Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (71,949)

Search Parameters:
Keywords = AR interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7800 KiB  
Article
In Silico Identification of 2,4-Diaminopyrimidine-Based Compounds as Potential CK1ε Inhibitors
by Axel A. Sánchez-Álvarez, Marco A. Velasco-Velázquez and Luis Cordova-Bahena
Pharmaceuticals 2025, 18(5), 741; https://doi.org/10.3390/ph18050741 (registering DOI) - 17 May 2025
Abstract
Background: Casein kinase 1 epsilon (CK1ε) plays a critical role in cancer progression by activating oncogenic signaling pathways, making it a target for cancer therapy. However, no inhibitors are currently available for clinical use, highlighting the need for novel therapeutic candidates. Methods: This [...] Read more.
Background: Casein kinase 1 epsilon (CK1ε) plays a critical role in cancer progression by activating oncogenic signaling pathways, making it a target for cancer therapy. However, no inhibitors are currently available for clinical use, highlighting the need for novel therapeutic candidates. Methods: This study aimed to identify potential CK1ε inhibitors. To achieve this, a modified version of a previously reported pharmacophore model was applied to an ultra-large database of over 100 million compounds for virtual screening. Hits were filtered based on drug-likeness and pH-dependent pharmacophore compliance and then grouped according to their structural core. A representative compound from each structural group underwent molecular dynamic (MD) simulations and binding free energy calculations to predict its stability and affinity, allowing extrapolation of the results to the entire set of candidates. Results: Pharmacophore matching initially identified 290 compounds. After energy minimization, and an assessment of drug-likeness and pharmacophore compliance, we selected 29 structurally related candidates. MD simulations showed that most of the compounds representative of structural groups had stable binding modes, favorable intermolecular interactions, and free energies comparable to those of previously reported CK1ε inhibitors. An analysis of additional members of the most promising structural group showed that two 2,4-diaminopyrimidine-based compounds likely inhibit CK1ε. Conclusions: These findings provide structural insights into the design of CK1ε inhibitors, supporting compound optimization and the eventual development of targeted cancer therapeutics. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 1159 KiB  
Article
Optimization of Subsurface Drainage Parameters in Saline–Alkali Soils to Improve Salt Leaching Efficiency in Farmland in Southern Xinjiang
by Han Guo, Guangning Wang, Zhenliang Song, Pengfei Xu, Xia Li and Liang Ma
Agronomy 2025, 15(5), 1222; https://doi.org/10.3390/agronomy15051222 (registering DOI) - 17 May 2025
Abstract
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of [...] Read more.
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of varying subsurface drainage configurations—specifically, burial depths (1.0–1.5 m) and pipe spacings (20–40 m)—on drainage and salt removal efficiency in silty loam soils of southern Xinjiang, aiming to develop an optimized scheme balancing water conservation and desalination. Five treatments (A1–A5) were established to measure evaporation, drainage, and salt discharge during both spring and winter irrigation. These variables were analyzed using a water balance model and multifactorial ANOVA to quantify the interactive effects of drainage depth and spacing. The results indicated that treatment A5 (1.5 m depth, 20 m spacing) outperformed all the others in terms of both the drainage-to-irrigation ratio (Rd/i) and the drainage salt efficiency coefficient (DSEC), with a two-year average Rd/i of 32.35% across two spring and two winter irrigation events, and a mean DSEC of 3.28 kg·m−3. The 1.5 m burial depth significantly improved salt leaching efficiency by increasing the salt control volume and reducing capillary rise. The main effect of burial depth on both Rd/i and DSEC was highly significant (p < 0.01), whereas the effect of spacing was not statistically significant (p > 0.05). Although the limited experimental duration and the use of a single soil type may affect the generalizability of the findings, the recommended configuration (1.5 m burial depth, 20 m spacing) shows strong potential for broader application in silty loam regions of southern Xinjiang and provides technical support for subsurface drainage projects aimed at reclaiming saline soils in arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
27 pages, 1392 KiB  
Article
Design and Evaluation of a Crosslinked Chitosan-Based Scaffold Containing Hyaluronic Acid for Articular Cartilage Reconstruction
by Salim Hamidi, Mickael Maton, Feng Hildebrand, Valérie Gaucher, Cédric Bossard, Frédéric Cazaux, Jean Noel Staelens, Nicolas Blanchemain and Bernard Martel
Molecules 2025, 30(10), 2202; https://doi.org/10.3390/molecules30102202 (registering DOI) - 17 May 2025
Abstract
Polymeric scaffolds are promising in tissue engineering due to their structural similarity to extracellular matrix components. This study aimed to design freeze-dried hydrogels based on chitosan (CHT) and hyaluronic acid (HA). Chitosan-based gels were crosslinked with oxidized maltodextrin (MDo) before the freeze-drying step, [...] Read more.
