine the activation energy of the reaction, which was Ea = 60.4 ± 3.0 kJ mol−1 at the applied temperature range, differing by only 4.6 kJ mol−1 from a monoisocyanate-based carbodiimide. In addition to experimental results, computationally derived thermochemical data (from simplified DFT and IRC calculations) were applied in transition state theory (TST) for a comprehensive prediction of rate constants and Arrhenius parameters. As a result, it was found that the activation energy of the carbodiimide bond formation reaction from theoretical and experimental results was independent of the number and position of isocyanate groups, which is consistent with the principle of equal reactivity of functional groups. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

11 pages, 639 KB  
Article
Biocatalytic Reduction of α,β-Unsaturated Double Bonds of Curcuminoid Derivatives by Exserohilum rostratum
by Jânison Nazareno Pastana, Victória Lopes Ribeiro, Mayra Suelen da Silva Pinheiro, José Edson de Sousa Siqueira, Luana Cardoso Oliveira, Heriberto Rodrigues Bitencourt, Taícia Pacheco Fill, Andrey Moacir do Rosario Marinho and Patrícia Santana Barbosa Marinho
Chemistry 2025, 7(5), 143; https://doi.org/10.3390/chemistry7050143 - 3 Sep 2025
Abstract
Turmeric is a spice that has gained significant popularity in global cuisine. Beyond its culinary applications, it possesses significant medicinal properties, including antioxidant, anti-inflammatory, and antibacterial properties, which are attributed to its majority compound, curcumin. In this study, we synthesized three curcuminoid derivatives [...] Read more.
Turmeric is a spice that has gained significant popularity in global cuisine. Beyond its culinary applications, it possesses significant medicinal properties, including antioxidant, anti-inflammatory, and antibacterial properties, which are attributed to its majority compound, curcumin. In this study, we synthesized three curcuminoid derivatives via the Claisen–Schmidt method (1E,4E)-1-(2-methoxy-phenyl)-5-(3-methoxy-phenyl)-pent-1,4-dien-3-one (2a), (1E,4E)-1-(2-methoxy-phenyl)-5-(3,4,5-trimethoxy-phenyl)-pent-1,4-dien-3-one (2b), and (1E,4E)-5-phenyl-1-(2-methoxy-phenyl)-pent-1,4-dien-3-one (2c). The synthetic compounds were hydrogenated in the olefinic double bond (CH=CH) by biotransformation catalyzed by the fungus Exserohilum rostratum given (CH2-CH2) 3a, 3b, and 3c. All compounds were identified by NMR and MS. The compounds were evaluated for their antibacterial properties against Gram-positive and Gram-negative bacteria, with the results indicating good activity, highlighting that the bioreduction from 2a to 3a led to an improvement of up to eight times in the observed activity against S. typhimurium of 250 to 31.25 µg/mL. Additionally, compounds 2a, 2b, 3a, and 3b are not previously documented in the literature. Full article
(This article belongs to the Section Biological and Natural Products)
Show Figures

