Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = AUX1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5191 KB  
Article
Integrated Histological, Ultrastructural, and Transcriptomic Analyses Reveal New Insights into Stamen Development in Cytoplasmic Male Sterile Tobacco (CMS K326)
by Fangfang Cui, Shanshan Qiu, Jikai Ma, Yanbo Wang, Jiange Wang and Qiyuan Liu
Plants 2025, 14(17), 2613; https://doi.org/10.3390/plants14172613 - 22 Aug 2025
Viewed by 334
Abstract
Cytoplasmic male sterility (CMS) is a crucial tool for exploiting plant heterosis, though its underlying mechanisms in tobacco remain incompletely understood. In this study, Tobacco CMSK326, derived from a naturally occurring variant of Nicotiana tabacum, exhibited a range of stamen abnormalities, including [...] Read more.
Cytoplasmic male sterility (CMS) is a crucial tool for exploiting plant heterosis, though its underlying mechanisms in tobacco remain incompletely understood. In this study, Tobacco CMSK326, derived from a naturally occurring variant of Nicotiana tabacum, exhibited a range of stamen abnormalities, including stamen degeneration, stamen absence, and carpelloid, petaloid, and sepaloid traits. Histological and electron microscopy showed that CMS K326 and its maintainer differentiated at the early bud stage. Analysis of differentially expressed genes (DEGs) revealed abnormal expressions of several key genes, including WUSCHEL (WUS), GLOBOSA (GLO), SUPERMAN (SUP), and auxin-related genes such as AUX22, during bud development. Weighted gene correlation network analysis (WGCNA) identified a module highly correlated with flower development, the tricarboxylic acid cycle (TCA), auxin, and the mitochondrial retrograde regulation signal molecules CDKE1 and KIN10. The promoter regions of 19 out of the 42 hub genes in this module possess auxin cis-response elements. These results point to a correlation between auxin irregularities and stamen development in CMS K326. Full article
(This article belongs to the Special Issue Genetic and Omics Insights into Plant Adaptation and Growth)
Show Figures

Figure 1

14 pages, 1052 KB  
Article
Regulatory Mechanism of the GmMYB14 Transcription Factor on Auxin-Related Proteins in Soybean
by Lihua Peng, Yangyan Liu, Hongli Yang, Wei Guo, Qingnan Hao, Shuilian Chen, Songli Yuan, Chanjuan Zhang, Zhonglu Yang, Bei Han, Yi Huang, Zhihui Shan, Limiao Chen and Haifeng Chen
Int. J. Mol. Sci. 2025, 26(16), 7763; https://doi.org/10.3390/ijms26167763 - 11 Aug 2025
Viewed by 258
Abstract
In a previous study, GmMYB14 overexpressing (GmMYB14-OX) transgenic soybean plants displayed a semi-dwarfism and compact phenotype, which was regulated by the brassinosteroid (BR) pathway. However, the phenotype of GmMYB14-OX plants could be partly rescued after spraying them with exogenous BR. This [...] Read more.
In a previous study, GmMYB14 overexpressing (GmMYB14-OX) transgenic soybean plants displayed a semi-dwarfism and compact phenotype, which was regulated by the brassinosteroid (BR) pathway. However, the phenotype of GmMYB14-OX plants could be partly rescued after spraying them with exogenous BR. This indicates that other hormones, in addition to BR, also play a role in regulating the architecture of GmMYB14-OX plants. We observed a significant decrease in the content of endogenous indole-3-acetic acid (IAA) in transgenic soybean lines (OX9 and OX12) compared to wild type (WT) plants. The plant height, leaf area, leaf petiole length, and leaf petiole angle of GmMYB14-OX plants could also be partly rescued after applying exogenous IAA for two weeks. Transcriptome sequencing analysis revealed that the expression of many genes within the Aux/IAA gene family underwent alterations in the GmMYB14-OX transgenic soybean plants. Among them, Glyma.02G000500 (GmIAA1) showed the highest expression in GmMYB14-OX plants. Furthermore, the results of electrophoretic mobility shift assay and dual-luciferase reporter indicate that GmMYB14 protein could bind to the promoter of GmIAA1. In summary, a decrease in endogenous IAA content may be one of the factors contributing to the compact and dwarfed architecture of GmMYB14-OX plants. GmMYB14 also acts as a transcriptional activator of GmIAA1 to potentially block IAA effects. Our findings provide a theoretical basis for further investigation of the regulatory mechanism of GmMYB14 on soybean plant architecture. Full article
(This article belongs to the Special Issue Recent Advances in Soybean Molecular Breeding)
Show Figures