Polymeric scaffolds are promising in tissue engineering due to their structural similarity to extracellular matrix components. This study aimed to design freeze-dried hydrogels based on chitosan (CHT) and hyaluronic acid (HA). Chitosan-based gels were crosslinked with oxidized maltodextrin (MDo) before the freeze-drying step, resulting in spongy porous scaffolds. Based on the state-of-the-art, our hypothesis was that crosslinking would increase scaffold stiffness and delay the degradation of the CHT:HA resorbable scaffolds swelled in a hydrated physiological environment. The physicochemical and mechanical properties of crosslinked CHT- and CHT:HA-based scaffolds were analyzed. Hygroscopic and swelling behavior were assessed using dynamic vapor sorption analysis and batch studies. Degradation was evaluated under different conditions, including in phosphate-buffered saline (PBS), PBS with lysozyme, and lactic acid solutions, to investigate scaffold resistance against enzymatic and acidic degradation. The porosity of the spongy materials was characterized using scanning electron microscopy, while dynamic mechanical analysis provided information on the mechanical properties. Crosslinked scaffolds showed reduced swelling, slower degradation rates, and increased stiffness, confirming MDo as an effective crosslinking agent. Scaffolds loaded with ciprofloxacin (CFX) demonstrated their ability to deliver therapeutic agents, as the CFX loading capacity was promoted by CHT–CFX interactions. Microbiologic investigation confirmed the results. Finally, cytotoxicity tests displayed no toxicity. In conclusion, MDo-crosslinked CHT and CHT:HA scaffolds exhibit enhanced stability, functionality, and mechanical performance, making them promising for cartilage tissue engineering. Full article
19 pages, 716 KiB  
Article
Effects of Employee–Artificial Intelligence (AI) Collaboration on Counterproductive Work Behaviors (CWBs): Leader Emotional Support as a Moderator
by Qingqi Meng, Tung-Ju Wu, Wenyan Duan and Shijia Li
Behav. Sci. 2025, 15(5), 696; https://doi.org/10.3390/bs15050696 (registering DOI) - 17 May 2025
Abstract
The accelerated advancement of artificial intelligence (AI) has positioned it as a novel colleague. However, as employees collaborate with AI colleagues in daily work, their communication and interaction with human colleagues may decrease. This may result in feelings of loneliness and a potential [...] Read more.