Figure 1

15 pages, 4854 KB  
Article
Atomic-Scale Mechanisms of Catalytic Recombination and Ablation in Knitted Graphene Under Hyperthermal Atomic Oxygen Exposure
by Yating Pan, Yunpeng Zhu, Donghui Zhang and Ning Wei
C 2025, 11(3), 67; https://doi.org/10.3390/c11030067 - 2 Sep 2025
Abstract
Effective ablative thermal protection systems are essential for ensuring the structural integrity of hypersonic vehicles subjected to extreme aerothermal loads. However, the microscopic reaction mechanisms at the gas–solid interface, particularly under non-equilibrium high-enthalpy conditions, remain poorly understood. This study employs reactive molecular dynamics [...] Read more.
Effective ablative thermal protection systems are essential for ensuring the structural integrity of hypersonic vehicles subjected to extreme aerothermal loads. However, the microscopic reaction mechanisms at the gas–solid interface, particularly under non-equilibrium high-enthalpy conditions, remain poorly understood. This study employs reactive molecular dynamics (RMD) simulations with the ReaxFF-C/H/O force field to investigate the atomic-scale ablation behavior of a graphene-based knitted graphene structure impacted by atomic oxygen (AO). By systematically varying the AO incident kinetic energy (from 0.1 to 8.0 eV) and incidence angle (from 15° to 90°), we reveal the competing interplay between catalytic recombination and ablation processes. The results show that the catalytic recombination coefficient of oxygen molecules reaches a maximum at 5.0 eV, where surface-mediated O2 formation is most favorable. At higher energies, the reaction pathway shifts toward enhanced CO and CO2 production due to increased carbon atom ejection and surface degradation. Furthermore, as the AO incidence angle increases, the recombination efficiency decreases linearly, while C-C bond breakage intensifies due to stronger vertical energy components. These findings offer new insights into the anisotropic surface response of knitted graphene structures under hyperthermal oxygen exposure and provide valuable guidance for the design and optimization of next-generation thermal protection materials for hypersonic flight. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Figure 1

18 pages, 3402 KB  
Article
Withangulatin A Identified as a Covalent Binder to Zap70 Kinase by Molecular Docking
by Corentin Bedart, Gérard Vergoten and Christian Bailly
Computation 2025, 13(9), 207; https://doi.org/10.3390/computation13090207 - 1 Sep 2025
Abstract
Inhibitors of the tyrosine kinase Zap70 are actively searched to improve treatments of lymphoid malignancies and autoimmune diseases associated with an abnormal T-cell response. The natural product withaferin A (WFA) has been characterized as a covalent inhibitor of Zap70 capable of blocking the [...] Read more.
Inhibitors of the tyrosine kinase Zap70 are actively searched to improve treatments of lymphoid malignancies and autoimmune diseases associated with an abnormal T-cell response. The natural product withaferin A (WFA) has been characterized as a covalent inhibitor of Zap70 capable of blocking the migration of human T-cells. By analogy, we postulated that other withanolides equipped with a thiol-reactive, α,β-unsaturated ketone may form covalent complexes with Zap70. The hypothesis was tested using a molecular modeling approach with a panel of 12 withanolides docked onto the kinase domain of Zap70. Seven natural products revealed a capability to form stable complexes with Zap70 comparable to that of WFA, including withangulatin A, 4β-hydroxywithanolide E, withaperuvin, and ixocarpalactone A. Withangulatin A surpassed all the other withanolides for its ability to engage an interaction with Zap70 kinase and to form covalent complexes via bonding to the Cys346 residue close to the enzyme active site. The physicochemical and ADMET properties of withangulatin A were analyzed via Density Functional Theory calculations and an analysis of its Fukui function descriptors. The C3 position of the enone moiety was identified as the most reactive (nucleophilic) site of the molecule. Withangulatin A revealed a satisfactory ADMET profile with no major toxicity anticipated. It represents a potential hit to guide the design of Zap70 inhibitors. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Graphical abstract

