Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,175)

Search Parameters:
Keywords = 5′UTR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1343 KB  
Review
A Critical Review of Bovine Viral Diarrhea Virus: Spotlights on Host Plasticity and Potential Spillover Events
by Eaftekhar Ahmed Rana, M. Asaduzzaman Prodhan, Joshua W. Aleri, Syeda Hasina Akter, Henry Annandale, Sam Abraham, Subir Sarker, Jully Gogoi-Tiwari and Jasim Muhammad Uddin
Viruses 2025, 17(9), 1221; https://doi.org/10.3390/v17091221 (registering DOI) - 7 Sep 2025
Abstract
The bovine viral diarrhea virus (BVDV) infects a wide range of domestic and wild mammals. This review hypothesized that there might be cross-species transmission of BVDV. Therefore, the aim was to explore the BVDV-5′ UTR and N-pro sequence-based evidence to understand host plasticity [...] Read more.
The bovine viral diarrhea virus (BVDV) infects a wide range of domestic and wild mammals. This review hypothesized that there might be cross-species transmission of BVDV. Therefore, the aim was to explore the BVDV-5′ UTR and N-pro sequence-based evidence to understand host plasticity among different animals. A total of 146 unique BVDV sequences retrieved from GenBank, originating from 12 distinct mammalian species that are submitted from 55 countries, were analyzed. The phylogenetic analysis revealed that all three BVDV species exhibited genetic relatedness infecting diverse animal species. BVDV-1 sequences obtained from cattle, buffalo, and pigs and BVDV-2 and HoBi-like pestivirus sequences from cattle, goats, and sheep showed a genetic resemblance. Surprisingly, cattle and buffalo in China, cattle and yak in Mongolia, cattle and wild boar in Serbia, cattle and deer in Mexico, cattle and alpacas in Canada, goats and pigs in the USA, and sheep and buffalo in Argentina were infected with BVDV-1 within the same county and strongly positioned in the same cluster, indicating potential spillover with host tropism. Moreover, BVDV sequences isolated from various neighboring countries clustered closely, suggesting potential cross-border transmission events. Based on genomic evidence, the BVDV transmission cycle could be depicted, where cattle act as a primary source of infection, while other domestic and wild animals maintain the infection ecology within their habitat due to virus tropism. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 3293 KB  
Article
CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells
by Yaran Zhang, Qinglan Zhang, Yaping Gao, Yao Xiao, Jinpeng Wang, Chunhong Yang, Zhihua Ju, Xiaochao Wei, Xiuge Wang, Qiang Jiang and Jinming Huang
Animals 2025, 15(17), 2607; https://doi.org/10.3390/ani15172607 - 5 Sep 2025
Viewed by 35
Abstract
TARDBP mediates milk fat secretion in mice by binding to UG-rich sequences in the 3′ untranslated region (UTR) of BTN1A1 and XDH mRNA and enhancing their mRNA stability. However, its role in bovine milk lipid metabolism remains unclear. To investigate this, we generated [...] Read more.
TARDBP mediates milk fat secretion in mice by binding to UG-rich sequences in the 3′ untranslated region (UTR) of BTN1A1 and XDH mRNA and enhancing their mRNA stability. However, its role in bovine milk lipid metabolism remains unclear. To investigate this, we generated TARDBP knockout (KO) MAC-T cells using CRISPR/Cas9 technology, quantified triacylglycerol (TAG) levels in both cells and culture supernatant, and examined the impact of TARDBP on mRNA levels in MAC-T cells through transcriptome sequencing. We found that deletion of TARDBP reduced TAG content in both MAC-T cells and the supernatant, as well as decreased mRNA levels of CD36, FABP4, DGAT1, PPARG, and PPARGC1A. However, the expression of BTN1A1 and XDH was unaffected in bovine MAC-T cells. Sequence analysis further revealed TG-rich sequences within bovine PPARG and PPARGC1A but not in FABP4, DGAT1, CD36, or BTN1A1 and XDH. These findings suggest that TARDBP may regulate bovine lipid metabolism through a mechanism distinct from that described in mice. This study provides new insights into the molecular role of TARDBP in bovine milk fat metabolism and establishes a foundation for understanding its contribution to dairy cattle breeding and milk quality improvement. Full article
Show Figures