The accelerated advancement of artificial intelligence (AI) has positioned it as a novel colleague. However, as employees collaborate with AI colleagues in daily work, their communication and interaction with human colleagues may decrease. This may result in feelings of loneliness and a potential reduction in emotional resources, potentially leading to counterproductive work behavior (CWB). Drawing from the conservation of resources (COR) theory, we hypothesize that employee–AI collaboration may amplify employees’ CWB due to loneliness and emotional fatigue. The potential mitigating effects of leader emotional support on these outcomes are also considered. To test these hypotheses, a 2 × 2 vignette experiment (N = 167) was conducted. The results demonstrate that employee–AI collaboration exerts a substantial positive influence on loneliness. Loneliness further increases employees’ emotional fatigue, which in turn increases CWB. Leader emotional support—the care and motivation demonstrated by leaders has been identified as a key factor in reducing loneliness. This research contributes to the extant literature on employee–AI collaboration and CWB, and expands the application scope of COR. Practical implications arise for managers, who are encouraged to consider the impact of employee–AI collaboration on interpersonal interaction and to address employees’ emotional needs in a timely manner. Full article
(This article belongs to the Special Issue Employee Behavior on Digital-AI Transformation)
Show Figures

Figure 1

18 pages, 2001 KiB  
Review
Depth Perception Based on the Interaction of Binocular Disparity and Motion Parallax Cues in Three-Dimensional Space
by Shuai Li, Shufang He, Yuanrui Dong, Caihong Dai, Jinyuan Liu, Yanfei Wang and Hiroaki Shigemasu
Sensors 2025, 25(10), 3171; https://doi.org/10.3390/s25103171 (registering DOI) - 17 May 2025
Abstract
Background and Objectives: Depth perception of the human visual system in three-dimensional (3D) space plays an important role in human–computer interaction and artificial intelligence (AI) areas. It mainly employs binocular disparity and motion parallax cues. This study aims to systemically summarize the related [...] Read more.
Background and Objectives: Depth perception of the human visual system in three-dimensional (3D) space plays an important role in human–computer interaction and artificial intelligence (AI) areas. It mainly employs binocular disparity and motion parallax cues. This study aims to systemically summarize the related studies about depth perception specified by these two cues. Materials and Methods: We conducted a literature investigation on related studies and summarized them from aspects like motivations, research trends, mechanisms, and interaction models of depth perception specified by these two cues. Results: Development trends show that depth perception research has gradually evolved from early studies based on a single cue to quantitative studies based on the interaction between these two cues. Mechanisms of these two cues reveal that depth perception specified by the binocular disparity cue is mainly influenced by factors like spatial variation in disparity, viewing distance, the position of visual field (or retinal image) used, and interaction with other cues; whereas that specified by the motion parallax cue is affected by head movement and retinal image motion, interaction with other cues, and the observer’s age. By integrating these two cues, several types of models for depth perception are summarized: the weak fusion (WF) model, the modified weak fusion (MWF) model, the strong fusion (SF) model, and the intrinsic constraint (IC) model. The merits and limitations of each model are analyzed and compared. Conclusions: Based on this review, a clear picture of the study on depth perception specified by binocular disparity and motion parallax cues can be seen. Open research challenges and future directions are presented. In the future, it is necessary to explore methods for easier manipulating of depth cue signals in stereoscopic images and adopting deep learning-related methods to construct models and predict depths, to meet the increasing demand of human–computer interaction in complex 3D scenarios. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 40057 KiB  
Article
Time-Series InSAR Monitoring of Permafrost-Related Surface Deformation at Tiksi Airport: Impacts of Climate Warming and Coastal Erosion on the Northernmost Siberian Mainland
by Qingkai Yan, Ze Zhang, Xianglong Li, Aoxiang Yan, Lisha Qiu, Andrei Zhang, Andrey Melnikov and Leonid Gagarin
Remote Sens. 2025, 17(10), 1757; https://doi.org/10.3390/rs17101757 (registering DOI) - 17 May 2025
Abstract
The Arctic is the fastest-warming region on Earth, exhibiting a pronounced “amplifying effect”, which has triggered widespread permafrost thaw and increased the risk of surface deformation. In the Arctic coastal lowlands, permafrost is also affected by shoreline retreat. The impact of these dual [...] Read more.