Figure 1

14 pages, 2015 KB  
Article
Transcriptome Analysis Elucidates the Mechanism of an Endophytic Fungus Cladosporium sp. ‘BF-F’ in Enhancing the Growth of Sesuvium portulacastrum
by Dan Wang, Wenbin Zhang, Dinging Cao and Xiangying Wei
Agriculture 2025, 15(14), 1522; https://doi.org/10.3390/agriculture15141522 - 15 Jul 2025
Viewed by 528
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial rhizosphere microorganisms for plants. They can promote plant absorption of nutrients, inhibit pathogenic microorganisms, enhance plant tolerance to abiotic and biotic stresses, and improve plant growth. Isolating new beneficial microbes and elucidating their promoting mechanisms can facilitate [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) are beneficial rhizosphere microorganisms for plants. They can promote plant absorption of nutrients, inhibit pathogenic microorganisms, enhance plant tolerance to abiotic and biotic stresses, and improve plant growth. Isolating new beneficial microbes and elucidating their promoting mechanisms can facilitate the development of microbial fertilizers. This study combined transcriptome sequencing and related experiments to analyze the mechanism by which the endophytic fungus ‘BF-F’ promotes the growth of Sesuvium portulacastrum. We inoculated the ‘BF-F’ fungus beside S. portulacastrum seedlings as the experimental group. Meanwhile, S. portulacastrum seedlings not inoculated with ‘BF-F’ were set as the control group. After inoculation for 0 d, 7 d, 14 d, 21 d, and 28 d, the plant height and the number of roots were measured. Furthermore, transcriptome sequencing on the roots and leaves of the S. portulacastrum was conducted. Differentially expressed genes were screened, and KEGG enrichment analysis was performed. Nitrogen metabolism-related genes were selected, and qRT-PCR was conducted on these genes. Furthermore, we analyzed the metabolomics of ‘BF-F’ and its hormone products. The results showed that inoculation of ‘BF-F’ significantly promoted the growth of S. portulacastrum. After ‘BF-F’ inoculation, a large number of genes in S. portulacastrum were differentially expressed. The KEGG pathway enrichment results indicated that the ‘BF-F’ treatment affected multiple metabolic pathways in S. portulacastrum, including hormone signal transduction and nitrogen metabolism. The auxin signaling pathway was enhanced because of a decrease in AUX expression and an increase in ARF expression. Contrary to the auxin signal transduction pathway, the zeatin (ZT) signaling pathway was suppressed after the ‘BF-F’ treatment. ‘BF-F’ increased the expression of genes related to nitrogen metabolism (NRT, AMT, NR, and GAGOT), thereby promoting the nitrogen content in S. portulacastrum. The metabolites of ‘BF-F’ were analyzed, and we found that ‘BF-F’ can synthesize IAA and ZT, which are important for plant growth. Overall, ‘BF-F’ can produce IAA and enhance the nitrogen use efficiency of plants, which could have the potential to be used for developing a microbial fertilizer. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

