Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 8-bromo-cADPR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2682 KB  
Article
Downregulation of miR-140-3p Contributes to Upregulation of CD38 Protein in Bronchial Smooth Muscle Cells
by Yoshihiko Chiba, Mayumi Matsumoto, Motohiko Hanazaki and Hiroyasu Sakai
Int. J. Mol. Sci. 2020, 21(21), 7982; https://doi.org/10.3390/ijms21217982 - 27 Oct 2020
Cited by 6 | Viewed by 2825
Abstract
In allergic bronchial asthma, an increased smooth muscle contractility of the airways is one of the causes of the airway hyperresponsiveness (AHR). Increasing evidence also suggests a possible involvement of microRNAs (miRNAs) in airway diseases, including asthma, although their roles in function and [...] Read more.
In allergic bronchial asthma, an increased smooth muscle contractility of the airways is one of the causes of the airway hyperresponsiveness (AHR). Increasing evidence also suggests a possible involvement of microRNAs (miRNAs) in airway diseases, including asthma, although their roles in function and pathology largely unknown. The current study aimed to determine the role of a miRNA, miR-140-3p, in the control of protein expression of CD38, which is believed to regulate the contraction of smooth muscles, including the airways. In bronchial smooth muscles (BSMs) of the mice that were actively sensitized and repeatedly challenged with ovalbumin antigen, an upregulation of CD38 protein concurrently with a significant reduction of miR-140-3p was observed. In cultured human BSM cells (hBSMCs), transfection with a synthetic miR-140-3p inhibitor caused an increase in CD38 protein, indicating that its basal protein expression is regulated by endogenous miR-140-3p. Treatment of the hBSMCs with interleukin-13 (IL-13), an asthma-related cytokine, caused both an upregulation of CD38 protein and a downregulation of miR-140-3p. Transfection of the hBSMCs with miR-140-3p mimic inhibited the CD38 protein upregulation induced by IL-13. On the other hand, neither a CD38 product cyclic ADP-ribose (cADPR) nor its antagonist 8-bromo-cADPR had an effect on the BSM contraction even in the antigen-challenged mice. Taken together, the current findings suggest that the downregulation of miR-140-3p induced by IL-13 might cause an upregulation of CD38 protein in BSM cells of the disease, although functional and pathological roles of the upregulated CD38 are still unclear. Full article
Show Figures

Figure 1

39 pages, 7965 KB  
Review
On a Magical Mystery Tour with 8-Bromo-Cyclic ADP-Ribose: From All-or-None Block to Nanojunctions and the Cell-Wide Web
by A. Mark Evans
Molecules 2020, 25(20), 4768; https://doi.org/10.3390/molecules25204768 - 16 Oct 2020
Cited by 1 | Viewed by 4273
Abstract
A plethora of cellular functions are controlled by calcium signals, that are greatly coordinated by calcium release from intracellular stores, the principal component of which is the sarco/endooplasmic reticulum (S/ER). In 1997 it was generally accepted that activation of various G protein-coupled receptors [...] Read more.
A plethora of cellular functions are controlled by calcium signals, that are greatly coordinated by calcium release from intracellular stores, the principal component of which is the sarco/endooplasmic reticulum (S/ER). In 1997 it was generally accepted that activation of various G protein-coupled receptors facilitated inositol-1,4,5-trisphosphate (IP3) production, activation of IP3 receptors and thus calcium release from S/ER. Adding to this, it was evident that S/ER resident ryanodine receptors (RyRs) could support two opposing cellular functions by delivering either highly localised calcium signals, such as calcium sparks, or by carrying propagating, global calcium waves. Coincidentally, it was reported that RyRs in mammalian cardiac myocytes might be regulated by a novel calcium mobilising messenger, cyclic adenosine diphosphate-ribose (cADPR), that had recently been discovered by HC Lee in sea urchin eggs. A reputedly selective and competitive cADPR antagonist, 8-bromo-cADPR, had been developed and was made available to us. We used 8-bromo-cADPR to further explore our observation that S/ER calcium release via RyRs could mediate two opposing functions, namely pulmonary artery dilation and constriction, in a manner seemingly independent of IP3Rs or calcium influx pathways. Importantly, the work of others had shown that, unlike skeletal and cardiac muscles, smooth muscles might express all three RyR subtypes. If this were the case in our experimental system and cADPR played a role, then 8-bromo-cADPR would surely block one of the opposing RyR-dependent functions identified, or the other, but certainly not both. The latter seemingly implausible scenario was confirmed. How could this be, do cells hold multiple, segregated SR stores that incorporate different RyR subtypes in receipt of spatially segregated signals carried by cADPR? The pharmacological profile of 8-bromo-cADPR action supported not only this, but also indicated that intracellular calcium signals were delivered across intracellular junctions formed by the S/ER. Not just one, at least two. This article retraces the steps along this journey, from the curious pharmacological profile of 8-bromo-cADPR to the discovery of the cell-wide web, a diverse network of cytoplasmic nanocourses demarcated by S/ER nanojunctions, which direct site-specific calcium flux and may thus coordinate the full panoply of cellular processes. Full article
Show Figures

Figure 1

Back to TopTop