Figure 1

10 pages, 1467 KB  
Case Report
A Novel 1259 bp Intragenic Deletion in the GJB2 Gene in a Mexican Family with Congenital Profound Hearing Loss
by David Oaxaca-Castillo, Laura Taño-Portuondo, Montserrat Rodríguez-Ballesteros, Gerardo Pérez-Mendoza, Igrid García-González, Jorge Canto-Herrera, María Domínguez-Ruiz, Doris Pinto-Escalante, Orlando Vargas-Sierra, Damaris Estrella-Castillo, Paola López-González, Javier E. Sosa-Escalante, Ignacio del Castillo and Lizbeth González-Herrera
Audiol. Res. 2025, 15(5), 111; https://doi.org/10.3390/audiolres15050111 - 2 Sep 2025
Viewed by 186
Abstract
Hearing loss is a genetically heterogeneous sensory defect for which biallelic pathogenic variants in the GJB2 gene are a frequent cause. Here, we report a novel intragenic large deletion in GJB2 in a Mayan family with several members affected by congenital non-syndromic hearing [...] Read more.
Hearing loss is a genetically heterogeneous sensory defect for which biallelic pathogenic variants in the GJB2 gene are a frequent cause. Here, we report a novel intragenic large deletion in GJB2 in a Mayan family with several members affected by congenital non-syndromic hearing loss. The analysis of the GJB2 gene in the proband was performed through Sanger sequencing. A novel homozygous 1259 bp deletion in GJB2 was identified, starting at nucleotide 248 of the coding region and ending at nucleotide 825 of the 3′-UTR (g.20188077_20189335del). Bioinformatic tools were used to predict the structural impact of the variant. This deletion would result in a truncated protein of 86 amino acids, p.(Phe83Cysfs*5), disrupting several critical domains of the connexin-26 protein. We developed an endpoint-PCR assay to test for the deletion. It was present homozygously in all affected siblings and was absent in 153 ethnically matched controls with normal hearing. Both parents and two unaffected siblings were heterozygous carriers, consistent with an autosomal recessive inheritance pattern. The identification of this novel large deletion expands the spectrum of GJB2 pathogenic variants causing non-syndromic hearing loss, and it is of concern to GJB2 screening methods that rely primarily on Sanger sequencing for its coding region. Full article
(This article belongs to the Section Hearing)
Show Figures

Figure 1

16 pages, 3642 KB  
Article
miR-221-3p Exacerbates Obesity-Induced Insulin Resistance by Targeting SOCS1 in Adipocytes
by Nan Li, Liang Zhang, Qiaofeng Guo, Xiaoying Yang, Changjiang Liu and Yue Zhou
Metabolites 2025, 15(9), 572; https://doi.org/10.3390/metabo15090572 - 27 Aug 2025
Viewed by 489
Abstract
Objective: Insulin resistance (IR) is a complex and multifactorial disorder that contributes to type 2 diabetes and cardiovascular disease. MicroRNAs (miRNAs) play important roles in diverse developmental and disease processes. However, the molecular mechanisms of IR are unclear. This paper aims to explore [...] Read more.
Objective: Insulin resistance (IR) is a complex and multifactorial disorder that contributes to type 2 diabetes and cardiovascular disease. MicroRNAs (miRNAs) play important roles in diverse developmental and disease processes. However, the molecular mechanisms of IR are unclear. This paper aims to explore the role of miRNA in regulating IR and to elucidate the mechanisms responsible for these effects. Methods: IR models were created by feeding a high-fat diet (HFD) to mice or stimulating 3T3-L1 cells with palmitate. Twelve weeks of HFD trigger weight gain, leading to lipid accumulation and insulin resistance in mice. The expression profiles of miRNAs in adipose tissues (AT) from the HFD-induced mouse models were analyzed. The relationship between miR-221-3p and SOCS1 was determined using dual luciferase reporter gene assays. Metabolic alterations in AT were investigated by real-time PCR and Western blot. Results: miR-221-3p was significantly increased in AT. HFD-induced disturbances in glucose homeostasis were aggravated by miR-221-3p upregulation. The inhibition of miR-221-3p promoted insulin sensitivity including reduced lipid accumulation and the disruption of glucose metabolism. Of note, the 3′-UTR of SOCS1 was found to be a direct target of miR-221-3p. The SOCS1 inhibitor attenuated miR-221-3p-induced increases in IRS-1 phosphorylation, AKT phosphorylation, and GLUT4. miR-221-3p was considered to be involved in the PI3K/AKT signaling pathway, thus leading to increased insulin sensitivity and decreased IR in HFD-fed mice and 3T3-L1 adipocytes. Conclusions: The miR-221-3p/SOCS1 axis in AT plays a pivotal role in the regulation of glucose metabolism, providing a novel target for treating IR and diabetes. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