18 pages, 2348 KB  
Article
Glucomannan Accumulation Induced by Exogenous Lanthanum in Amorphophallus konjac: Insights from a Comparative Transcriptome Analysis
by Xiaoxian Li, Zhouting Zeng, Siyi Zhu, Xirui Yang, Xiaobo Xuan and Zhenming Yu
Biology 2025, 14(7), 849; https://doi.org/10.3390/biology14070849 - 11 Jul 2025
Viewed by 436
Abstract
Konjac glucomannan (KGM), derived from Amorphophallus konjac, is increasingly utilized in food and pharmaceutical applications. However, inconsistent KGM production across cultivars jeopardizes its quality and market viability. Lanthanum (La) has been shown to promote KGM levels, but the underlying mechanism remains unclear. [...] Read more.
Konjac glucomannan (KGM), derived from Amorphophallus konjac, is increasingly utilized in food and pharmaceutical applications. However, inconsistent KGM production across cultivars jeopardizes its quality and market viability. Lanthanum (La) has been shown to promote KGM levels, but the underlying mechanism remains unclear. In this study, 20~80 mg L−1 La significantly stimulated KGM accumulation compared with the control group. We performed a transcriptome analysis and found 21,047 differentially expressed genes (DEGs), predominantly enriched in carbohydrate and glycan metabolism pathways. A total of 48 DEGs were linked to KGM biosynthesis, with 20 genes (SuSy, INV1/3/5/6, HK1/2, FPK2, GPI3, PGM3, UGP2, GMPP1/4, CslA3~7, CslH2, and MSR1.2) showing significant positive correlations with KGM content. Interestingly, three key terminal pathway genes (UGP1, UGP3, and CslD3) exhibited strong upregulation (log2 fold change > 3). Seven DEGs were validated with qRT-PCR, aligning with the transcriptomic results. Furthermore, 12 hormone-responsive DEGs, including 4 ethylene-related genes (CTR1, EBF1/2, EIN3, and MPK6), 6 auxin-related genes (AUX/IAA1-3, SAUR1-2, and TIR1), and 2 gibberellin-related genes (DELLA1-2), were closely linked to KGM levels. Additionally, the transcription factors bHLH and AP2/ERF showed to be closely related to the biosynthesis of KGM. These results lay the foundation for a model wherein La (Ш) modulates KGM accumulation by coordinately regulating biosynthetic and hormonal pathways via specific transcription factors. Full article
Show Figures

Figure 1

20 pages, 6911 KB  
Article
Comparative Analysis of Ratoon-Competent and Ratoon-Deficient Sugarcane by Hormonal and Transcriptome Profiling
by Liping Zhao, Maoyong Ran, Jing Zhang, Peifang Zhao, Fenggang Zan, Jun Zhao, Wei Qin, Qibin Wu, Jiayong Liu and Xinlong Liu
Agronomy 2025, 15(7), 1669; https://doi.org/10.3390/agronomy15071669 - 10 Jul 2025
Viewed by 431
Abstract
The ratooning capacity of sugarcane cultivars represents a crucial agronomic trait that significantly influences the sustainability of crop yields. This study elucidates the physiological and molecular mechanisms underlying the sugarcane ratooning ability observed in ratoon-competent GuiTang 29 (GT29) and ratoon-deficient Badila cultivars following [...] Read more.
The ratooning capacity of sugarcane cultivars represents a crucial agronomic trait that significantly influences the sustainability of crop yields. This study elucidates the physiological and molecular mechanisms underlying the sugarcane ratooning ability observed in ratoon-competent GuiTang 29 (GT29) and ratoon-deficient Badila cultivars following stem excision. Through integrated hormonal profiling and transcriptome analysis, we identified significant differences in hormone levels and gene expression patterns. The quantification of 15 endogenous hormones via HPLC revealed marked reductions in zeatin (ZA) and zeatin riboside (ZR) in both cultivars. Additionally, GT29 exhibited notable reductions in gibberellins (GA3 and GA5) and strigolactone (5-DS) post-stem-excision, while Badila displayed stable or distinct hormonal changes. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that hormone signal transduction, MAPK signaling pathways, phenylpropanoid biosynthesis, flavonoid biosynthesis, and other metabolic pathways were significantly enriched in both GT29 and Badila, with a particularly higher enrichment of plant hormone signal transduction in GT29. Furthermore, several differentially expressed genes (DEGs) had different expression patterns between GT29 and Badila, including the cytokinin receptor B-ARR and transcription factor A-ARR, gibberellin pathway components GID1 and DELLA, and AUX/IAA and SAUR in the auxin pathway. The real-time quantitative PCR (qRT-PCR) validation of 12 DEGs corroborated the RNA-seq data, further supporting the reliability of the transcriptomic analysis. This study delineates a clear molecular framework distinguishing ratoon competence, offers novel insights into the molecular basis of perennial regeneration and provides reliable candidate genes for functional marker development in sugarcane breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