The Arctic is the fastest-warming region on Earth, exhibiting a pronounced “amplifying effect”, which has triggered widespread permafrost thaw and increased the risk of surface deformation. In the Arctic coastal lowlands, permafrost is also affected by shoreline retreat. The impact of these dual stressors on surface deformation processes in the Arctic coastal lowlands remains poorly understood, particularly in terms of how permafrost thaw and shoreline retreat interact to influence surface stability. To address this gap, we employed PS-InSAR technology to monitor surface deformation from 2017 to 2021 at Tiksi Airport, the northernmost airport on the Siberian mainland, situated adjacent to the Laptev Sea. The results show that Tiksi Airport experiences localized significant surface subsidence, with deformation velocity ranging from −42 to 39 mm/yr. The near-coastal area of Tiksi Airport is strongly influenced by the ocean. Specifically, for extreme subsidence deformation (around –40 mm/yr), the surface subsidence velocity increases by 0.2 mm/yr for every 100 m closer to the coastline. Analysis of these deformation characteristics suggests that the primary causes of subsidence are land surface temperature (LST) warming and erosion by the Laptev Sea, which together lead to increased permafrost thaw. By revealing the combined effects of climate warming and coastal erosion on permafrost stability, this study contributes to enhancing the understanding of infrastructure safety and quality of life for residents in Arctic coastal subsidence areas. Full article
15 pages, 1253 KiB  
Article
Curcumin Reverses Antibiotic Resistance and Downregulates Shiga Toxin Expression in Enterohemorrhagic E. coli
by Martin Zermeño-Ruiz, Mirian Cobos-Vargas, Mauro Donaldo Saucedo-Plascencia, Rafael Cortés-Zárate, Leonardo Hernandez-Hernandez, Teresa Arcelia Garcia-Cobian, Teresa Estrada-Garcia and Araceli Castillo-Romero
Diseases 2025, 13(5), 154; https://doi.org/10.3390/diseases13050154 (registering DOI) - 17 May 2025
Abstract
Background: Enterohemorrhagic Escherichia coli (EHEC) is a considerable public health concern associated with several foodborne outbreaks of bloody diarrhea (BD) and the potentially lethal hemolytic uremic syndrome (HUS), the pathophysiology of which is attributable to the Shiga toxin (Stx) produced by this bacterium. [...] Read more.
Background: Enterohemorrhagic Escherichia coli (EHEC) is a considerable public health concern associated with several foodborne outbreaks of bloody diarrhea (BD) and the potentially lethal hemolytic uremic syndrome (HUS), the pathophysiology of which is attributable to the Shiga toxin (Stx) produced by this bacterium. In most patients, supportive treatment will be sufficient; however, in some cases, antibiotic treatment may be necessary. Most antibiotics are not recommended for EHEC infection treatment, particularly those that kill the bacteria, since this triggers the release of Stx in the body, inducing or worsening HUS. Azithromycin, which prevents the release of Stx and is a weaker inducer of the SOS system, has been successfully used to reduce EHEC shedding. It is necessary to identify compounds that eliminate EHEC without inducing Stx release. The use of natural compounds such as curcumin (CUR), a polyphenol derived from turmeric, has been highlighted as an alternative bactericidal treatment approach. Objective: The objective of this study was to establish the effect of CUR and its interactions with selected antibiotics on resistant EHEC O157/H7/EDL933. Methods: Bacterial cultures were exposed to CUR at three different concentrations (110, 220, and 330 µg/mL) and 1.2% DMSO, and the antimicrobial activity of CUR was assessed by measuring the optical density at 600 nm (OD600). The synergy of CUR and the antibiotics was determined with the FIC method. RT-PCR was performed to determine the expression levels of the blaCTX-M-15, catA1, acrAB-tolC stx2A, and stx2B genes. Results: Our data indicate that CUR did not affect the growth of EHEC, but when combined with the antibiotics, it acted as a bacterial resistance breaker. Synergistic combinations of CUR and cefotaxime or chloramphenicol significantly reduced colony counts. Conclusions: Our findings support the potential of CUR as a sensitizer or in combination therapy against EHEC. Full article
(This article belongs to the Section Infectious Disease)
19 pages, 15125 KiB  
Article
Human and Mouse Bone Marrow CD45+ Erythroid Cells Have a Constitutive Expression of Antibacterial Immune Response Signature Genes
by Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Julia Shevchenko, Kirill Nazarov, Anastasia Gizbrekht, Saleh Alrhmoun, Vera Denisova and Sergey Sennikov
Biomedicines 2025, 13(5), 1218; https://doi.org/10.3390/biomedicines13051218 (registering DOI) - 17 May 2025
Abstract
Introduction: Recent studies have shown that Erythroid progenitor cells exhibit a distinct immunosuppressive and immunoregulatory phenotype associated with the response to bacteria. Methods: The objective of this study was to comprehensively explore the traits of human bone marrow Erythroid cells through [...] Read more.