13 pages, 2492 KB  
Article
Interpreting Ring Currents from Hückel-Guided σ- and π-Electron Delocalization in Small Boron Rings
by Dumer S. Sacanamboy, Williams García-Argote, Rodolfo Pumachagua-Huertas, Carlos Cárdenas, Luis Leyva-Parra, Lina Ruiz and William Tiznado
Molecules 2025, 30(17), 3566; https://doi.org/10.3390/molecules30173566 - 31 Aug 2025
Viewed by 121
Abstract
The aromaticity of small boron clusters remains under scrutiny due to persistent inconsistencies between magnetic and electronic descriptors. Here, we reexamine B3, B3+, B4, B42+, and B42− using a multidimensional [...] Read more.
The aromaticity of small boron clusters remains under scrutiny due to persistent inconsistencies between magnetic and electronic descriptors. Here, we reexamine B3, B3+, B4, B42+, and B42− using a multidimensional approach that integrates Adaptive Natural Density Partitioning, Electron Density of Delocalized Bonds, magnetically induced current density, and the z-component of the induced magnetic field. We introduce a model in which σ-aromaticity arises from two distinct delocalization topologies: a radial 2e σ-pathway and a tangential multicenter circuit formed by alternating filled and vacant sp2 orbitals. This framework accounts for the evolution of aromaticity upon oxidation or reduction, preserving coherence between electronic structure and magnetic response. B3 features cooperative radial and tangential σ-delocalization, together with a delocalized 2e π-bond, yielding robust double aromaticity. B3+ retains σ- and π-aromaticity, but only via a tangential 6e σ-framework, leading to a more compact delocalization and slightly attenuated ring currents. In B4, the presence of a radial 2e σ-bond and a 4c–2e π-bond confers partial aromatic character, while the tangential 8e σ-framework satisfies the 4n rule and induces a paratropic current. In contrast, B42+ lacks the radial σ-component but retains a tangential 8e σ-circuit and a 2e 4c–2e π-bond, leading to a σ-antiaromatic and π-aromatic configuration. Finally, B42−, exhibits delocalized π- and σ-circuits, yielding consistent diatropic ring currents, which confirms its fully doubly aromatic nature. Altogether, this analysis underscores the importance of resolving σ-framework topology and demonstrates that, when radial and tangential contributions are correctly distinguished, Hückel’s rule remains a powerful tool for interpreting aromaticity in small boron rings. Full article
(This article belongs to the Special Issue Molecular Magnetic Response and Aromaticity)
Show Figures

Figure 1

32 pages, 2911 KB  
Review
Selective Deoxygenation of Biomass Polyols into Diols
by Juan Carlos Serrano-Ruiz
Molecules 2025, 30(17), 3559; https://doi.org/10.3390/molecules30173559 - 30 Aug 2025
Viewed by 229
Abstract
The transition to a sustainable chemical industry necessitates efficient valorization of biomass, with polyols serving as versatile, renewable feedstocks. This comprehensive review, focusing on advancements within the last five years, critically analyzes the selective hydrogenolysis of key biomass-derived polyols—including glycerol, erythritol, xylitol, and [...] Read more.
The transition to a sustainable chemical industry necessitates efficient valorization of biomass, with polyols serving as versatile, renewable feedstocks. This comprehensive review, focusing on advancements within the last five years, critically analyzes the selective hydrogenolysis of key biomass-derived polyols—including glycerol, erythritol, xylitol, and sorbitol—into valuable diols. Emphasis is placed on the intricate catalytic strategies developed to control C–O bond cleavage, preventing undesired C–C scission and cyclization. The review highlights the design of bifunctional catalysts, often integrating noble metals (e.g., Pt, Ru, Ir) with oxophilic promoters (e.g., Re, W, Sn) on tailored supports (e.g., TiO2, Nb2O5, N-doped carbon), which have led to significant improvements in selectivity towards specific diols such as 1,2-propanediol (1,2-PD), 1,3-propanediol (1,3-PD), and ethylene glycol (EG). While substantial progress in mechanistic understanding and catalyst performance has been achieved, challenges persist regarding catalyst stability under harsh hydrothermal conditions, the economic viability of noble metal systems, and the processing of complex polyol mixtures from lignocellulosic hydrolysates. Future directions for this field underscore the imperative for more robust, cost-effective catalysts, advanced computational tools, and intensified process designs to facilitate industrial-scale production of bio-based diols. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

