Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,629)

Search Parameters:
Keywords = Active Flow Control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2252 KB  
Article
Regular or Irregular Breakfast Skipping Suppresses the Vascular Endothelial Function of the Brachial Artery
by Hideaki Kashima, Yui Morinaka, Kano Endo, Mizuki Sugimoto, Naho Nagao, Ryota Mabuchi, Masako Yamaoka Endo, Naomi Kashima, Yasuhiko Kitadai, Akira Miura and Yoshiyuki Fukuba
Nutrients 2025, 17(20), 3244; https://doi.org/10.3390/nu17203244 - 15 Oct 2025
Abstract
Background: Habitual breakfast skipping is associated with an increased risk of cardiovascular and cardiometabolic diseases. However, the effects of skipping breakfast regularly versus irregularly on vascular endothelial function (VEF), a key marker of cardiovascular health, remain unclear. This study aimed to investigate the [...] Read more.
Background: Habitual breakfast skipping is associated with an increased risk of cardiovascular and cardiometabolic diseases. However, the effects of skipping breakfast regularly versus irregularly on vascular endothelial function (VEF), a key marker of cardiovascular health, remain unclear. This study aimed to investigate the effects of eight-Day regular or irregular breakfast skipping on brachial artery VEF in healthy habitual breakfast eaters using a three-condition, randomized controlled crossover trial. Methods: Ten young healthy adults (seven females, three males) completed three randomized nine-Day trials: (1) Eat (three meals per day), (2) Skip (breakfast skipped on days 1–8, consumed on Day 9), and (3) Eat/Skip (alternating breakfast consumption and skipping). Flow-mediated dilation (FMD) of the right brachial artery was assessed at 7:45–55 am on days 1, 2, 5, and 9, expressed as the percentage change in the brachial artery diameter normalized to the shear rate area under the curve (Δ%FMD/SRAUC). Blood samples were collected before and 30 min after breakfast or lunch for glucose, insulin, free fatty acids, and triglyceride analyses. Insulin resistance was estimated using the homeostasis model assessment of insulin resistance calculated from fasting glucose and fasting insulin values. Objective measurements of sleep, physical activity, and continuous glucose monitoring were obtained. Results: On Day 9, the Skip and Eat/Skip trials had significantly lower %FMD/SRAUC and significantly higher levels of fasting plasma insulin than the Eat trial. Exploratory analyses within the Skip and Eat/Skip trials suggested a weak negative association between changes in %FMD/SRAUC and fasting blood glucose and insulin from day 1 to day 9. Conclusions: These findings suggest that both regular and irregular breakfast skipping may impair early morning VEF, possibly through alterations in glucose metabolism, whereas regular breakfast consumption may help preserve VEF and support cardiovascular health. Clinical Trial Registry: Clinical Trial Registry: University Hospital Medical Information Network (UMIN000053117, registered 20 December 2023). Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 880 KB  
Article
Dysregulation of Treg/Th17 Balance and Intracellular Expression of IL-21 and IL-22 in the Pathogenesis of Gestational Hypertension
by Maciej Kwiatek, Wojciech Kwaśniewski, Tomasz Gęca, Ewelina Grywalska, Mansur Rahnama-Hezavah, Sebastian Mertowski, Tomasz Urbanowicz, Magdalena Ewa Kowalkowska, Maciej Krasiński, Anna Kwaśniewska and Maciej Brązert
J. Clin. Med. 2025, 14(20), 7288; https://doi.org/10.3390/jcm14207288 (registering DOI) - 15 Oct 2025
Abstract
Background/Objectives: Pregnancy-induced hypertension (PIH), including preeclampsia (PE), remains a significant cause of maternal and fetal morbidity. Immune imbalance involving T helper (Th17) and regulatory T (Treg) cells is increasingly recognized as contributing to the pathogenesis of PIH. This study aimed to assess the [...] Read more.
Background/Objectives: Pregnancy-induced hypertension (PIH), including preeclampsia (PE), remains a significant cause of maternal and fetal morbidity. Immune imbalance involving T helper (Th17) and regulatory T (Treg) cells is increasingly recognized as contributing to the pathogenesis of PIH. This study aimed to assess the proportions of Th17 and Treg cells and intracellular cytokine expression (IL-17A, IL-17F, IL-21, and IL-22) in the peripheral blood of hypertensive versus normotensive pregnant women. Methods: A total of 108 pregnant women were included: 60 with hypertensive disorders and 48 normotensive controls. Peripheral blood mononuclear cells were analyzed using multiparametric flow cytometry to quantify CD4+CD25+FoxP3+ Treg and CD4+IL-17A+ Th17 cells, along with intracellular IL-17F, IL-21, and IL-22 co-expression. Correlations with clinical and obstetric parameters were evaluated. Results: Hypertensive patients showed significantly increased proportions of activated Th17 cells (CD4+IL-17A+) and Th17 subpopulations co-expressing IL-17F and IL-22, as well as IL-21 and IL-22 (p < 0.0001). Although Treg cell percentages were lower in the hypertensive group, the difference was not statistically significant. A pronounced Th17/Treg imbalance was observed. Positive correlations were found between Th17 subpopulations and gestational age, birth weight, and length, as well as maternal age. Conclusions: The immune profile in hypertensive pregnancies was characterized by a shift toward Th17-mediated proinflammatory responses, supporting the role of immune dysregulation in PIH. The increased frequency of Th17 cells co-expressing IL-21 and IL-22 may serve as a potential biomarker of disease severity and warrants further exploration. Full article
(This article belongs to the Special Issue Management of Pregnancy Complications: 2nd Edition)
Show Figures