Introduction: Recent studies have shown that Erythroid progenitor cells exhibit a distinct immunosuppressive and immunoregulatory phenotype associated with the response to bacteria. Methods: The objective of this study was to comprehensively explore the traits of human bone marrow Erythroid cells through protein–protein interaction network analysis using cytokine secretion analysis, and single-cell immunoproteomic analysis using flow cytometry, as well as the re-analysis of publicly available human and mouse bone marrow Erythroid-cell transcriptomic data. Results: Our protein–protein interaction network analysis of human bone marrow Erythroid-cell protein-coding genes identified enrichment in the immune response to lipopolysaccharide, with Calprotectin and Cathepsin G being the main factors. We then mapped the Calprotectin to the CD45+ Erythroid cells of both humans and mice via the analysis of the publicly available scRNA-seq data. Additionally, we observed that human bone marrow Erythroid cells secrete cytokines and chemokines, such as IL-1b, IL-8, and IL-18, which are also mainly involved in the immune response to lipopolysaccharide. We also found that human and mouse bone marrow Erythroid-cell conditional media inhibit bacterial growth in vitro. Discussion: These findings suggest that both human and mouse bone marrow CD45+ Erythroid cells possess the potential to combat pathogenic microbes and thus play a role in innate antimicrobial immunity. Conclusions: CD45+ Erythroid cells are a potent immunoregulatory cell population in both humans and mice. Full article
(This article belongs to the Section Immunology and Immunotherapy)
26 pages, 2454 KiB  
Review
Mechanical Properties of Medical Microbubbles and Echogenic Liposomes—A Review
by Hussain Alsadiq and Zahra Alhay
Micromachines 2025, 16(5), 588; https://doi.org/10.3390/mi16050588 (registering DOI) - 17 May 2025
Abstract
Lipid-shelled microbubbles (MBs) and echogenic liposomes (ELIPs) have been proposed as acoustofluidic theranostic agents after having been proven to be efficient in diagnostics as ultrasonic contrast agents. Their mechanical properties—such as shell stiffness, friction, and resonance frequency—are critical to their performance, stability, oscillatory [...] Read more.