17 pages, 4201 KB  
Article
Genetic Characterization of Primordial Germ Cells in Spotted Sea Bass (Lateolabrax maculatus)
by Jieyun Guo, Lulu Yan, Chao Zhao, Bo Zhang, Bo Zhang and Lihua Qiu
Genes 2025, 16(9), 1012; https://doi.org/10.3390/genes16091012 - 27 Aug 2025
Viewed by 426
Abstract
Background: Primordial germ cells (PGC) are the progenitor cells of sperm and eggs during the embryonic stage. The maternal gene vasa has been widely studied for its role in PGC origin, and other genes like dead end (dnd) have also been identified. Objectives: [...] Read more.
Background: Primordial germ cells (PGC) are the progenitor cells of sperm and eggs during the embryonic stage. The maternal gene vasa has been widely studied for its role in PGC origin, and other genes like dead end (dnd) have also been identified. Objectives: Spotted sea bass is an important economic marine fish, and the study of its germ cell characteristics provides important basic data for future population breeding and protection. Methods: In this study, we cloned the full-length sequences of Lmvasa (2384 bp, encoding 1905 aa) and Lmdnd (1523 bp, encoding 386 aa) using RACE. Temporal and spatial expression patterns of Lmvasa and Lmdnd in embryos and gonads were analyzed by PCR, immunohistochemistry, and in situ hybridization. We also used microinjections of chimeric RNA containing GFP and Lmvasa 3′ UTR to visualize PGCs. Results: Our results showed that Lmvasa and Lmdnd are expressed primarily in early embryonic development (pre-blastula stage) and were expressed only in the gonads. Immunohistochemistry revealed abundant expression of Lmvasa and Lmdnd proteins in spermatogonia, weak expression in spermatocytes, and no expression in spermatozoa. In ovaries, both genes were expressed throughout oogenesis. Furthermore, PGCs in spotted sea bass belonged to an early localization pattern. Microinjection experiments demonstrated that Lmvasa 3′ UTR effectively labeled PGCs in embryos of spotted sea bass, zebrafish, and medaka. Conclusions: These findings may contribute to understanding PGC development in spotted sea bass and other Percidae. Full article
Show Figures

Figure 1

14 pages, 2613 KB  
Article
miR-7a-5p Contributes to Suppressing NLRP3/Caspase-1 Signaling Pathway in Response to Streptococcus suis Type 2 Infection
by Ziteng Deng, Qian Sun, Shun Li, Yibo Wang, Yuxin Che, Yunfei Huang, Jiedan Liao, Honglin Xie, Xiaoshu Zhan, Qinqin Sun and Qiang Fu
Microorganisms 2025, 13(8), 1924; https://doi.org/10.3390/microorganisms13081924 - 18 Aug 2025
Viewed by 368
Abstract
Streptococcus suis type 2 (SS2) is a pathogen causing diseases like meningitis and septicaemia worldwide. While microRNAs (miRNAs) are acknowledged for their role in post-transcriptional regulation of gene expression and influence on immune responses, their exact functions in hosts during SS2 infection remain [...] Read more.
Streptococcus suis type 2 (SS2) is a pathogen causing diseases like meningitis and septicaemia worldwide. While microRNAs (miRNAs) are acknowledged for their role in post-transcriptional regulation of gene expression and influence on immune responses, their exact functions in hosts during SS2 infection remain elusive. This study aims to explore the role of miR-7a-5p in macrophages during SS2 infection. Our findings reveal that SS2 infection in J774A.1 cells triggers upregulation of the NLRP3 inflammasome signaling pathways, evidenced by enhanced mRNA expression of pro-inflammatory cytokines (IL-6, IL-18, IL-23, TNF-α) and elevated protein levels of NLRP3, caspase-1, and IL-1β. Concurrently, SS2 infection reduces miR-7a-5p expression. Dual-luciferase reporter assays confirm that miR-7a-5p directly targets the 3′UTR of NLRP3 mRNA. Notably, miR-7a-5p overexpression in SS2-infected J774A.1 cells suppresses NLRP3 inflammasome activation and downstream signaling, as demonstrated by reduced mRNA levels of inflammatory mediators and decreased protein levels of NLRP3, caspase-1, IL-1β, and IL-18. Conversely, miR-7a-5p inhibition produces effects opposite to those of overexpression. In mice, administration of miR-7a-5p mimics mitigates SS2-induced lung, liver, and spleen damage, reducing histological scores in these organs. Collectively, these results show that miR-7a-5p alleviates SS2-induced inflammation by inhibiting the NLRP3 inflammasome, underscoring its potential as a therapeutic target for SS2-associated diseases. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