Figure 1

25 pages, 6158 KB  
Article
Hydrogen Sulfide and Nitric Oxide Improve Renal Function and α-Adrenergic Responsiveness in Rats with Left Ventricular Hypertrophy
by Tabinda Fatima, Latifah Al Shammari, Mohamed Ibrahim Lazhari, Waad Alrohily, Tan Yong Chia, Nimer Alsabeelah, Eid Fahad Alanazi, Khalid Abdulrahman Almutairi, Sultan Mujahid Alhabradi, Naif Saleh Alharbi and Ashfaq Ahmad
Curr. Issues Mol. Biol. 2025, 47(10), 848; https://doi.org/10.3390/cimb47100848 - 15 Oct 2025
Abstract
In left ventricular hypertrophy (LVH), the combined external administration of hydrogen sulfide (H2S) and nitric oxide (NO) has been shown to reverse LVH by activating the endothelial nitric oxide synthase pathway (eNOS/NO), independent of the cystathionine γ-lyase (CSE/H2S) pathway. [...] Read more.
In left ventricular hypertrophy (LVH), the combined external administration of hydrogen sulfide (H2S) and nitric oxide (NO) has been shown to reverse LVH by activating the endothelial nitric oxide synthase pathway (eNOS/NO), independent of the cystathionine γ-lyase (CSE/H2S) pathway. Individually, both H2S and NO have also been reported to significantly improve RCBP, restore renal excretory performance, and enhance α-adrenergic receptor responsiveness in rats. The induction of LVH was performed over a period of two weeks using drinking water with caffeine and isoprenaline. Five weeks later, the rats were fed with L-arginine (1.25 g/L) as a nitrogen oxide donor. Vascular reactions to methoxamine, phenylephrine, and noradrenaline were assessed in presences and absence of 5-methylurapidil (5-MeU), BMY7378, and chloroethylclonidine (CeC) and α1-adrenoceptor antagonists. In both the Control WKY and LVH-WKY groups, combined H2S+NO therapy significantly (p < 0.05) upregulated the renal mRNA of CSE and eNOS when compared with untreated LVH rats. The treatment also markedly increased RCBP in LVH-H2S+NO rats relative to LVH controls. Furthermore, H2S+NO administration enhanced the activity of α1A, α1B, and α1D adrenergic receptors in mediating renal vasoconstriction. Even under receptor blockade with high doses (HDs) of 5-MeU, CeC, and BMY 7378, renal vasoconstriction responses to adrenergic agonists like NA, PE, and ME in the LVH-H2S+NO group remained comparable to those observed in the counterpart Control-H2S+NO group. The findings of current study suggest that simultaneous exogenous administration of H2S and NO donors improve renal cortical blood flow, support renal function, and augment α1A, α1B, and α1D adrenergic receptor responsiveness to adrenergic agonists like NA, PE, and ME in LVH rats. This effect appears to rely primarily on the eNOS/NO pathway, with partial contribution from the CSE/H2S pathway. Full article
Show Figures