10 pages, 1663 KB  
Article
A Hydrophilic Copper–Viologen Hybrid Exhibiting High Degradation Efficiency on Commercial Dye in Maritime Accidents
by Yali Gao, Chaojian Hu, Xihe Huang, Haohong Li, Tong Lou and Xueqiang Zhuang
Molecules 2025, 30(17), 3525; https://doi.org/10.3390/molecules30173525 - 28 Aug 2025
Viewed by 266
Abstract
Photocatalysis is a promising strategy for the treatment of dangerous chemical pollutants in the ocean. In this work, a stable copper-based photocatalyst, i.e., {[Cu(BPA)2]·2I3}n (1, BPA = 4,4′-bipyridinium-N-pentanoic acid), exhibited excellent degradation performance [...] Read more.
Photocatalysis is a promising strategy for the treatment of dangerous chemical pollutants in the ocean. In this work, a stable copper-based photocatalyst, i.e., {[Cu(BPA)2]·2I3}n (1, BPA = 4,4′-bipyridinium-N-pentanoic acid), exhibited excellent degradation performance in dye pollutant in seawater. According to the structural analysis, this photocatalyst consists of 1-D cationic [Cu(BPA)2]n2n+ infinite chain and two I3− polyiodide anions. In the [Cu(BPA)2]n2n+ chain, the distorted CuO4N2 octahedra are bridged by asymmetric viologen ligand (BPA), which result in a 1-D ladder-shaped chain. Strong C–H···O/I hydrogen bonds contribute to the formation of a 2-D layer along bc-plane, in which I3− anions are stacked among the cationic chains. The strong adsorption from ultraviolet to visible regions together with its high charge separation efficiency implies its usage as excellent visible-light-driven catalysis. Interestingly, good photocatalytic performance for the degradation of Rhodamine B (RhB) in seawater can be observed by using this hybrid as photocatalyst. In detail, 90.6% degradation ratio of RhB can be achieved in 150 min under visible light, which was monitored on a UV–Vis spectrum. This work could pave the way for new ocean pollutant treatments for shipping accidents. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

15 pages, 3325 KB  
Review
A Minireview on Multiscale Structural Inheritance and Mechanical Performance Regulation of SiC Wood-Derived Ceramics via Reactive Sintering and Hot-Pressing
by Shuying Ji, Yixuan Sun and Haiyang Zhang
Forests 2025, 16(9), 1383; https://doi.org/10.3390/f16091383 - 28 Aug 2025
Viewed by 300
Abstract
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant [...] Read more.
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant sintering routes—reactive infiltration sintering and hot-press sintering—and elucidates their effects on the resulting microstructure and mechanical properties. This review leverages the intrinsic anisotropic vascular network and multiscale porosity and mechanical strength, achieving ultralightweight yet mechanically robust ceramics with tunable anisotropy and dynamic energy dissipation capabilities. Critical process–structure–property relationships are highlighted, including the role of ceramic reinforcement phases, interfacial engineering, and multiscale toughening mechanisms. The review further explores emerging applications spanning extreme protection (e.g., ballistic armor and aerospace thermal shields), multifunctional devices (such as electromagnetic shielding and tribological components), and architectural innovations including seismic-resistant composites and energy-efficient building materials. Finally, key challenges such as sintering-induced deformation, interfacial bonding limitations, and scalability are discussed alongside future prospects involving low-temperature sintering, nanoscale interface reinforcement, and additive manufacturing. This mini overview provides essential insights into the design and optimization of wood-derived ceramics, advancing their transition from sustainable biomimetic materials to next-generation high-performance structural components. This review synthesizes data from over 50 recent studies (2011–2025) indexed in Scopus and Web of Science, highlighting three key advancements: (1) bio-templated anisotropy breaking the porosity–strength trade-off, (2) reactive vs. hot-press sintering mechanisms, and (3) multifunctional applications in extreme environments. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Graphical abstract