15 pages, 1953 KB  
Article
MicroRNAs and Their Inhibition in Modulating SLC5A8 Expression in the Context of Papillary Thyroid Carcinoma
by Wojciech Gierlikowski, Jowita Grzędzicka, Katarzyna Konieczek and Marta Kotlarek-Łysakowska
Int. J. Mol. Sci. 2025, 26(16), 7889; https://doi.org/10.3390/ijms26167889 - 15 Aug 2025
Viewed by 336
Abstract
SLC5A8 is a protein coded by the SLC5A8 gene, and has been proposed as a tumor suppressor and iodide transporter. Its expression is reduced in papillary thyroid carcinoma (PTC), yet the mechanisms underlying this phenomenon are largely unknown. We hypothesized that SLC5A8 expression [...] Read more.
SLC5A8 is a protein coded by the SLC5A8 gene, and has been proposed as a tumor suppressor and iodide transporter. Its expression is reduced in papillary thyroid carcinoma (PTC), yet the mechanisms underlying this phenomenon are largely unknown. We hypothesized that SLC5A8 expression in PTC is reduced by microRNAs and can be modulated by their inhibition. We used real-time PCR to analyze the expression of SLC5A8 and the microRNAs of interest in a set of 49 PTC/normal tissue pairs. We used an in silico approach to identify microRNAs upregulated in PTC and putatively binding to the SLC5A8 transcript. Luciferase assays were performed to confirm the direct binding of synthetic microRNAs to the 3′UTR of SLC5A8. Subsequently, using mir-expressing plasmids and microRNA sponges, including a microRNA sponge designed to simultaneously inhibit three selected microRNAs, we checked the impact of the modulation of microRNAs on endogenous SLC5A8. Finally, we investigated if modulation of SLC5A8 induces changes in transcriptomes. We confirmed the downregulation of SLC5A8 in PTC. In silico analysis revealed microRNAs potentially targeting SLC5A8. Luciferase assay confirmed direct binding between the 3′UTR of SLC5A8 and miR-181a-5p, miR-182-5p, and miR-494-3p. MiR-181a-5p and miR-182-5p were upregulated in PTC. In HEK293 cell lines, transfection with mir-181a- and mir-182-expressing plasmids decreased endogenous SLC5A8 mRNA, while silencing of miR-181a-5p, miR-182-5p, miR-494-3p, and all three microRNAs simultaneously increased SLC5A8 expression; however, only simultaneous inhibition was able to induce changes visible for SLC5A8 protein. Changes in SLC5A8 expression did not alter the whole transcriptome significantly. This study shows microRNA-dependent regulation of SLC5A8 expression and underlines the potential effectiveness of simultaneous inhibition of a few microRNAs to derepress their common target. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2170 KB  
Article
RcsB and H-NS Both Contribute to the Repression the Expression of the csgDEFG Operon
by Hiroshi Ogasawara, Azusa Tomioka and Yuki Kato
Microorganisms 2025, 13(8), 1829; https://doi.org/10.3390/microorganisms13081829 - 5 Aug 2025
Viewed by 449
Abstract
Curli fimbriae are a major component of biofilm formation in Escherichia coli, and their expression is regulated by numerous transcription factors and small regulatory RNAs (sRNAs). The RcsD-RcsC-RcsB phosphorelay system, which is involved in the envelope stress response, plays a role in [...] Read more.
Curli fimbriae are a major component of biofilm formation in Escherichia coli, and their expression is regulated by numerous transcription factors and small regulatory RNAs (sRNAs). The RcsD-RcsC-RcsB phosphorelay system, which is involved in the envelope stress response, plays a role in this regulation. In this study, we report that DNase-I footprinting analysis revealed that the response regulator RcsB interacts with the −31 to +53 region of the promoter region of csgD, which encodes a major regulator of biofilm formation, and thus contributes to its transcriptional repression. Additionally, overexpression of RcsB or RcsB D56A that could not be phosphorylated by the histidine kinases RcsC and D both significantly reduced csgD expression and suppressed Curli formation. This indicates that the phosphorylation of RcsB has an insignificant impact on its affinity for its operator sites. Furthermore, we confirm that RcsB binds cooperatively to the csgD promoter region in the presence of the nucleoid-associated protein H-NS. Our study also confirms that RcsB positively regulates the expression of an sRNA, RprA, which is known to reduce mRNA csgD mRNA translation RprA via its binding to the 5′-untranslated region (UTR) of csgD. These findings indicate that, in E. coli, the RcsBCD system suppresses csgD expression through both direct transcriptional repression by the regulator RcsB and translational repression by the sRNA RprA. Full article