14 pages, 2326 KB  
Article
Transcriptomic Insights into Salt Stress Tolerance Mechanisms in Melia azedarach: 24-Epibrassinolide-Mediated Modulation of Auxin and ABA Signaling Pathways
by Xiaoxian Li, Zin Myo Htet, Hong Chen, Jianbing Liu and Fangyuan Yu
Agronomy 2025, 15(7), 1653; https://doi.org/10.3390/agronomy15071653 - 8 Jul 2025
Viewed by 433
Abstract
The global expansion of soil salinization has intensified the need to understand plants’ salt tolerance mechanisms. This study investigates the molecular basis of salt stress responses in Melia azedarach L. and the modulating role of 24-epibrassinolide (EBR) through transcriptomic analysis. While salt stress [...] Read more.
The global expansion of soil salinization has intensified the need to understand plants’ salt tolerance mechanisms. This study investigates the molecular basis of salt stress responses in Melia azedarach L. and the modulating role of 24-epibrassinolide (EBR) through transcriptomic analysis. While salt stress significantly inhibited seedling growth, EBR application substantially mitigated these effects. Transcriptomic analysis identified 11,747 differentially expressed genes (DEGs) in the salt-treated versus control seedlings (SA vs. CK) comparison, 3786 DEGs in the Salt + EBR-treated versus control seedlings (E1 vs. CK) comparison, and 8019 DEGs in the Salt + EBR-treated versus salt-treated seedlings (E1 vs. SA) comparison. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified the pivotal pathways in salt stress adaptation, such as plant hormone signal transduction, phenylpropanoid biosynthesis, and ribosome pathways. Notably, key regulators such as AUX1, TIR1, IAA, SAUR, PYL, and ABF showed dynamic expression patterns under salt stress and EBR treatment, revealing their critical roles in stress mitigation. Our findings provide novel insights into EBR-mediated salt tolerance, highlighting its potential to modulate phytohormone signaling networks. This study advances both the fundamental knowledge of salt stress adaptation and practical strategies for enhancing plant resilience in saline environments. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

24 pages, 5910 KB  
Article
Transcriptome Profiling of Spike Development Reveals Key Genes and Pathways Associated with Early Heading in Wheat–Psathyrstachys huashanica 7Ns Chromosome Addition Line
by Binwen Tan, Yangqiu Xie, Hang Peng, Miaomiao Wang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Peng Qin, Yonghong Zhou, Dandan Wu, Yinghui Li and Houyang Kang
Plants 2025, 14(13), 2077; https://doi.org/10.3390/plants14132077 - 7 Jul 2025
Viewed by 494
Abstract
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such [...] Read more.
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such as early maturity and resistance to biotic and abiotic stresses. In this study, we found that a cytogenetically stable wheat–P. huashanica 7Ns disomic addition line showed (9–11 days) earlier heading and (8–10 days) earlier maturation than its wheat parents. Morphological observations of spike differentiation revealed that the 7Ns disomic addition line developed distinctly faster than its wheat parents from the double ridge stage. To explore the potential molecular mechanisms underlying the early heading, we performed transcriptome analysis at four different developmental stages of the 7Ns disomic addition line and its wheat parents. A total of 10,043 differentially expressed genes (DEGs) were identified during spike development. Gene Ontology (GO) enrichment analysis showed that these DEGs were linked to the carbohydrate metabolic process, photosynthesis, response to abscisic acid, and the ethylene-activated signaling pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these DEGs were involved in plant hormone signal transduction (ARF, AUX/IAA, SAUR, DELLA, BRI1, and ETR), starch and sucrose metabolism (SUS1 and TPP), photosynthetic antenna proteins (Lhc), and circadian rhythm (PRR37, FT, Hd3a, COL, and CDF) pathways. In addition, several DEGs annotated as transcription factors (TFs), such as bHLH, bZIP, MADS-box, MYB, NAC, SBP, WRKY, and NF-Y, may be related to flowering time. Our findings reveal spike development-specific gene expression and critical regulatory pathways associated with early heading in the wheat–P. huashanica 7Ns addition line, and provide a new genetic resource for further dissection of the molecular mechanisms underlying the heading date in wheat. Full article
(This article belongs to the Special Issue Biosystematics and Breeding Application in Triticeae Species)
Show Figures