Figure 1

22 pages, 4274 KB  
Article
Enhanced Bioavailability and Stability of Curcumin in Cosmeceuticals: Exploiting Droplet Microfluidics for Nanoemulsion Development
by Nikolaos D. Bikiaris, Afroditi Kapourani, Ioannis Pantazos and Panagiotis Barmpalexis
Cosmetics 2025, 12(5), 226; https://doi.org/10.3390/cosmetics12050226 - 15 Oct 2025
Abstract
Curcumin (Cur), a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties, faces significant challenges in cosmeceutical applications due to its poor aqueous solubility and low bioavailability. Nanotechnology offers a promising approach to overcome these limitations and enhance the functionality of cosmetic formulations. [...] Read more.
Curcumin (Cur), a natural polyphenolic compound with potent antioxidant and anti-inflammatory properties, faces significant challenges in cosmeceutical applications due to its poor aqueous solubility and low bioavailability. Nanotechnology offers a promising approach to overcome these limitations and enhance the functionality of cosmetic formulations. In this work, Cur-loaded nanoemulsions (NEs) were developed using a droplet microfluidics technique to enhance Cur’s stability, bioavailability, and permeability for advanced cosmeceuticals. Various oils were screened for Cur solubility, with coconut oil demonstrating the highest capacity. Optimal oil-to-water flow ratios were determined to produce monodisperse NEs with controlled droplet sizes. Characterization via dynamic light scattering (DLS) revealed stable NEs with Z-potential values exceeding −30 mV at both room temperature and +4 °C for up to 21 days, indicating strong colloidal stability. Antioxidant activity was evaluated through DPPH assays, while in vitro permeability studies of the drug-loaded NEs after incorporation into suitable hydrogels, using Strat-M® membranes mimicking human skin, demonstrated significantly enhanced penetration of the encapsulated Cur. In sum, this work highlights the potential of droplet microfluidics as a scalable and precise method for producing high-performance Cur NEs tailored for cosmeceutical applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

17 pages, 5030 KB  
Article
Mitigating Airborne Infection Transmission in the Common Area of Inpatient Wards—A Case Study
by Xiangdong Li, Kevin Kevin, Wai Kit Lam, Andrew Ooi, Cameron Zachreson, Nicholas Geard, Loukas Tsigaras, Samantha Bates, Forbes McGain, Lidia Morawska, Marion Kainer and Jason Monty
Fluids 2025, 10(10), 267; https://doi.org/10.3390/fluids10100267 - 14 Oct 2025
Abstract
In a hospital ward, transmission of airborne pathogens can occur in any area where people breathe the same air. These areas include patient rooms and specialised treatment rooms, as well as corridors and common areas. Numerous studies have been conducted to investigate the [...] Read more.
In a hospital ward, transmission of airborne pathogens can occur in any area where people breathe the same air. These areas include patient rooms and specialised treatment rooms, as well as corridors and common areas. Numerous studies have been conducted to investigate the risk of airborne transmission within hospital rooms where patient care activities take place; however, studies assessing the risk of exposure to airborne pathogens in common areas such as nurse stations and corridors, in which healthcare workers spend up to 63% of their time, are very rare. In this study, we addressed this gap by simulating aerosol transport in the common area of a real inpatient ward encompassing different types of patient rooms and equipped with a mixing ventilation system. The risk of airborne transmission of COVID-19 in the ward was evaluated using a spatially resolved risk model, coupled with the clinical and pathological data on SARS-CoV-2 infection. The results showed that the central-return ventilation system causes directional air flows in the corridors, which enhanced long-distance aerosol transport and were conducive to infection transmission between different rooms. An improved ventilation system was proposed that aimed to reduce air mixing and minimise directional air flows. The improvement involved only rearrangement of air supply and exhaust vents, but led to significant reductions in both particle residence time and travelling distance within the ward, contributing to a nearly two-fold increase and 60% decrease in the areas of low-risk and high-risk zones, respectively, resulting in a 34% reduction in the overall infection probability in the studied area. This study demonstrated the potential of preventing hospital-acquired infection (HAI) via engineering controls and provided recommendations for future studies to assess novel ventilation configurations to reduce transmission risk. Full article
(This article belongs to the Special Issue CFD Applications in Environmental Engineering)
Show Figures