(This article belongs to the Special Issue Transcriptional Regulation in Bacteria, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 3826 KB  
Article
Circular RNA circ_0001591 Contributes to Melanoma Cell Migration Through AXL and FRA1 Proteins by Targeting miR-20a-3p and miR-34a-5p
by Elisa Orlandi, Elisa De Tomi, Francesca Belpinati, Marta Menegazzi, Macarena Gomez-Lira, Maria Grazia Romanelli and Elisabetta Trabetti
Genes 2025, 16(8), 921; https://doi.org/10.3390/genes16080921 - 30 Jul 2025
Viewed by 460
Abstract
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma [...] Read more.
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma cell migration. Methods: Three different melanoma cell lines were transfected with siRNA targeting circ_0001591 and with mimic or inhibitor molecules for miR-20a-3p and miR-34a-5p. Gene and protein expression levels were analyzed by RT-qPCR and Western blot, respectively. Dual luciferase reporter assays were performed to confirm the direct interaction of miR-20a-3p and miR-34a-5p with circ_0001591, as well as with the 3’UTRs of AXL (for both miRNAs) and FOSL1 (miR-34a-5p only). Wound healing assays were conducted to assess cell migration velocity. Results: The silencing of circ_0001591 significantly reduces the migration ability of melanoma cell lines. This downregulation was associated with an increased expression of miR-20a-3p and miR-34a-5p. Dual luciferase reporter assays confirmed the direct binding of both miRNAs to circ_0001591, supporting its role as a molecular sponge. The same assays also verified that miR-20a-3p directly targets the 3’UTR of AXL, while miR-34a-5p binds the 3’UTRs of both AXL and FOSL1. Western blot analysis showed that the modulation of this axis affects the expression levels of the AXL and FRA1 oncoproteins. Conclusions: Our findings demonstrate that circ_0001591 promotes melanoma migration by sponging miR-20a-3p and miR-34a-5p, thereby indirectly modulating the expression of AXL and FRA1 oncoprotein. Further investigations of this new regulatory network are needed to better understand its role in melanoma progression and to support the development of targeted therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 8337 KB  
Article
CIRBP Stabilizes Slc7a11 mRNA to Sustain the SLC7A11/GPX4 Antioxidant Axis and Limit Ferroptosis in Doxorubicin-Induced Cardiotoxicity
by Yixin Xie, Yongnan Li, Yafei Xie, Jianshu Chen, Hong Ding and Xiaowei Zhang
Antioxidants 2025, 14(8), 930; https://doi.org/10.3390/antiox14080930 - 29 Jul 2025
Viewed by 490
Abstract
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein [...] Read more.
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein (CIRBP) exhibits cardioprotective effects in various pathological contexts, but its precise role in ferroptosis-related cardiotoxicity is unknown. This study investigated whether CIRBP mitigates DIC by modulating the ferroptosis pathway via the SLC7A11 (Solute carrier family 7 member 11)/GPX4 (Glutathione peroxidase 4) axis. We observed marked downregulation of CIRBP in cardiac tissues and cardiomyocytes following doxorubicin exposure. CIRBP knockout significantly exacerbated cardiac dysfunction, mitochondrial damage, oxidative stress, and lipid peroxidation, accompanied by increased mortality rates. Conversely, CIRBP overexpression alleviated these pathological changes. Molecular docking and dynamics simulations, supported by transcriptomic analyses, revealed direct binding of CIRBP to the 3′-UTR of Slc7a11 mRNA, enhancing its stability and promoting translation. Correspondingly, CIRBP deficiency markedly suppressed SLC7A11 and GPX4 expression, impairing cystine uptake, glutathione synthesis, and antioxidant defenses, thus amplifying ferroptosis. These ferroptotic alterations were partially reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Collectively, this study identifies CIRBP as a critical regulator of ferroptosis in DIC, elucidating a novel post-transcriptional mechanism involving Slc7a11 mRNA stabilization. These findings offer new insights into ferroptosis regulation and highlight CIRBP as a potential therapeutic target for preventing anthracycline-associated cardiac injury. Full article
Show Figures

