Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = AUTS2 syndrome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4195 KiB  
Article
De Novo Pathogenic Variant in FBRSL1, Non OMIM Gene Paralogue AUTS2, Causes a Novel Recognizable Syndromic Manifestation with Intellectual Disability; An Additional Patient and Review of the Literature
by Nenad Bukvic, Marta De Rinaldis, Massimiliano Chetta, Antonio Trabacca, Maria Teresa Bassi, René Massimiliano Marsano, Lenka Holoubkova, Maria Rivieccio, Maria Oro, Nicoletta Resta, Jennifer Kerkhof, Bekim Sadikovic and Luigi Viggiano
Genes 2024, 15(7), 826; https://doi.org/10.3390/genes15070826 - 22 Jun 2024
Cited by 1 | Viewed by 2154
Abstract
FBRSL1, together with FBRS and AUTS2 (Activator of Transcription and Developmental Regulator; OMIM 607270), constitutes a tripartite AUTS2 gene family. AUTS2 and FBRSL1 are evolutionarily more closely related to each other than to FBRS (Fibrosin 1; OMIM 608601). [...] Read more.
FBRSL1, together with FBRS and AUTS2 (Activator of Transcription and Developmental Regulator; OMIM 607270), constitutes a tripartite AUTS2 gene family. AUTS2 and FBRSL1 are evolutionarily more closely related to each other than to FBRS (Fibrosin 1; OMIM 608601). Despite its paralogous relation to AUTS2, FBRSL1’s precise role remains unclear, though it likely shares functions in neurogenesis and transcriptional regulation. Herein, we report the clinical presentation with therapeutic approaches and the molecular etiology of a patient harboring a de novo truncating variant (c.371dupC) in FBRSL1, leading to a premature stop codon (p.Cys125Leufs*7). Our study extends previous knowledge by highlighting potential interactions and implications of this variant, alongside maternal and paternal duplications, for the patient’s phenotype. Using sequence conservation data and in silico analysis of the truncated protein, we generated a predicted domain structure. Furthermore, our in silico analysis was extended by taking into account SNP array results. The extension of in silico analysis was performed due to the possibility that the coexistence of FBRSL1 truncating variant contemporary with maternal and paternal duplication could be a modifier of proband’s phenotype and/or influence the novel syndrome clinical characteristics. FBRSL1 protein may be involved in neurodevelopment due to its homology with AUTS2, together with distinctive neuronal expression profiles, and thus should be considered as a potential modulation of clinical characteristics in a novel syndrome. Finally, considering that FBRSL1 is apparently involved in neurogenesis and in transcriptional regulatory networks that orchestrate gene expression, together with the observation that different genetic syndromes are associated with distinct genomic DNA methylation patterns, the specific episignature has been explored. Full article
(This article belongs to the Special Issue Molecular Basis and Genetics of Intellectual Disability)
Show Figures

Figure 1

10 pages, 1279 KiB  
Case Report
Litters of Various-Sized Mummies (LVSM) and Stillborns after Porcine Reproductive and Respiratory Syndrome Virus Type 1 Infection—A Case Report
by Christine Unterweger, Heinrich Kreutzmann, Moritz Buenger, Eva Klingler, Angelika Auer, Till Rümenapf, Uwe Truyen and Andrea Ladinig
Vet. Sci. 2023, 10(8), 494; https://doi.org/10.3390/vetsci10080494 - 1 Aug 2023
Cited by 1 | Viewed by 3613
Abstract
Diverse origins and causes are described for papyraceous mummifications of porcine foetuses, but the porcine reproductive and respiratory syndrome virus (PRRSV) is not one of them. In contrast, PRRSV is unlikely to cause mid-term placental transmission but may cause late-term abortions and weakness [...] Read more.
Diverse origins and causes are described for papyraceous mummifications of porcine foetuses, but the porcine reproductive and respiratory syndrome virus (PRRSV) is not one of them. In contrast, PRRSV is unlikely to cause mid-term placental transmission but may cause late-term abortions and weakness of piglets. This case report describes a sudden occurrence of mummified foetuses of various sizes and stillborns and delayed birth (>115 days) in more than 50% of sows from one farrowing batch, while newborn piglets were mostly vital. Neither increased embryonic death nor infertility was reported. Three litters with mummies, autolysed piglets and stillborn piglets were investigated, and infections with porcine parvoviruses, porcine teschoviruses, porcine circoviruses, encephalomyocarditis virus, Leptospira spp. and Chlamydia spp. were excluded. Instead, high viral loads of PRRSV were detected in the thymus pools of piglets at all developmental stages, even in piglets with a crown–rump length between 80 and 150 mm, suggesting a potential mid-term in utero transmission of the virus. Genomic regions encoding structural proteins (ORF2–7) of the virus were sequenced and identified the virulent PRRSV-1 strain AUT15-33 as the closest relative. This case report confirms the diversity of PRRSV and its potential involvement in foetal death in mid-gestation. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Swine Viral Diseases)
Show Figures