Lipid-shelled microbubbles (MBs) and echogenic liposomes (ELIPs) have been proposed as acoustofluidic theranostic agents after having been proven to be efficient in diagnostics as ultrasonic contrast agents. Their mechanical properties—such as shell stiffness, friction, and resonance frequency—are critical to their performance, stability, oscillatory dynamics, and response to sonication. A precise characterization of these properties is essential for optimizing their biomedical applications, however the current methods vary significantly in their sensitivity and accuracy. This review examines the experimental and theoretical methodologies used to quantify the mechanical properties of MBs and ELIPs, discusses how each approach estimates shell stiffness and friction, and outlines the strengths and limitations inherent to each technique. Additionally, the effects of parameters such as temperature and lipid composition on MB and ELIP mechanical behavior are examined. Four characterization methods are analyzed, including frequency-dependent attenuation, optical observation, atomic force microscopy (AFM), and laser scattering, their advantages and limitations are critically assessed. Additionally, the factors that influence the mechanical properties of the MBs and ELIPs, such as temperature and lipid composition, are examined. Frequency-dependent attenuation was shown to provide reliable shell elasticity estimates but is influenced by nonlinear oscillations, AFM confirms that microbubble stiffness is size-dependent with smaller bubbles exhibiting higher shell stiffness, and theoretical models such as modified Rayleigh–Plesset equations increasingly incorporate viscoelastic shell properties to improve prediction accuracy. However, many of these models still assume radial symmetry and neglect inter-bubble interactions, which can lead to inaccurate elasticity values when applied to dense suspensions. In such cases, using modified frameworks like the Sarkar model, which incorporates damping and surface tension explicitly, may provide more reliable estimates under nonlinear conditions. Additionally, lipid composition and temperature significantly affect shell mechanics, with higher temperatures generally reducing stiffness. On the other hand, inconsistencies in experimental protocols hinder direct comparison across studies, highlighting the need for standardized characterization methods and improved computational modeling. Full article
(This article belongs to the Section B:Biology and Biomedicine)
25 pages, 13985 KiB  
Article
A Low-Cost Prototype of a Soft–Rigid Hybrid Pneumatic Anthropomorphic Gripper for Testing Tactile Sensor Arrays
by Rafał Andrejczuk, Moritz Scharff, Junhao Ni, Andreas Richter and Ernst-Friedrich Markus Vorrath
Actuators 2025, 14(5), 252; https://doi.org/10.3390/act14050252 (registering DOI) - 17 May 2025
Abstract
Soft anthropomorphic robotic grippers are attractive because of their inherent compliance, allowing them to adapt to the shape of grasped objects and the overload protection needed for safe human–robot interaction or gripping delicate objects with sophisticated control. The anthropomorphic design allows the gripper [...] Read more.
Soft anthropomorphic robotic grippers are attractive because of their inherent compliance, allowing them to adapt to the shape of grasped objects and the overload protection needed for safe human–robot interaction or gripping delicate objects with sophisticated control. The anthropomorphic design allows the gripper to benefit from the biological evolution of the human hand to create a multi-functional robotic end effector. Entirely soft grippers could be more efficient because they yield under high loads. A trending solution is a hybrid gripper combining soft and rigid elements. This work describes a prototype of an anthropomorphic, underactuated five-finger gripper with a direct pneumatic drive from soft bending actuators and an integrated resistive tactile sensor array. It is a hybrid construction with soft robotic structures and rigid skeletal elements, which reinforce the body, focus the direction of the actuator’s movement, and make the finger joints follow the forward kinematics. The hand is equipped with a resistive tactile dielectric elastomer sensor array that directly triggers the hand’s actuation in the sense of reflexes. The hand can execute precision grips with two and three fingers, as well as lateral grip and strong grip types. The softness of the actuation allows the finger to adapt to the shape of the objects. Full article
33 pages, 3365 KiB  
Review
Colourful Protection: Challenges and Perspectives of Antibacterial Pigments Extracted from Bacteria for Textile Applications
by Micaela Gomes, Helena P. Felgueiras, Barbara R. Leite and Graça M. B. Soares
Antibiotics 2025, 14(5), 520; https://doi.org/10.3390/antibiotics14050520 (registering DOI) - 17 May 2025
Abstract
Bacterial pigments have gained significant attention across multiple industries due to their natural hues and unique functional properties. Beyond coloration, some of these pigments exhibit antibacterial activity, making them particularly valuable in the textile industry as sustainable alternatives to synthetic antimicrobial treatments. Bacteria [...] Read more.