Figure 1

10 pages, 1183 KB  
Article
Novel Association of rs17111557(T) in PCSK9 with Higher Diastolic Blood Pressure in Northern Ghanaian Adults: Candidate Gene Analysis from an AWI-Gen Sub-Study
by Joseph A. Aweeya, Lord J. J. Gowans, Engelbert A. Nonterah, Victor Asoala, Patrick Ansah, Michele Ramsay and Godfred Agongo
BioMed 2025, 5(3), 15; https://doi.org/10.3390/biomed5030015 - 22 Jul 2025
Viewed by 420
Abstract
Background/Objectives: Cardiovascular diseases are a global health issue with an increasing burden and are exacerbated by hypertension. High blood pressure is partly attributed to genetic variants that are generally not well understood or extensively studied in sub-Saharan African populations. Variants linked to [...] Read more.
Background/Objectives: Cardiovascular diseases are a global health issue with an increasing burden and are exacerbated by hypertension. High blood pressure is partly attributed to genetic variants that are generally not well understood or extensively studied in sub-Saharan African populations. Variants linked to blood pressure have been found through genome-wide association studies (GWASs), which were mostly conducted among European ancestry populations; however, limited research has been undertaken in Africa. The current study evaluated single-nucleotide polymorphisms (SNPs) of PCSK9, ABCA1, LPL, and PON1 in relation to blood pressure measurements of 1839 Ghanaian adults. Methods: Genotypes were extracted from data generated by the H3Africa SNP array. After adjusting for sex, age, smoking, and body mass index (BMI), inferential statistics were used to investigate the relationships between SNPs and blood pressure (BP) indices. Additionally, Bonferroni correction was used to adjust for multiple testing. Results: Diastolic blood pressure (DBP) and the minor allele T of the PCSK9 variant (rs17111557) were positively associated at p = 0.006 after covariate adjustments. Although this novel DBP-associated variant is located in the 3′ untranslated region (3′ UTR) of the PCSK9 gene, in silico functional prediction suggests it is an expression quantitative trait locus (eQTL) that may change the binding site of transcription factors, potentially altering the rate of transcription and impacting DBP in this Ghanaian population. Conclusions: Our findings highlight the role of genetics in hypertension risk and the potential of discovering new therapies targeting isolated diastolic blood pressure in this rural African population. Full article
Show Figures