35 pages, 2965 KB  
Article
The First Simplified Heparan Sulphate—Alginate Hybrid Trisaccharides: Synthesis and Biological Effects on Human Dermal Fibroblasts
by Katalin Kútvölgyi, Zsófia Peleskei, Fruzsina Demeter, Roland A. Barta, Attila Mándi, Eszter Homoki, Attila Oláh, János Hajkó, Mihály Herczeg and Erika Lisztes
Int. J. Mol. Sci. 2025, 26(17), 8305; https://doi.org/10.3390/ijms26178305 - 27 Aug 2025
Viewed by 369
Abstract
Glycosaminoglycans (GAGs) are linear, high molecular weight polydisperse heteropolysaccharides consisting of repeating disaccharide units, which always contain a uronic acid building block (e.g., d-glucuronic acid or l-iduronic acid). Their analogues containing d-mannuronic acid were not known until now. Another important [...] Read more.
Glycosaminoglycans (GAGs) are linear, high molecular weight polydisperse heteropolysaccharides consisting of repeating disaccharide units, which always contain a uronic acid building block (e.g., d-glucuronic acid or l-iduronic acid). Their analogues containing d-mannuronic acid were not known until now. Another important class of the linear negatively charged polisaccharides are alginates, which are also present in the cell surface in the cell wall. They are composed of blocks of 1,4-linked β-d-mannuronic acid and its C-5 epimer α-l-guluronic acid in alternating or random order. Both groups of molecules have significant biological activity (e.g., cell growth inhibitory activity, anti-inflammatory effect, etc.). In the course of our research, we combined the structural characteristics of these two groups of molecules and produced a series of heparan sulphate analogue trisaccharides containing d-mannuronic acid, with a simplified structure, in which α- and β-mannosidic bonds are also found. Since trisaccharides may exert diverse biological effects and alginate derivatives can influence wound healing processes, we investigated the effects of the synthesized compounds on primary human dermal fibroblasts. We found that, when applied at 10 μM, none of the compounds influenced viability or spontaneous collagen production; however, some derivatives exhibited anti-inflammatory activity and suppressed the poly(I:C)-induced release of interleukin 6. Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Design, and Biological Activity)
Show Figures

Graphical abstract

28 pages, 5200 KB  
Article
Lewis Acid–Base Adducts of α-Amino Isobutyric Acid-Derived Silaheterocycles and Amines
by Anne Seidel, Erica Brendler, Ana Torvisco, Roland Fischer and Jörg Wagler
Molecules 2025, 30(17), 3501; https://doi.org/10.3390/molecules30173501 - 26 Aug 2025
Viewed by 476
Abstract
The 1:1 stoichiometric reactions of α-amino isobutyric acid (H2Aib) and diaminosilanes of the type SiRR′(NR1R2)2 (SiMe2(imidazol-1-yl)2, SiMe2(NHnPr)2, and SiRR′(pyrrolidin-1-yl)2 with [...] Read more.
The 1:1 stoichiometric reactions of α-amino isobutyric acid (H2Aib) and diaminosilanes of the type SiRR′(NR1R2)2 (SiMe2(imidazol-1-yl)2, SiMe2(NHnPr)2, and SiRR′(pyrrolidin-1-yl)2 with R,R′ = Me,Me, Me,H, Me,Vi, and Et,Et) afforded the pentacoordinate silicon complexes (Aib)SiRR′(HNR1R2) with the release of one equivalent of HNR1R2. Single-crystal X-ray diffraction analyses confirmed the coordination of the N-donor Lewis base (i.e., imidazole, n-propylamine, and pyrrolidine, respectively) in an axial position of the distorted trigonal-bipyramidal Si-coordination sphere, trans to the carboxylate O atom of the Si-chelating Aib-dianion. The N–H moieties of the adduct-forming Lewis bases are involved in N–H⋯O hydrogen bonds with carboxylate groups of adjacent complex molecules, thus supporting the supramolecular structures of these adducts. The equatorially bound NH group of the Aib-dianion is involved in N–H⋯O hydrogen bonds in most cases, and it gives rise to residual dipolar coupling of the 14N nucleus with its directly bound atoms C and Si, thus causing characteristic shapes of both the 29Si and 13C NMR signals of these two atoms in the solid-state spectra. In contrast to the adduct-formation reactions, the analogous conversion of H2Aib and SiMe2(NHtBu)2 did not afford an amine adduct. Instead, a second equivalent of H2Aib entered the reaction, and the ionic silicon complex [tBuNH3]+[(Aib)2SiMe] was obtained and characterized by crystallography and solution NMR spectroscopy. Full article
Show Figures