Graphical abstract

20 pages, 1993 KB  
Article
AuxDepthNet: Real-Time Monocular 3D Object Detection with Depth-Sensitive Features
by Ruochen Zhang, Hyeung-Sik Choi, Dongwook Jung, Phan Huy Nam Anh, Sang-Ki Jeong and Zihao Zhu
Appl. Sci. 2025, 15(13), 7538; https://doi.org/10.3390/app15137538 - 4 Jul 2025
Viewed by 442
Abstract
Monocular 3D object detection is a challenging task in autonomous systems due to the lack of explicit depth information in single-view images. Existing methods often depend on external depth estimators or expensive sensors, which increase computational complexity and complicate integration into existing systems. [...] Read more.
Monocular 3D object detection is a challenging task in autonomous systems due to the lack of explicit depth information in single-view images. Existing methods often depend on external depth estimators or expensive sensors, which increase computational complexity and complicate integration into existing systems. To overcome these limitations, we propose AuxDepthNet, an efficient framework for real-time monocular 3D object detection that eliminates the reliance on external depth maps or pre-trained depth models. AuxDepthNet introduces two key components: the Auxiliary Depth Feature (ADF) module, which implicitly learns depth-sensitive features to improve spatial reasoning and computational efficiency, and the Depth Position Mapping (DPM) module, which embeds depth positional information directly into the detection process to enable accurate object localization and 3D bounding box regression. Leveraging the DepthFusion Transformer (DFT) architecture, AuxDepthNet globally integrates visual and depth-sensitive features through depth-guided interactions, ensuring robust and efficient detection. Extensive experiments on the KITTI dataset show that AuxDepthNet achieves state-of-the-art performance, with AP3D scores of 24.72% (Easy), 18.63% (Moderate), and 15.31% (Hard), and APBEV scores of 34.11% (Easy), 25.18% (Moderate), and 21.90% (Hard) at an IoU threshold of 0.7. Full article
Show Figures

Figure 1

26 pages, 8290 KB  
Article
Genome-Wide Identification, Evolutionary Expansion, and Expression Analyses of Aux/IAA Gene Family in Castanea mollissima During Seed Kernel Development
by Yujuan Tian, Jingmiao Huang, Jinxin Wang, Dongsheng Wang, Ruimin Huang, Xia Liu, Haie Zhang, Jingzheng Zhang, Xiangyu Wang and Liyang Yu
Biology 2025, 14(7), 806; https://doi.org/10.3390/biology14070806 - 3 Jul 2025
Viewed by 554
Abstract
Auxin/induced-3-acetic acid (Aux/IAA) serves as a key regulator in the auxin signaling pathway of plants, which exhibits crucial functions in the development of plants. However, the Aux/IAA gene family has not yet been characterized in the genome of Castanea mollissima, an important [...] Read more.
Auxin/induced-3-acetic acid (Aux/IAA) serves as a key regulator in the auxin signaling pathway of plants, which exhibits crucial functions in the development of plants. However, the Aux/IAA gene family has not yet been characterized in the genome of Castanea mollissima, an important food source in the Northern Hemisphere. During this research, 23 Aux/IAA genes were identified in the C. mollissima genome, which were unevenly distributed across seven chromosomes. CmAux/IAA genes were assigned to four subfamilies by phylogenetic analysis, and members of the same subfamily exhibited similar molecular characteristics. Collinear analysis revealed that the expansion of CmAux/IAA genes was primarily driven by whole-genome duplication (WGD) and purifying selection. The promoter regions of CmAux/IAA genes were enriched with development-related and hormone-related cis-acting elements, suggesting their crucial functions in the growth and hormonal regulation of C. mollissima. Upon the maturation of the seed kernels, the size and starch content exhibited a significant increasing trend, alongside notable changes in hormone levels. Given the connections between expression levels and physiological indicators, as well as weighted gene co-expression network analysis (WGCNA) analysis, CmIAA27a, CmIAA27b, and CmIAA27c were identified as potential regulators involved in the development of C. mollissima seed kernels. Furthermore, the reliability of the transcriptomic data was further confirmed by RT-qPCR experiments. Overall, this study provides a theoretical basis for the evolutionary expansion of the Aux/IAA gene family in C. mollissima, alongside its potential functions in seed kernel development. Full article
Show Figures

