Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ADL-YOLOv8

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2772 KB  
Article
Activities of Daily Living Object Dataset: Advancing Assistive Robotic Manipulation with a Tailored Dataset
by Md Tanzil Shahria and Mohammad H. Rahman
Sensors 2024, 24(23), 7566; https://doi.org/10.3390/s24237566 - 27 Nov 2024
Cited by 4 | Viewed by 2350
Abstract
The increasing number of individuals with disabilities—over 61 million adults in the United States alone—underscores the urgent need for technologies that enhance autonomy and independence. Among these individuals, millions rely on wheelchairs and often require assistance from another person with activities of daily [...] Read more.
The increasing number of individuals with disabilities—over 61 million adults in the United States alone—underscores the urgent need for technologies that enhance autonomy and independence. Among these individuals, millions rely on wheelchairs and often require assistance from another person with activities of daily living (ADLs), such as eating, grooming, and dressing. Wheelchair-mounted assistive robotic arms offer a promising solution to enhance independence, but their complex control interfaces can be challenging for users. Automating control through deep learning-based object detection models presents a viable pathway to simplify operation, yet progress is impeded by the absence of specialized datasets tailored for ADL objects suitable for robotic manipulation in home environments. To bridge this gap, we present a novel ADL object dataset explicitly designed for training deep learning models in assistive robotic applications. We curated over 112,000 high-quality images from four major open-source datasets—COCO, Open Images, LVIS, and Roboflow Universe—focusing on objects pertinent to daily living tasks. Annotations were standardized to the YOLO Darknet format, and data quality was enhanced through a rigorous filtering process involving a pre-trained YOLOv5x model and manual validation. Our dataset provides a valuable resource that facilitates the development of more effective and user-friendly semi-autonomous control systems for assistive robots. By offering a focused collection of ADL-related objects, we aim to advance assistive technologies that empower individuals with mobility impairments, addressing a pressing societal need and laying the foundation for future innovations in human–robot interaction within home settings. Full article
(This article belongs to the Special Issue Vision Sensors for Object Detection and Tracking)
Show Figures

Figure 1

24 pages, 10818 KB  
Article
ADL-YOLOv8: A Field Crop Weed Detection Model Based on Improved YOLOv8
by Zhiyu Jia, Ming Zhang, Chang Yuan, Qinghua Liu, Hongrui Liu, Xiulin Qiu, Weiguo Zhao and Jinlong Shi
Agronomy 2024, 14(10), 2355; https://doi.org/10.3390/agronomy14102355 - 12 Oct 2024
Cited by 12 | Viewed by 3550
Abstract
This study presents an improved weed detection model, ADL-YOLOv8, designed to enhance detection accuracy for small targets while achieving model lightweighting. It addresses the challenge of attaining both high accuracy and low memory usage in current intelligent weeding equipment. By overcoming this issue, [...] Read more.
This study presents an improved weed detection model, ADL-YOLOv8, designed to enhance detection accuracy for small targets while achieving model lightweighting. It addresses the challenge of attaining both high accuracy and low memory usage in current intelligent weeding equipment. By overcoming this issue, the research not only reduces the hardware costs of automated impurity removal equipment but also enhances software recognition accuracy, contributing to reduced pesticide use and the promotion of sustainable agriculture. The ADL-YOLOv8 model incorporates a lighter AKConv network for better processing of specific features, an ultra-lightweight DySample upsampling module to improve accuracy and efficiency, and the LSKA-Attention mechanism for enhanced detection, particularly of small targets. On the same dataset, ADL-YOLOv8 demonstrated a 2.2% increase in precision, a 2.45% rise in recall, a 3.07% boost in mAP@0.5, and a 1.9% enhancement in mAP@0.95. The model’s size was cut by 15.77%, and its computational complexity was reduced by 10.98%. These findings indicate that ADL-YOLOv8 not only exceeds the original YOLOv8n model but also surpasses the newer YOLOv9t and YOLOv10n in overall performance. The improved algorithm model makes the hardware cost required for embedded terminals lower. Full article
(This article belongs to the Special Issue Robotics and Automation in Farming)
Show Figures

Figure 1

Back to TopTop