Graphical abstract

24 pages, 2449 KB  
Article
Synthesis and Characterization of a New Hydrogen-Bond-Stabilized 1,10-Phenanthroline–Phenol Schiff Base: Integrated Spectroscopic, Electrochemical, Theoretical Studies, and Antimicrobial Evaluation
by Alexander Carreño, Evys Ancede-Gallardo, Ana G. Suárez, Marjorie Cepeda-Plaza, Mario Duque-Noreña, Roxana Arce, Manuel Gacitúa, Roberto Lavín, Osvaldo Inostroza, Fernando Gil, Ignacio Fuentes and Juan A. Fuentes
Chemistry 2025, 7(4), 135; https://doi.org/10.3390/chemistry7040135 - 21 Aug 2025
Viewed by 715
Abstract
A new Schiff base, (E)-2-(((1,10-phenanthrolin-5-yl)imino)methyl)-4,6-di-tert-butylphenol (Fen-IHB), was designed to incorporate an intramolecular hydrogen bond (IHB) between the phenolic OH and the azomethine nitrogen with the goal of modulating its physicochemical and biological properties. Fen-IHB was synthesized by condensation of [...] Read more.
A new Schiff base, (E)-2-(((1,10-phenanthrolin-5-yl)imino)methyl)-4,6-di-tert-butylphenol (Fen-IHB), was designed to incorporate an intramolecular hydrogen bond (IHB) between the phenolic OH and the azomethine nitrogen with the goal of modulating its physicochemical and biological properties. Fen-IHB was synthesized by condensation of 5-amino-1,10-phenanthroline with 3,5-di-tert-butyl-2-hydroxybenzaldehyde and exhaustively characterized by HR-ESI-MS, FTIR, 1D/2D NMR (1H, 13C, DEPT-45, HH-COSY, CH-COSY, D2O exchange), and UV–Vis spectroscopy. Cyclic voltammetry in anhydrous CH3CN revealed a single irreversible cathodic peak at −1.43 V (vs. Ag/Ag+), which is consistent with the intramolecular reductive coupling of the azomethine moiety. Density functional theory (DFT) calculations, including MEP mapping, Fukui functions, dual descriptor analysis, and Fukui potentials with dual descriptor potential, identified the exocyclic azomethine carbon as the principal nucleophilic site and the phenolic ring (hydroxyl oxygen and adjacent carbons) as the main electrophilic region. Noncovalent interaction (NCI) analysis further confirmed the strength and geometry of the intramolecular hydrogen bond (IHB). In vitro antimicrobial assays indicated that Fen-IHB was inactive against Gram-negative facultative anaerobes (Salmonella enterica serovar Typhimurium and Typhi, Escherichia coli) and strictly anaerobic Gram-positive species (Clostridioides difficile, Roseburia inulinivorans, Blautia coccoides), as any growth inhibition was indistinguishable from the DMSO control. Conversely, Fen-IHB displayed measurable activity against Gram-positive aerobes and aerotolerant anaerobes, including Bacillus subtilis, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Overall, these comprehensive characterization results confirm the distinctive chemical and electronic properties of Fen-IHB, underlining the crucial role of the intramolecular hydrogen bond and electronic descriptors in defining its reactivity profile and selective biological activity. Full article
Show Figures

