Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ARDAD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9748 KB  
Article
Hybrid Machine Learning for Automated Road Safety Inspection of Auckland Harbour Bridge
by Munish Rathee, Boris Bačić and Maryam Doborjeh
Electronics 2024, 13(15), 3030; https://doi.org/10.3390/electronics13153030 - 1 Aug 2024
Viewed by 2844
Abstract
The Auckland Harbour Bridge (AHB) utilises a movable concrete barrier (MCB) to regulate the uneven bidirectional flow of daily traffic. In addition to the risk of human error during regular visual inspections, staff members inspecting the MCB work in diverse weather and light [...] Read more.
The Auckland Harbour Bridge (AHB) utilises a movable concrete barrier (MCB) to regulate the uneven bidirectional flow of daily traffic. In addition to the risk of human error during regular visual inspections, staff members inspecting the MCB work in diverse weather and light conditions, exerting themselves in ergonomically unhealthy inspection postures with the added weight of protection gear to mitigate risks, e.g., flying debris. To augment visual inspections of an MCB using computer vision technology, this study introduces a hybrid deep learning solution that combines kernel manipulation with custom transfer learning strategies. The video data recordings were captured in diverse light and weather conditions (under the safety supervision of industry experts) involving a high-speed (120 fps) camera system attached to an MCB transfer vehicle. Before identifying a safety hazard, e.g., the unsafe position of a pin connecting two 750 kg concrete segments of the MCB, a multi-stage preprocessing of the spatiotemporal region of interest (ROI) involves a rolling window before identifying the video frames containing diagnostic information. This study utilises the ResNet-50 architecture, enhanced with 3D convolutions, within the STENet framework to capture and analyse spatiotemporal data, facilitating real-time surveillance of the Auckland Harbour Bridge (AHB). Considering the sparse nature of safety anomalies, the initial peer-reviewed binary classification results (82.6%) for safe and unsafe (intervention-required) scenarios were improved to 93.6% by incorporating synthetic data, expert feedback, and retraining the model. This adaptation allowed for the optimised detection of false positives and false negatives. In the future, we aim to extend anomaly detection methods to various infrastructure inspections, enhancing urban resilience, transport efficiency and safety. Full article
(This article belongs to the Special Issue Image Processing Based on Convolution Neural Network)
Show Figures

Figure 1

34 pages, 3675 KB  
Systematic Review
Automated Road Defect and Anomaly Detection for Traffic Safety: A Systematic Review
by Munish Rathee, Boris Bačić and Maryam Doborjeh
Sensors 2023, 23(12), 5656; https://doi.org/10.3390/s23125656 - 16 Jun 2023
Cited by 26 | Viewed by 14404
Abstract
Recently, there has been a substantial increase in the development of sensor technology. As enabling factors, computer vision (CV) combined with sensor technology have made progress in applications intended to mitigate high rates of fatalities and the costs of traffic-related injuries. Although past [...] Read more.
Recently, there has been a substantial increase in the development of sensor technology. As enabling factors, computer vision (CV) combined with sensor technology have made progress in applications intended to mitigate high rates of fatalities and the costs of traffic-related injuries. Although past surveys and applications of CV have focused on subareas of road hazards, there is yet to be one comprehensive and evidence-based systematic review that investigates CV applications for Automated Road Defect and Anomaly Detection (ARDAD). To present ARDAD’s state-of-the-art, this systematic review is focused on determining the research gaps, challenges, and future implications from selected papers (N = 116) between 2000 and 2023, relying primarily on Scopus and Litmaps services. The survey presents a selection of artefacts, including the most popular open-access datasets (D = 18), research and technology trends that with reported performance can help accelerate the application of rapidly advancing sensor technology in ARDAD and CV. The produced survey artefacts can assist the scientific community in further improving traffic conditions and safety. Full article
(This article belongs to the Special Issue Sensors in 2023)
Show Figures

Figure 1

Back to TopTop