Figure 1

17 pages, 1758 KiB  
Article
Identification of MHC-I-Presented Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) Peptides Reveals Immunogenic Epitopes within Several Non-Structural Proteins Recognized by CD8+ T Cells
by Marlene Mötz, Melissa R. Stas, Sabine E. Hammer, Tereza Duckova, Frederic Fontaine, Alexandra Kiesler, Kerstin Seitz, Andrea Ladinig, André C. Müller, Christiane Riedel, Armin Saalmüller and Till Rümenapf
Viruses 2022, 14(9), 1891; https://doi.org/10.3390/v14091891 - 26 Aug 2022
Cited by 6 | Viewed by 3359
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most relevant porcine pathogens worldwide. Active control of the disease relies on modified live virus vaccines (MLVs), as most inactivated vaccines provide very limited protection. Neutralizing antibodies occur late in infection; therefore, [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most relevant porcine pathogens worldwide. Active control of the disease relies on modified live virus vaccines (MLVs), as most inactivated vaccines provide very limited protection. Neutralizing antibodies occur late in infection; therefore, CD8+ T cells are considered important correlates of protection and are a frequent focus of investigation. Our aim was to identify viral peptides naturally bound by the class I major histocompatibility complex (MHC-I) and to confirm their ability to stimulate CD8+ T cells. For this purpose, we immunoprecipitated MHC-I/peptide complexes of PRRSV (strain AUT15-33) -infected cells (SLA-I Lr-Hp 35.0/24 mod) to isolate the viral epitopes and analyzed them with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Furthermore, we employed these identified peptides to stimulate peripheral blood mononuclear cells (PBMCs) of previously PRRSV-infected pigs and measured the PRRSV-specific CD8+ T-cell response with an intracellular cytokine staining (ICS). Our data revealed that PRRSV non-structural proteins (NSPs), encoded in open reading frame 1a and 1b (ORF1), present the major source of MHC-I-presented peptides. Additionally, we show that our identified epitopes are able to trigger IFNγ responses in vitro. These findings are a basis for understanding the proteasomal degradation of PRRSV proteins, the cellular ability to display them via MHC-I, and their potential to restimulate CD8+ T cells. Full article
(This article belongs to the Special Issue State-of-the-Art Virology Research in Austria)
Show Figures

Figure 1

15 pages, 3300 KiB  
Article
Pilot Study for Correlation of Heart Rate Variability and Dopamine Transporter Brain Imaging in Patients with Parkinsonian Syndrome
by Devdutta S. Warhadpande, Jiayan Huo, William A. Libling, Carol Stuehm, Bijan Najafi, Scott Sherman, Hong Lei, Janet Meiling Roveda and Phillip H. Kuo
Sensors 2022, 22(13), 5055; https://doi.org/10.3390/s22135055 - 5 Jul 2022
Cited by 2 | Viewed by 3616
Abstract
Background: Parkinsonian syndrome (PS) is a broad category of neurodegenerative movement disorders that includes Parkinson disease, multiple system atrophy (MSA), progressive supranuclear palsy, and corticobasal degeneration. Parkinson disease (PD) is the second most common neurodegenerative disorder with loss of dopaminergic neurons of the [...] Read more.
Background: Parkinsonian syndrome (PS) is a broad category of neurodegenerative movement disorders that includes Parkinson disease, multiple system atrophy (MSA), progressive supranuclear palsy, and corticobasal degeneration. Parkinson disease (PD) is the second most common neurodegenerative disorder with loss of dopaminergic neurons of the substantia nigra and, thus, dysfunction of the nigrostriatal pathway. In addition to the motor symptoms of bradykinesia, rigidity, tremors, and postural instability, nonmotor symptoms such as autonomic dysregulation (AutD) can also occur. Heart rate variability (HRV) has been used as a measure of AutD and has shown to be prognostic in diseases such as diabetes mellitus and cirrhosis, as well as PD. I-123 ioflupane, a gamma ray-emitting radiopharmaceutical used in single-photon emission computed tomography (SPECT), is used to measure the loss of dopaminergic neurons in PD. Through the combination of SPECT and HRV, we tested the hypothesis that asymmetrically worse left-sided neuronal loss would cause greater AutD. Methods: 51 patients were enrolled on the day of their standard of care I-123 ioflupane scan for the work-up of possible Parkinsonian syndrome. Demographic information, medical and medication history, and ECG data were collected. HRV metrics were extracted from the ECG data. I-123 ioflupane scans were interpreted by a board-certified nuclear radiologist and quantified by automated software to generate striatal binding ratios (SBRs). Statistical analyses were performed to find correlations between the HRV and SPECT parameters. Results: 32 patients were excluded from the final analysis because of normal scans, prior strokes, cardiac disorders and procedures, or cancer. Abnormal I-123 ioflupane scans were clustered using T-SNE, and one-way ANOVA was performed to compare HRV and SBR parameters. The analysis was repeated after the exclusion of patients taking angiotensin-converting enzyme inhibitors, given the known mechanism on autonomic function. Subsequent analysis showed a significant difference between the high-frequency domains of heart rate variability, asymmetry of the caudate SBR, and putamen-to-caudate SBR. Conclusion: Our results support the hypothesis that more imbalanced (specifically worse left-sided) neuronal loss results in greater AutD. Full article
(This article belongs to the Special Issue Applications of Body Worn Sensors and Wearables)
Show Figures