Bacterial pigments have gained significant attention across multiple industries due to their natural hues and unique functional properties. Beyond coloration, some of these pigments exhibit antibacterial activity, making them particularly valuable in the textile industry as sustainable alternatives to synthetic antimicrobial treatments. Bacteria produce a vast array of pigments through diverse biosynthetic pathways, which reflect their metabolic adaptability and ecological roles. These pathways are influenced by environmental factors such as pH, temperature, and nutrient availability. Key pigments, including carotenoids, melanin, violacein, and prodigiosin, are synthesised through distinct mechanisms, often involving tightly regulated enzymatic reactions. For example, carotenoid biosynthesis relies on isoprenoid precursors, while melanin formation involves the oxidation of aromatic amino acids. Understanding these pathways provides insights into bacterial survival strategies, stress responses, and interactions with their environment. This review examines the dyeing potential of bacterial pigments on natural and synthetic fabrics, highlighting advancements in environmentally friendly extraction methods to minimise the ecological impact. Additionally, it explores safety, biocompatibility, and industrial challenges associated with bacterial pigment applications. Finally, future perspectives on integrating these pigments into various industries are discussed, emphasising their potential as bio-based solutions for sustainable and functional materials. Full article
Show Figures

Graphical abstract

21 pages, 882 KiB  
Article
AIMP-Based Power Allocation for Radar Network Tracking Under Countermeasures Environment
by Xiaoyou Xing, Longxiao Xu, Lvwan Nie and Xueting Li
Sensors 2025, 25(10), 3163; https://doi.org/10.3390/s25103163 (registering DOI) - 17 May 2025
Abstract
For radar system tracking, a higher radar echo signal to interference and noise ratio (SINR) implies a higher tracking accuracy. However, in a countermeasures environment, increasing the transmit power of a radar may not lead to a higher SINR due to suppressive jamming. [...] Read more.
For radar system tracking, a higher radar echo signal to interference and noise ratio (SINR) implies a higher tracking accuracy. However, in a countermeasures environment, increasing the transmit power of a radar may not lead to a higher SINR due to suppressive jamming. Also, the variation in the target radar cross-section (RCS) is an important factor affecting the SINR, since to achieve the same SINR value, a large RCS value needs less transmit power and a small RCS value needs more transmit power. Therefore, to design an efficient power allocation strategy, the influence of the electronic jamming and the target RCS need to be jointly considered. In this paper, we propose an adaptive interacting multiple power (AIMP)-based power allocation algorithm for radar network tracking by jointly considering the electronic jamming and the target RCS, achieving better anti-jamming capability and lower probability of intercept (LPI) while not reducing the tracking accuracy. Firstly, the model of the radar network tracking is established, and the power allocation problem is formulated. Next, the target RCS prediction algorithm is introduced, and the AIMP power allocation method is proposed jointly considering the electronic jamming and the impact of the target RCS. Finally, numerical simulations are performed to verify the validity and effectiveness of the proposals in this paper. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Graphical abstract

26 pages, 1969 KiB  
Article
Dynamic Responseof Complex Defect near Anisotropic Bi-Material Interface by Incident Out-Plane Wave
by Huanan Xu, Caizhu Yang, Yonghui Wang, Guoguan Lan and Faqiang Qiu
Symmetry 2025, 17(5), 778; https://doi.org/10.3390/sym17050778 (registering DOI) - 17 May 2025
Abstract
The Dynamic response of two cavities, an elliptical inclusion and a linear crack near anisotropic bi-material interface, was explored analytically by incident out-plane waves in the current work. Firstly, the media is divided into two half spaces (an elastic anisotropic half space with [...] Read more.