Figure 1

20 pages, 3367 KB  
Article
Evaluating Coral Farming Strategies in Mauritius: A Comparative Study of Nursery Types, Biodiversity and Environmental Conditions at Pointe Aux Feuilles and Flic-en-Flac
by Nadeem Nazurally, Andrew W. M. Pomeroy, Ryan J. Lowe, Inesh Narayanan and Baruch Rinkevich
J. Mar. Sci. Eng. 2025, 13(7), 1268; https://doi.org/10.3390/jmse13071268 - 29 Jun 2025
Viewed by 718
Abstract
Climate change and anthropogenic stressors are accelerating coral reef degradation, prompting urgent restoration strategies. This study evaluates the performance of two coral nursery types, floating mid-water nurseries (FNs) and bottom-attached table nurseries (TNs), at two contrasting reef environments in Mauritius: the degraded, high [...] Read more.
Climate change and anthropogenic stressors are accelerating coral reef degradation, prompting urgent restoration strategies. This study evaluates the performance of two coral nursery types, floating mid-water nurseries (FNs) and bottom-attached table nurseries (TNs), at two contrasting reef environments in Mauritius: the degraded, high sedimentation site of Flic-en-Flac (FEF) and the more pristine Pointe aux Feuilles (PAF). Coral fragments from Millepora sp., Acropora muricata, Acropora selago, and Pocillopora damicornis were monitored over three years for survivorship, growth, and linear extension rate (LER). Survivorship exceeded 88% in all cases, with Millepora sp. in PAF–TN achieving the highest rate (99.8%) and P. damicornis in FEF–FN the lowest (88%). Growth was greatest at PAF–TN, where Millepora sp. reached a mean length of 27.25 cm and LER of 9.66 mm y−1. In contrast, the same species in FEF–TN averaged only 3.64 cm in length and 3.44 mm y−1 in LER. Environmental conditions including higher turbidity, nitrate, and phosphate at FEF, and higher phytoplankton density at PAF significantly influenced coral performance. We propose a site-specific nursery selection framework, including FNs for high-sediment areas and TNs for protected and biodiverse sites, to support more effective coral farming outcomes in island restoration programs. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

20 pages, 16677 KB  
Article
Comparative Analysis of Differentially Expressed Genes and Metabolites in Waxy Maize Inbred Lines with Distinct Twin-Shoot Phenotypes
by Mengfan Qin, Guangyu Li, Kun Li, Jing Gao, Meng Li, Hao Liu, Yifeng Wang, Keke Kang, Da Zhang and Wu Li
Plants 2025, 14(13), 1951; https://doi.org/10.3390/plants14131951 - 25 Jun 2025
Viewed by 597
Abstract
Polyembryonic maize, capable of producing multiple seedlings from a single kernel, holds great potential value in agricultural and industrial applications, but the seedling quality needs to be improved. In this study, seedlings of two waxy maize (Zea mays L. sinensis Kulesh) inbred [...] Read more.
Polyembryonic maize, capable of producing multiple seedlings from a single kernel, holds great potential value in agricultural and industrial applications, but the seedling quality needs to be improved. In this study, seedlings of two waxy maize (Zea mays L. sinensis Kulesh) inbred lines, D35 (a polyembryonic line with twin shoots) and N6110 (single-shoot), exhibited similar relative growth rates during 1 to 5 days post-germination. UPLC-MS/MS profiling of 3- to 5-day-old seedling roots and shoots revealed that H2JA, MeSAG, and IAA-Val-Me were the common differentially accumulated metabolites (DAMs) of the 3-day-old vs. 5-day-old seedlings of D35 and N6110 in the same tissues, and MeSAG, tZ9G, cZROG, and DHZROG were identified in D35 vs. N6110 across the same tissues and the same periods. RNA-seq analyses showed various processes involved in seedling development, including DNA replication initiation, rhythmic processes, the cell cycle, secondary metabolic processes, and hormone biosynthetic regulation. The differentially expressed genes (DEGs) between D35 and N6110 were significantly enriched in organic hydroxy compound biosynthetic, alcohol biosynthetic, organic hydroxy compound metabolic, abscisic acid biosynthetic, and apocarotenoid biosynthetic processes. The KEGG-enriched pathways of DAMs and DEGs identified that AUX1, AHP, A-ARR, JAR1, SIMKK, ERF1, and GID2 might be conserved genes regulating seedling growth. The integrated analyses revealed that 98 TFs were potentially associated with multiple hormones, and 24 of them were identified to be core genes, including 11 AP2/ERFs, 4 Dofs, 2 bZIPs, 2 MADS-box genes, 2 MYBs, 1 GATA, 1 LOB, and 1 RWP-RK member. This study promotes a valuable understanding of the complex hormone interactions governing twin-shoot seedling growth and offers potential targets for improving crop establishment via seedling quality. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Crops—2nd Edition)
Show Figures