Figure 1

19 pages, 4982 KiB  
Article
Efficacy of a Modified Live Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) Vaccine against Experimental Infection with PRRSV AUT15-33 in Weaned Piglets
by Sophie Duerlinger, Christian Knecht, Spencer Sawyer, Gyula Balka, Marianne Zaruba, Till Ruemenapf, Christian Kraft, Poul Henning Rathkjen and Andrea Ladinig
Vaccines 2022, 10(6), 934; https://doi.org/10.3390/vaccines10060934 - 11 Jun 2022
Cited by 13 | Viewed by 2781
Abstract
In this study, the efficacy of the commercial modified live PRRSV-1 vaccine “Ingelvac PRRSFLEX® EU” was assessed in weaned piglets experimentally infected with PRRSV strain AUT15-33. Seventy-four weaned piglets were allocated to five groups. Vaccinated (groups 1, 2, and 5) and non-vaccinated [...] Read more.
In this study, the efficacy of the commercial modified live PRRSV-1 vaccine “Ingelvac PRRSFLEX® EU” was assessed in weaned piglets experimentally infected with PRRSV strain AUT15-33. Seventy-four weaned piglets were allocated to five groups. Vaccinated (groups 1, 2, and 5) and non-vaccinated piglets (groups 3 and 4), infected with either a low dose (103 TCID50/dose; groups 2 and 4) or a high dose (105 TCID50/dose; groups 1 and 3) of the virus, were compared regarding clinical signs, average daily weight gain (ADG), lung lesions, viral load in serum, oral swabs, and tissue samples. In comparison to vaccinated animals, coughing increased notably in the second week after challenge in non-vaccinated piglets. During the same time period, vaccinated, high-dose-infected piglets showed significantly higher ADG (p < 0.05) than non-vaccinated, high-dose-infected animals. All infected piglets reached approximately the same viremia levels, but vaccinated animals showed both a significantly reduced viral load in oral fluid (p < 0.05) and tissue samples and significantly reduced lung lesions (p < 0.05). In conclusion, vaccination was able to increase ADG, reduce the amount of viral shedding via oral fluids, and reduce the severity of lung lesions and the viral load in tissue samples under experimental conditions. Full article
Show Figures

Figure 1

12 pages, 891 KiB  
Review
AUTS2 Gene: Keys to Understanding the Pathogenesis of Neurodevelopmental Disorders
by Kei Hori, Kazumi Shimaoka and Mikio Hoshino
Cells 2022, 11(1), 11; https://doi.org/10.3390/cells11010011 - 21 Dec 2021
Cited by 30 | Viewed by 6971
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in [...] Read more.
Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in the discovery of various genetic risk factors thanks to the development of novel genomics technologies, the precise pathological mechanisms underlying the onset of NDDs remain elusive owing to the profound genetic and phenotypic heterogeneity of these conditions. Autism susceptibility candidate 2 (AUTS2) has emerged as a crucial gene associated with a wide range of neuropsychological disorders, such as ASD, ID, schizophrenia, and epilepsy. AUTS2 has been shown to be involved in multiple neurodevelopmental processes; in cell nuclei, it acts as a key transcriptional regulator in neurodevelopment, whereas in the cytoplasm, it participates in cerebral corticogenesis, including neuronal migration and neuritogenesis, through the control of cytoskeletal rearrangements. Postnatally, AUTS2 regulates the number of excitatory synapses to maintain the balance between excitation and inhibition in neural circuits. In this review, we summarize the knowledge regarding AUTS2, including its molecular and cellular functions in neurodevelopment, its genetics, and its role in behaviors. Full article
(This article belongs to the Special Issue Pathophysiological Mechanism of Neurodevelopmental Disorders)
Show Figures