Figure 1

13 pages, 2635 KB  
Article
Structure and Nonlinear Optical Characterization of a New Acentric Crystal of a 4-Hydroxybenzohydrazide Derivative
by Emanuela Santagata, Yovan de Coene, Stijn Van Cleuvenbergen, Koen Clays, Emmanuele Parisi, Fabio Borbone and Roberto Centore
Crystals 2025, 15(8), 739; https://doi.org/10.3390/cryst15080739 - 20 Aug 2025
Viewed by 321
Abstract
We report the crystal structure and nonlinear optical (NLO) characterization of the monohydrate form of N′-[(E)-(2-fluorophenyl)methylidene]-4-hydroxybenzohydrazide (o-FHH), an organic compound showing strong potential for second-order nonlinear optical applications. The compound crystallizes in a non-centrosymmetric tetragonal space group. The supramolecular features of [...] Read more.
We report the crystal structure and nonlinear optical (NLO) characterization of the monohydrate form of N′-[(E)-(2-fluorophenyl)methylidene]-4-hydroxybenzohydrazide (o-FHH), an organic compound showing strong potential for second-order nonlinear optical applications. The compound crystallizes in a non-centrosymmetric tetragonal space group. The supramolecular features of the novel crystal structure are strongly related to the role of the water molecule that stabilized columns of o-FHH through strong hydrogen bonding interactions. This structural feature is reflected in the high thermal stability of the compound, which is evidenced by its ability to withstand temperatures in excess of 100 °C without losing the water molecule. Second-harmonic generation (SHG) imaging confirms bulk nonlinearity throughout the entire volume of the crystal, consistent with the acentric class of the novel compound. The combination of a dense hydrogen-bonding network, structural robustness, and the ability to grow millimeter-sized single crystals makes o-FHH a good candidate for further development as an organic NLO material. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

12 pages, 4939 KB  
Article
Engineering Malic Enzyme CO2 Fixation Activity via a Structure–Sequence–SCANNER (3S) Co-Evolution Strategy
by Jianping Shi, Mingdong Wang, Ting Feng, Xianglong Li, Yanbin Feng and Song Xue
Catalysts 2025, 15(8), 789; https://doi.org/10.3390/catal15080789 - 18 Aug 2025
Viewed by 512
Abstract
Enzymatic CO2 fixation offers great potential for the sustainable synthesis of value-added compounds. Malic enzyme (ME) catalyzes the reverse carboxylation of pyruvate to malate, enabling direct CO2 conversion into C4 compounds with broad biosynthetic applications. However, the reverse carboxylation activity [...] Read more.
Enzymatic CO2 fixation offers great potential for the sustainable synthesis of value-added compounds. Malic enzyme (ME) catalyzes the reverse carboxylation of pyruvate to malate, enabling direct CO2 conversion into C4 compounds with broad biosynthetic applications. However, the reverse carboxylation activity of wild-type ME is insufficient, and conventional enzyme engineering strategies remain limited by the complexity of identifying distal functional sites. Here, we present a Structure–Sequence–SCANNER (3S) co-evolution strategy that integrates protein structural analysis, sequence conservation profiling, and co-evolutionary network analysis to enable systematic identification of functionally relevant hotspot residues. Using this approach, we engineered Escherichia coli ME (EcME) variants with enhanced CO2 fixation activities. In total, 106 single-point variants were constructed and screened. Among these, variants A464S and D97E exhibited significantly improved reverse carboxylation activities, with 1.7-fold and 1.6-fold increases in catalytic activity and 1.5-fold and 1.8-fold improvements in catalytic efficiency (kcat/Km), respectively, compared to wild-type EcME. Their catalytic efficiencies (kcat/Km) improved by 1.5-fold and 1.8-fold, increasing from 80 mM−1·min−1 for the wild-type enzyme to 120 and 130 mM−1·min−1, respectively. Mechanistic analyses revealed that A464S introduces a stabilizing hydrogen bond with N462, enhancing NADPH binding, while D97E forms a new salt bridge network with K513, resulting in contraction of the substrate pocket entrance and increased pyruvate affinity. These findings demonstrate the effectiveness of the 3S strategy in reprogramming enzyme functions and highlight its potential for constructing efficient artificial CO2 fixation systems. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