Figure 1

19 pages, 2357 KB  
Article
Chimeric Element-Regulated MRI Reporter System for Mediation of Glioma Theranostics
by Qian Hu, Jie Huang, Xiangmin Zhang, Haoru Wang, Xiaoying Ni, Huiru Zhu and Jinhua Cai
Cancers 2025, 17(14), 2349; https://doi.org/10.3390/cancers17142349 - 15 Jul 2025
Viewed by 467
Abstract
Background and Purpose: Glioblastoma remains a therapeutic challenge with a poor prognosis despite multimodal treatments. Reporter-based magnetic resonance imaging (MRI) offers a promising approach for tumor visualization, but its efficacy depends on sufficient reporter gene expression. This study aimed to develop a [...] Read more.
Background and Purpose: Glioblastoma remains a therapeutic challenge with a poor prognosis despite multimodal treatments. Reporter-based magnetic resonance imaging (MRI) offers a promising approach for tumor visualization, but its efficacy depends on sufficient reporter gene expression. This study aimed to develop a chimeric element-regulated ferritin heavy chain 1 (FTH1) reporter system to enhance MRI-based glioma detection while enabling targeted therapy via transferrin receptor (TfR)-mediated drug delivery. Methods: Using gene cloning techniques, we constructed a chimeric FTH1 expression system comprising tumor-specific PEG3 promoter (transcriptional control), bFGF-2 5′UTR (translational enhancement), and WPRE (mRNA stabilization). Lentiviral vectors delivered constructs to U251 glioblastoma cells and xenografts. FTH1/TfR expression was validated by Western blot and immunofluorescence. Iron accumulation was assessed via Prussian blue staining and TEM. MRI evaluated T2 signal changes. Transferrin-modified doxorubicin liposomes (Tf-LPD) were characterized for size and drug loading and tested for cellular uptake and cytotoxicity in vitro. In vivo therapeutic efficacy was assessed in nude mouse models through tumor volume measurement, MR imaging, and histopathology. Results: The chimeric system increased FTH1 expression significantly over PEG3-only controls (p < 0.01), with an increase of nearly 1.5-fold compared to the negative and blank groups and approximately a two-fold increase relative to the single promoter group, with corresponding TfR upregulation. Enhanced iron accumulation reduced T2 relaxation times significantly (p < 0.01), improving MR contrast. Tf-LPD (115 nm, 70% encapsulation) showed TfR-dependent uptake, inducing obvious apoptosis in high-TfR cells compared with that in controls. In vivo, Tf-LPD reduced tumor growth markedly in chimeric-system xenografts versus controls, with concurrent MR signal attenuation. Conclusions: The chimeric regulatory strategy overcomes limitations of single-element systems, demonstrating significant potential for integrated glioma theranostics. Its modular design may be adaptable to other reporter genes and malignancies. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

17 pages, 12102 KB  
Article
Multiomics Integration of Parkinson’s Disease Datasets Reveals Unexpected Roles of IRE1 in Its Pathology
by Bianka Alexandra Pasat, Matthieu Moncan, Eleftherios Pilalis, Afshin Samali, Aristotelis Chatziioannou and Adrienne M. Gorman
Int. J. Mol. Sci. 2025, 26(14), 6711; https://doi.org/10.3390/ijms26146711 - 12 Jul 2025
Viewed by 486
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. It primarily affects the motor system but is also associated with a range of cognitive impairments that can manifest early in disease progression, indicating its multifaceted nature. In this paper, we performed a [...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disease. It primarily affects the motor system but is also associated with a range of cognitive impairments that can manifest early in disease progression, indicating its multifaceted nature. In this paper, we performed a meta-analysis of transcriptomics and proteomics data using MultiOmicsIntegrator to gain insights into the post-transcriptional modifications and deregulated pathways associated with this disease. Our results reveal differential isoform usage between control and PD patient brain samples that result in enriched alternative splicing events, including an extended UTR length, domain loss, and the upregulation of non-coding isoforms. We found that Inositol-Requiring Enzyme 1 (IRE1) is active in PD samples and examined the role of its downstream signaling through X-box binding mRNA 1 (XBP1) and regulated IRE1-dependent decay (RIDD). We identified several RIDD candidates and showed that the enriched alternative splicing events observed are associated with RIDD. Moreover, in vitro mRNA cleavage assays demonstrated that OSBPL3, C16orf74, and SLC6A1 mRNAs are targets of IRE1 RNAse activity. Finally, a pathway enrichment analysis of both XBP1s and RIDD targets in the PD samples uncovered associations with processes such as immune response, oxidative stress, signal transduction, and cell–cell communication that have previously been linked to PD. These findings highlight a potential regulatory role of IRE in PD. Full article
Show Figures