Figure 1

10 pages, 283 KiB  
Article
Attention Deficit Hyperactivity and Autism Spectrum Disorders as the Core Symptoms of AUTS2 Syndrome: Description of Five New Patients and Update of the Frequency of Manifestations and Genotype-Phenotype Correlation
by Carolina Sanchez-Jimeno, Fiona Blanco-Kelly, Fermina López-Grondona, Rebeca Losada-Del Pozo, Beatriz Moreno, María Rodrigo-Moreno, Elena Martinez-Cayuelas, Rosa Riveiro-Alvarez, María Fenollar-Cortés, Carmen Ayuso, Marta Rodríguez de Alba, Isabel Lorda-Sanchez and Berta Almoguera
Genes 2021, 12(9), 1360; https://doi.org/10.3390/genes12091360 - 30 Aug 2021
Cited by 25 | Viewed by 4837
Abstract
Haploinsufficiency of AUTS2 has been associated with a syndromic form of neurodevelopmental delay characterized by intellectual disability, autistic features, and microcephaly, also known as AUTS2 syndrome. While the phenotype associated with large deletions and duplications of AUTS2 is well established, clinical features of [...] Read more.
Haploinsufficiency of AUTS2 has been associated with a syndromic form of neurodevelopmental delay characterized by intellectual disability, autistic features, and microcephaly, also known as AUTS2 syndrome. While the phenotype associated with large deletions and duplications of AUTS2 is well established, clinical features of patients harboring AUTS2 sequence variants have not been extensively described. In this study, we describe the phenotype of five new patients with AUTS2 pathogenic variants, three of them harboring loss-of-function sequence variants. The phenotype of the patients was characterized by attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) or autistic features and mild global developmental delay (GDD) or intellectual disability (ID), all in 4/5 patients (80%), a frequency higher than previously reported for ADHD and autistic features. Microcephaly and short stature were found in 60% of the patients; and feeding difficulties, generalized hypotonia, and ptosis, were each found in 40%. We also provide the aggregated frequency of the 32 items included in the AUTS2 syndrome severity score (ASSS) in patients currently reported in the literature. The main characteristics of the syndrome are GDD/ID in 98% of patients, microcephaly in 65%, feeding difficulties in 62%, ADHD or hyperactivity in 54%, and autistic traits in 52%. Finally, using the location of 31 variants from the literature together with variants from the five patients, we found significantly higher ASSS values in patients with pathogenic variants affecting the 3′ end of the gene, confirming the genotype-phenotype correlation initially described. Full article
(This article belongs to the Special Issue Genetics and Genomics of Intellectual Disability)
14 pages, 2532 KiB  
Case Report
Fetal Fractures in an Infant with Maternal Ehlers-Danlos Syndrome, CCDC134 Pathogenic Mutation and a Negative Genetic Test for Osteogenesis Imperfecta
by Michael F. Holick, Arash Shirvani and Nipith Charoenngam
Children 2021, 8(6), 512; https://doi.org/10.3390/children8060512 - 17 Jun 2021
Cited by 20 | Viewed by 9880
Abstract
Intrauterine fractures are a rare clinical finding caused by abnormal early-life osteogenesis. In this case report, we reported a male infant with twenty-three intrauterine/fetal fractures resembling osteogenesis imperfecta and tested negative for COL1A1 and COL1A2 mutations. The infant’s mother had Ehlers–Danlos syndrome, hypermobility [...] Read more.
Intrauterine fractures are a rare clinical finding caused by abnormal early-life osteogenesis. In this case report, we reported a male infant with twenty-three intrauterine/fetal fractures resembling osteogenesis imperfecta and tested negative for COL1A1 and COL1A2 mutations. The infant’s mother had Ehlers–Danlos syndrome, hypermobility type. Whole-genome sequencing revealed that there were no pathologic mutations previously documented to be associated with intrauterine fracture. Genetic mutations reported to be associated with fragility fractures were identified. These include the pathogenic homozygous mutation in the CCDC134 gene. Other genetic variants that might be responsible for variable expressivity of the skeletal manifestation include the homozygous variants of the genes CCDC134, COL15A1 and ZFPM1, and the heterozygous variants of the genes MYH3, BCHE, AUTS2. This is the first reported case of in utero fractures, that was confirmed by X-ray after birth, in an infant who had no genetic evidence for osteogenesis imperfecta, had a homozygous pathogenic mutation of an osteogenesis gene and whose mother had Ehlers-Danlos syndrome hypermobility type. Therefore, we have identified a new genetic cause for in utero fractures. If after birth, this infant were found to have these fractures in various stages of healing with a negative genetic test for osteogenesis imperfecta he would have been misdiagnosed as due to nonaccidental trauma. Full article
Show Figures