Figure 1

16 pages, 2571 KB  
Article
Plasticity of Root Architecture and ROS–Auxin Regulation in Paeonia ostii Under Root-Zone Restriction
by Qiang Xing, Ruotong Zhao, Peng Zhou, Jun Qin, Heming Liu, Shuiyan Yu, Bin Zhao and Yonghong Hu
Plants 2025, 14(12), 1889; https://doi.org/10.3390/plants14121889 - 19 Jun 2025
Viewed by 486
Abstract
Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of Paeonia ostii exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis [...] Read more.
Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of Paeonia ostii exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis of biomass allocation and root architectural responses to the root-zone restriction (RZR) in P. ostii, comparing three container volumes (8.5, 17, and 34 L). While the total biomass increased with root zone volume (e.g., shoot biomass rose from 9.30 g to 59.94 g), RZR induced a 44.8% increase in root-to-shoot ratio, indicating carbon reallocation to enhance belowground resource acquisition. The principal component analysis identified root biomass, volume, and surface area as key plasticity drivers. Optimal root efficiency occurred at 26.09–28.23 L, where root length and tip/fork numbers peaked. Mechanistically, RZR elevated superoxide dismutase (SOD) activity by 49.74% but reduced catalase (CAT) by 74.24%, disrupting H2O2 homeostasis. Concurrently, auxin transporter genes (PIN1, AUX1) were upregulated, promoting root elongation and lateral branching through auxin redistribution. We hypothesize that ROS–auxin crosstalk mediates architectural reconfiguration to mitigate spatial stress, with thickened roots enhancing structural stability in restricted environments. The study underscores the need to optimize root zone volume in woody species cultivation, providing thresholds (e.g., >28 L for mature plants) to balance biomass yield and physiological costs in horticultural management. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

28 pages, 5867 KB  
Article
Tomato Ripening Detection in Complex Environments Based on Improved BiAttFPN Fusion and YOLOv11-SLBA Modeling
by Yan Hao, Lei Rao, Xueliang Fu, Hao Zhou and Honghui Li
Agriculture 2025, 15(12), 1310; https://doi.org/10.3390/agriculture15121310 - 18 Jun 2025
Viewed by 597
Abstract
Several pressing issues have been revealed by deep learning-based tomato ripening detection technology in intricate environmental applications: The ripening transition stage distinction is not accurate enough, small target tomato detection is likely to miss, and the detection technology is more susceptible to variations [...] Read more.
Several pressing issues have been revealed by deep learning-based tomato ripening detection technology in intricate environmental applications: The ripening transition stage distinction is not accurate enough, small target tomato detection is likely to miss, and the detection technology is more susceptible to variations in light. Based on the YOLOv11 model, a YOLOv11-SLBA tomato ripeness detection model was presented in this study. First, SPPF-LSKA is used in place of SPPF in the backbone section, greatly improving the model’s feature discrimination performance in challenging scenarios including dense occlusion and uneven illumination. Second, a new BiAttFPN hierarchical progressive fusion is added in the neck area to increase the feature retention of small targets during occlusion. Lastly, the feature separability of comparable categories is significantly enhanced by the addition of the auxiliary detection head DetectAux. In this study, comparative experiments are carried out to confirm the model performance. Under identical settings, the YOLOv11-SLBA model is compared to other target detection networks, including Faster R-CNN, SSD, RT-DETR, YOLOv7, YOLOv8, and YOLOv11. With 2.7 million parameters and 10.9 MB of model memory, the YOLOv11-SLBA model achieves 92% P, 83.5% R, 91.3% mAP50, 64.6% mAP50-95, and 87.5% F1-score. This is a 3.4% improvement in accuracy, a 1.5% improvement in average precision, and a 1.6% improvement in F1-score when compared to the baseline model YOLOv11. It outperformed the other comparison models in every indication and saw a 1.6% improvement in score. Furthermore, the tomato-ripeness1public dataset was used to test the YOLOv11-SLBA model, yielding model p values of 78.6%, R values of 91.5%, mAP50 values of 93.7%, and F1-scores of 84.6%. This demonstrates that the model can perform well across a variety of datasets, greatly enhances the detection generalization capability in intricate settings, and serves as a guide for the algorithm design of the picking robot vision system. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 6476 KB  
Article
Elucidating the Molecular Mechanisms of Physiological Fruit Abscission in Actinidia arguta Through Comparative Transcriptomics and Transient Genetic Transformation
by Pengqiang Yuan, Yanli Wang, Yining Sun, Guoliang Liu, Hongyan Qin, Shutian Fan, Yiping Yan, Bowei Sun and Wenpeng Lu
Plants 2025, 14(11), 1645; https://doi.org/10.3390/plants14111645 - 28 May 2025
Viewed by 537
Abstract
Actinidia arguta (A. arguta) is valued for its nutritional richness, but physiological fruit abscission severely limits production efficiency in elite cultivars. To unravel the molecular basis of this process, we compared two cultivars: abscission-prone ‘KL’ and abscission-resistant ‘JL’. During fruit development, [...] Read more.
Actinidia arguta (A. arguta) is valued for its nutritional richness, but physiological fruit abscission severely limits production efficiency in elite cultivars. To unravel the molecular basis of this process, we compared two cultivars: abscission-prone ‘KL’ and abscission-resistant ‘JL’. During fruit development, ‘KL’ exhibited an earlier decline in auxin (AUX) levels within the fruit abscission zone (FAZ), coupled with persistently higher ethylene (ETH) concentrations and polygalacturonase (PG) activity compared to ‘JL’. Comparative transcriptomics identified abscission-related genes enriched in plant hormone signaling (AUX, ETH, ABA, JA, BR), starch/sucrose metabolism, and photosynthesis pathways. AUX signaling diverged predominantly during early development, while ETH, BR, and JA pathways varied across multiple stages. Exogenous applications of plant growth regulators (ethephon, 2,4-D, methyl jasmonate, and 2,4-epibrassinolide) and transient overexpression of key genes (AaETR1, AaERF035, AaPME68, AaPP2C27, AaMYC1, and AaPMEI10) validated their roles in modulating hormone crosstalk and cell wall remodeling. Overexpression of AaERF035 and AaPME68 likely accelerated abscission by enhancing ETH biosynthesis and pectin degradation, while AaPMEI10 and AaMYC1 potentially delayed abscission via suppression of cell wall-modifying enzymes. This study elucidates the hormonal and transcriptional networks governing fruit abscission in A. arguta, providing insights for targeted breeding and cultivation strategies to mitigate yield loss. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