20 pages, 3199 KB  
Article
The Application of a Simple Synthesis Process to Obtain Trirutile-Type Cobalt Antimonate Powders and the Study of Their Electrical Properties in Propane Atmospheres for Use in Gas Sensors
by Lucía Ivonne Juárez Amador, Héctor Guillén Bonilla, Alex Guillén Bonilla, José Trinidad Guillén Bonilla, Verónica María Rodríguez Betancourtt, Jorge Alberto Ramírez Ortega, Antonio Casillas Zamora and Emilio Huizar Padilla
Coatings 2025, 15(8), 952; https://doi.org/10.3390/coatings15080952 - 14 Aug 2025
Viewed by 455
Abstract
The dynamic response in propane atmospheres at different voltages was investigated for samples made from powders of the semiconductor oxide CoSb2O6 synthesized using the microwave-assisted colloidal method. Powders of the compound calcined at 700 °C were studied with X-ray diffraction, [...] Read more.
The dynamic response in propane atmospheres at different voltages was investigated for samples made from powders of the semiconductor oxide CoSb2O6 synthesized using the microwave-assisted colloidal method. Powders of the compound calcined at 700 °C were studied with X-ray diffraction, confirming the CoSb2O6 crystalline phase. The microstructural characteristics of the oxide were analyzed using scanning and transmission electron microscopy (SEM/TEM), revealing a high abundance of nanorods, nanoplates, and irregular nanoparticles. These nanoparticles have an average size of ~21 nm. Using UV-Vis, absorption bands associated with the electronic transitions of the CoSb2O6’s characteristic bonds were identified, which yielded a bandgap value of ~1.8 eV. Raman spectroscopy identified vibrational bands corresponding to the oxide’s Sb–O and Co–O bonds. Dynamic sensing tests at 300 °C confirmed the material’s p-type semiconductor behavior, showing an increase in resistance upon exposure to propane. Critically, these tests revealed that the sensor’s baseline resistance and overall response are tunable by the applied voltage (1–12 V), with the highest sensitivity observed at the lowest voltages. This establishes a clear relationship between the electrical operating parameters and the sensing performance. The samples exhibited good operational stability, capacity, and efficiency, along with short response and recovery times. Extra-dry air (1500 cm3/min) was used as the carrier gas to stabilize the films’ surfaces during propane detection. These findings lead us to conclude that the CoSb2O6 could serve as an excellent gas detector. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures Deposition Techniques)
Show Figures

Figure 1

14 pages, 548 KB  
Review
Carboxypeptidase A4: A Biomarker for Cancer Aggressiveness and Drug Resistance
by Adeoluwa A. Adeluola, Md. Sameer Hossain and A. R. M. Ruhul Amin
Cancers 2025, 17(15), 2566; https://doi.org/10.3390/cancers17152566 - 4 Aug 2025
Viewed by 495
Abstract
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate [...] Read more.
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate cancer cells, but it is now known to be expressed in various tissues throughout the body. Its physiologic expression is governed by latexin, a noncompetitive endogenous inhibitor of CPA4. Nevertheless, the overexpression of CPA4 has been associated with the progression and aggressiveness of many malignancies, including prostate, pancreatic, breast and lung cancer, to name a few. CPA4’s role in cancer has been attributed to its disruption of many cellular signaling pathways, e.g., PI3K-AKT-mTOR, STAT3-ERK, AKT-cMyc, GPCR, and estrogen signaling. The dysregulation of these pathways by CPA4 could be responsible for inducing epithelial--mesenchymal transition (EMT), tumor invasion and drug resistance. Although CPA4 has been found to regulate cancer aggressiveness and poor prognosis, no comprehensive review summarizing the role of CPA4 in cancer is available so far. In this review, we provide a brief description of peptidases, their classification, history of CPA4, mechanism of action of CPA4 as a peptidase, its expression in various tissues, including cancers, its role in various tumor types, the associated molecular pathways and cellular processes. We further discuss the limitations of current literature linking CPA4 to cancers and challenges that prevent using CPA4 as a biomarker for cancer aggressiveness and predicting drug response and highlight a number of future strategies that can help to overcome the limitations. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

Back to TopTop