Figure 1

11 pages, 1055 KiB  
Case Report
Recombinant Chromosome 7 Driven by Maternal Chromosome 7 Pericentric Inversion in a Girl with Features of Silver-Russell Syndrome
by Ilaria Catusi, Maria Teresa Bonati, Ester Mainini, Silvia Russo, Eleonora Orlandini, Lidia Larizza and Maria Paola Recalcati
Int. J. Mol. Sci. 2020, 21(22), 8487; https://doi.org/10.3390/ijms21228487 - 11 Nov 2020
Cited by 3 | Viewed by 2598
Abstract
Maternal uniparental disomy of chromosome 7 is present in 5–10% of patients with Silver-Russell syndrome (SRS), and duplication of 7p including GRB10 (Growth Factor Receptor-Bound Protein 10), an imprinted gene that affects pre-and postnatal growth retardation, has been associated with the SRS phenotype. [...] Read more.
Maternal uniparental disomy of chromosome 7 is present in 5–10% of patients with Silver-Russell syndrome (SRS), and duplication of 7p including GRB10 (Growth Factor Receptor-Bound Protein 10), an imprinted gene that affects pre-and postnatal growth retardation, has been associated with the SRS phenotype. Here, we report on a 17 year old girl referred to array-CGH analysis for short stature, psychomotor delay, and relative macrocephaly. Array-CGH analysis showed two copy number variants (CNVs): a ~12.7 Mb gain in 7p13-p11.2, involving GRB10 and an ~9 Mb loss in 7q11.21-q11.23. FISH experiments performed on the proband’s mother showed a chromosome 7 pericentric inversion that might have mediated the complex rearrangement harbored by the daughter. Indeed, we found that segmental duplications, of which chromosome 7 is highly enriched, mapped at the breakpoints of both the mother’s inversion and the daughter’s CNVs. We postulate that pairing of highly homologous sequences might have perturbed the correct meiotic chromosome segregation, leading to unbalanced outcomes and acting as the putative meiotic mechanism that was causative of the proband’s rearrangement. Comparison of the girl’s phenotype to those of patients with similar CNVs supports the presence of 7p in a locus associated with features of SRS syndrome. Full article
(This article belongs to the Special Issue Structural Variability and Flexibility of the Genome)
Show Figures

Figure 1

8 pages, 956 KiB  
Review
Neuronal Migration and AUTS2 Syndrome
by Kei Hori and Mikio Hoshino
Brain Sci. 2017, 7(5), 54; https://doi.org/10.3390/brainsci7050054 - 14 May 2017
Cited by 54 | Viewed by 9431
Abstract
Neuronal migration is one of the pivotal steps to form a functional brain, and disorganization of this process is believed to underlie the pathology of psychiatric disorders including schizophrenia, autism spectrum disorders (ASD) and epilepsy. However, it is not clear how abnormal neuronal [...] Read more.
Neuronal migration is one of the pivotal steps to form a functional brain, and disorganization of this process is believed to underlie the pathology of psychiatric disorders including schizophrenia, autism spectrum disorders (ASD) and epilepsy. However, it is not clear how abnormal neuronal migration causes mental dysfunction. Recently, a key gene for various psychiatric diseases, the Autism susceptibility candidate 2 (AUTS2), has been shown to regulate neuronal migration, which gives new insight into understanding this question. Interestingly, the AUTS2 protein has dual functions: Cytoplasmic AUTS2 regulates actin cytoskeleton to control neuronal migration and neurite extension, while nuclear AUTS2 controls transcription of various genes as a component of the polycomb complex 1 (PRC1). In this review, we discuss AUTS2 from the viewpoint of human genetics, molecular function, brain development, and behavior in animal models, focusing on its role in neuronal migration. Full article
(This article belongs to the Special Issue Neuronal Migration and Cortical Development)
Show Figures

Figure 1

Back to TopTop