Figure 1

17 pages, 7594 KB  
Article
Uridine Kinase-like Protein (GhUKL4) Positively Regulates Resistance to Verticillium Wilt in Cotton
by Baimei Cheng, Yanmeng Sun, Xiaohui Sang, Jianhua Lu, Pei Zhao, Wei Chen, Yunlei Zhao and Hongmei Wang
Genes 2025, 16(7), 819; https://doi.org/10.3390/genes16070819 - 12 Jul 2025
Cited by 1 | Viewed by 391
Abstract
Background: Verticillium wilt (VW), caused by the fungal pathogen Verticillium dahliae, is a destructive disease that severely compromises cotton yield and fiber quality. Pyrimidine nucleotides, as essential metabolites and nucleic acid components, play critical roles in plant development and stress responses. However, [...] Read more.
Background: Verticillium wilt (VW), caused by the fungal pathogen Verticillium dahliae, is a destructive disease that severely compromises cotton yield and fiber quality. Pyrimidine nucleotides, as essential metabolites and nucleic acid components, play critical roles in plant development and stress responses. However, genes involved in pyrimidine metabolism, especially their roles in disease resistance, remain largely uncharacterized in plants. Methods: Ghir_D05G039120, a gene encoding uridine kinase, shown to be associated with VW resistance in our previous study, was cloned and named as GhUKL4. The differential expression of GhUKL4 between the resistant and susceptible cultivars at multiple time points post-inoculation with V. dahliae was analyzed by quantitative real-time PCR (qRT-PCR), and the uracil phosphoribosyl transferase (UPRT) and uridine 5′-monophosphate kinase (UMPK) domains were verified by analyzing the amino acid sequences of GhUKL4. The role of GhUKL4 in the defense against VW infection was estimated by silencing GhUKL4 in the resistant and susceptible cultivars using virus-induced gene silencing (VIGS) analysis. Results: There were significant differences in the expression level of Ghir_D05G039120/ GhUKL4 among resistant and susceptible cotton lines. GhUKL4 contains UPRTase and UMPK domains, and there was one SNP between the resistant and susceptible cultivars in its 3′-UTR region. The silencing of GhUKL4 reduced cotton’s resistance to VW through mediating hormone signaling (JA) and oxidative stress (ROS) pathways. Conclusions: GhUKL4, encoding UMPK and UPRTase domain proteins, is a new regulatory factor associated with VW resistance in Gossypium hirsutum through fine-tuning JA-signalling and ROS bursting. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1632 KB  
Article
Genomic Characterization of Two Bovine Enterovirus Strains Isolated from Newly Transported Cattle
by Cuilan Wu, Shuhong Zhong, Shiwen Feng, Huili He, Shuai Hu, Zhongwei Chen, Changting Li, Xiongbiao Xuan, Hao Peng, Zuzhang Wei and Jun Li
Vet. Sci. 2025, 12(7), 660; https://doi.org/10.3390/vetsci12070660 - 11 Jul 2025
Viewed by 482
Abstract
This study isolated and identified two novel Chinese bovine enterovirus (BEV) strains, designated as BEV-GX1901 and BEV-GX1902, from newly transported cattle with the diarrheal feces symptom. We also determined their complete genome sequences (7408 and 7405 nucleotides, respectively) and found both strains have [...] Read more.
This study isolated and identified two novel Chinese bovine enterovirus (BEV) strains, designated as BEV-GX1901 and BEV-GX1902, from newly transported cattle with the diarrheal feces symptom. We also determined their complete genome sequences (7408 and 7405 nucleotides, respectively) and found both strains have a genome organization analogous to that of picornaviruses. To better understand these two novel strains, a detailed analysis was applied to both strains, including the time of the cytopathic effect (CPE) production, TCID50 measurement, trypsin sensitivity test, ether sensitivity test, chioroform sensitivity test, acid and alkali resistance test, and heat resistance test. Our results showed that these two strains are different in physical and chemical properties. Our study also characterized that BEV-GX1901 and BEV-GX1902, both belonging to the BEV-E4 subtype, were closely related to the Australian strains K2577 and SL305, and the Japanese strain IS1 based on their genome sequences and VP1 region characterizations. It is speculated that this may be related to cattle trade and transportation. Additionally, the gene-by-gene or amino acid-by-amino acid comparison of the two strains found they have differences between their 5′UTR, 3′UTR, VP2, VP1, 2A, 3C, and 3D regions. Our results provide an important update of the virus’s presence in China and contribute to a better understanding of the distribution and characterization of BEVs in cattle. Full article
Show Figures

Figure 1

Back to TopTop