24 pages, 1039 KB  
Article
A Method for Improving the Robustness of Intrusion Detection Systems Based on Auxiliary Adversarial Training Wasserstein Generative Adversarial Networks
by Guohua Wang and Qifan Yan
Electronics 2025, 14(11), 2171; https://doi.org/10.3390/electronics14112171 - 27 May 2025
Viewed by 645
Abstract
To improve the robustness of intrusion detection systems constructed using deep learning models, a method based on an auxiliary adversarial training WGAN (AuxAtWGAN) is proposed from the defender’s perspective. First, one-dimensional traffic data are downscaled and processed into two-dimensional image data via a [...] Read more.
To improve the robustness of intrusion detection systems constructed using deep learning models, a method based on an auxiliary adversarial training WGAN (AuxAtWGAN) is proposed from the defender’s perspective. First, one-dimensional traffic data are downscaled and processed into two-dimensional image data via a stacked autoencoder (SAE), and mixed adversarial samples are generated using the fast gradient sign method (FGSM), Projected Gradient Descent (PGD) and Carlini and Wagner (C&W) adversarial attacks. Second, the improved WGAN with an integrated perceptual network module is trained with mixed training samples composed of mixed adversarial samples and normal samples. Finally, the adversary-trained AuxAtWGAN model is attached to the original model for adversary sample detection, and the detected adversary samples are removed and input into the original model to improve the robustness of the original model. The average attack success rate of the original convolutional neural network (CNN) model against multiple adversarial samples is 75.17%, and after using AuxAtWGAN, the average attack success rate of the adversarial attacks decreases to 27.56%; moreover, the detection accuracy of the original CNN model against normal samples is still 93.57%. The experiment proves that AuxAtWGAN improves the robustness of the original model. In addition, validation experiments are conducted by attaching the AuxAtWGAN model to the Long Short-Term Memory Network (LSTM) and Residual Network34 (ResNet) models, which prove that the proposed method has high generalization performance. Full article
Show Figures

Figure 1

Back to TopTop