The Dynamic response of two cavities, an elliptical inclusion and a linear crack near anisotropic bi-material interface, was explored analytically by incident out-plane waves in the current work. Firstly, the media is divided into two half spaces (an elastic anisotropic half space with a circular cavity and a linear crack, and an elastic isotropic half space containing an elliptical cavity and an elliptical inclusion). With the help of the image principle, the complex function method is then used to derive the wave fields in each half space. Combined with Green’s functions approach, the relevant Green’s functions developed in the “crack creation” and “conjunction of two half spaces” procedures are derived sequentially. Subsequently, based on the “conjunction” technique, undetermined anti-plane forces are applied to the horizontal surfaces of two half spaces to maintain the continuity criteria of the interface. A series of Fredholm integral equations isobtained and then solved by utilizing the direct discrete technique. Dynamic stress concentration of two elliptical cavities and an elliptical inclusion is mainly considered graphically to discuss the interaction between two half spaces. Finally, a parametric study on the dynamic stress concentration factor (DSCF) was given to show the influence of different parameters on the interaction. Full article
(This article belongs to the Section Mathematics)
15 pages, 2360 KiB  
Article
Analytic Investigation of a Generalized Variable-Coefficient KdV Equation with External-Force Term
by Gongxun Li, Zhiyan Wang, Ke Wang, Nianqin Jiang and Guangmei Wei
Mathematics 2025, 13(10), 1642; https://doi.org/10.3390/math13101642 (registering DOI) - 17 May 2025
Abstract
This paper investigates integrable properties of a generalized variable-coefficient Korteweg–de Vries (gvcKdV) equation incorporating dissipation, inhomogeneous media, and an external-force term. Based on Painlevé analysis, sufficient and necessary conditions for the equation’s Painlevé integrability are obtained. Under specific integrability conditions, the Lax pair [...] Read more.
This paper investigates integrable properties of a generalized variable-coefficient Korteweg–de Vries (gvcKdV) equation incorporating dissipation, inhomogeneous media, and an external-force term. Based on Painlevé analysis, sufficient and necessary conditions for the equation’s Painlevé integrability are obtained. Under specific integrability conditions, the Lax pair for this equation is successfully constructed using the extended Ablowitz–Kaup–Newell–Segur system (AKNS system). Furthermore, the Riccati-type Bäcklund transformation (R-BT), Wahlquist–Estabrook-type Bäcklund transformation (WE-BT), and the nonlinear superposition formula are derived. In utilizing these transformations and the formula, explicit one-soliton-like and two-soliton-like solutions are constructed from a seed solution. Moreover, the infinite conservation laws of the equation are systematically derived. Finally, the influence of variable coefficients and the external-force term on the propagation characteristics of a solitory wave is discussed, and soliton interaction is illustrated graphically. Full article
(This article belongs to the Special Issue Research on Applied Partial Differential Equations)
Show Figures

Figure 1

35 pages, 5451 KiB  
Review
Innate Immunity and Platelets: Unveiling Their Role in Chronic Pancreatitis and Pancreatic Cancer
by Juliane Blümke, Moritz Schameitat, Atul Verma, Celina Limbecker, Elise Arlt, Sonja M. Kessler, Heike Kielstein, Sebastian Krug, Ivonne Bazwinsky-Wutschke and Monika Haemmerle
Cancers 2025, 17(10), 1689; https://doi.org/10.3390/cancers17101689 (registering DOI) - 17 May 2025
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic instability, acinar–ductal metaplasia, and pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular matrix, including immune cells, can modulate this progression phase. This includes cells of the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells, mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory responses that support tumor progression by releasing cytokines and growth factors, fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can also activate immune surveillance mechanisms, which can limit tumor development. For example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells, and active dendritic cells are crucial for a functioning anti-tumor immune response. In contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment that is additionally sustained by platelets. Once thought to play a role in hemostasis only, platelets are now recognized as key players in inflammation and cancer progression. By releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation, progression, metastasis, and immune evasion. Neutrophils and macrophages exist in different functional subtypes that can both act pro- and anti-tumorigenic. Understanding the complex interactions between innate immune cells, platelets, and early precursor lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that can harness the immune and potentially also the coagulation system to target and eliminate tumors, offering hope for improved patient outcomes. Full article
(This article belongs to the Special Issue Management of Pancreatic Cancer)
Show Figures

Figure 1

Back to TopTop