Figure 1

15 pages, 6721 KB  
Article
Mechanical Behaviors of Copper Nanoparticle Superlattices: Role of Lattice Structure
by Jianjun Bian and Liang Yang
Crystals 2025, 15(10), 884; https://doi.org/10.3390/cryst15100884 - 13 Oct 2025
Viewed by 107
Abstract
Nanoparticle superlattices, periodic assemblies of nanoscale building blocks, offer opportunities to tailor mechanical behavior through controlled lattice geometry and interparticle interactions. Here, classical molecular dynamics simulations were performed to investigate the compressive responses of copper nanoparticle superlattices with face-centered cubic (FCC), hexagonal close-packed [...] Read more.
Nanoparticle superlattices, periodic assemblies of nanoscale building blocks, offer opportunities to tailor mechanical behavior through controlled lattice geometry and interparticle interactions. Here, classical molecular dynamics simulations were performed to investigate the compressive responses of copper nanoparticle superlattices with face-centered cubic (FCC), hexagonal close-packed (HCP), body-centered cubic (BCC), and simple cubic (SC) arrangements, as well as disordered assemblies. The flow stresses span 0.5–1.5 GPa. Among the studied configurations, the FCC and HCP superlattices exhibit the highest strengths (~1.5 GPa), followed by the disordered assembly (~1.0 GPa) and the SC structure (~0.8 GPa), while the BCC superlattice exhibits the lowest strength (~0.5 GPa), characterized by pronounced stress drops and recoveries resulting from interfacial sliding. Atomic-scale analyses reveal that plastic deformation is governed by two coupled geometric factors: (i) the number of interparticle contact patches, controlling the density of dislocation sources, and (ii) their orientation relative to the loading axis, which dictates stress transmission and slip activation. A combined parameter integrating particle coordination number and contact orientation is proposed to rationalize the structure-dependent strength, providing mechanistic insight into the deformation physics of metallic nanoparticle assemblies. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

27 pages, 4823 KB  
Article
P-Tracker: Design and Development of a Low-Cost PM2.5 Monitor for Citizen Measurements of Air Pollution
by Marks Jalisevs, Hamza Qadeer, David O’Connor, Mingming Liu and Shirley M. Coyle
Hardware 2025, 3(4), 12; https://doi.org/10.3390/hardware3040012 - 11 Oct 2025
Viewed by 136
Abstract
Particulate matter (PM2.5) is a critical indicator of air quality and has significant health implications. This study presents the development and evaluation of a custom-built PM2.5 device, named the P-Tracker, designed to offer an accessible alternative to commercially available air quality monitors. This [...] Read more.
Particulate matter (PM2.5) is a critical indicator of air quality and has significant health implications. This study presents the development and evaluation of a custom-built PM2.5 device, named the P-Tracker, designed to offer an accessible alternative to commercially available air quality monitors. This paper presents the design framework used to address the requirements of a low-cost, accessible device which meets the performance of existing commercial systems. Step-by step build instructions are provided for hardware and software development and connection to the P-tracker open access website which displays the data and interactive map. To demonstrate the performance, the P-Tracker was compared against leading consumer devices, including the AtmoTube Pro by AtmoTech Inc., Flow by Plume Labs, View Plus by Airthings, and the Smart Citizen Kit 2.1 by Fab Lab Barcelona, across four controlled tests. The tests included: (1) a controlled paper combustion test in which all devices were exposed to combustion aerosols in a sealed environment alongside the DustTrak 8530 (TSI Incorporated, Shoreview, MN, USA), used as the gold standard reference, where the P-Tracker achieved a Pearson correlation of 0.99 with DustTrak over the final measurement period; (2) an outdoor test comparing readings with a stationary reference sensor, Osiris (Turnkey Instruments Ltd., Rudheath, UK), where the P-Tracker recorded a mean PM2.5 concentration of 3.08 µg/m3, closely aligning with the Osiris measurement of 3.53 µg/m3 and achieving a Pearson correlation of 0.77; (3) a controlled indoor air quality assessment, where the P-Tracker displayed stable readings with a standard deviation of 0.11 µg/m3, comparable to the AtmoTube Pro; and (4) a real-world kitchen environment test, where the P-Tracker effectively captured fluctuations in PM2.5 levels due to cooking activities, maintaining a consistent response with the DustTrak reference. The results indicate varied degrees of agreement across devices in different conditions, with the P-Tracker demonstrating strong correlation and low error margins in high-pollution and controlled scenarios. This research underscores the potential of open-source, low-cost, custom-built air quality sensors which may be developed and deployed by communities to provide hyperlocal measurements of air pollution. Full article
Show Figures

Figure 1

22 pages, 1953 KB  
Article
Methodology to Develop a Discrete-Event Supervisory Controller for an Autonomous Helicopter Flight
by James Horner, Tanner Trautrim, Cristina Ruiz Martin, Iryna Borshchova and Gabriel Wainer
Aerospace 2025, 12(10), 912; https://doi.org/10.3390/aerospace12100912 - 10 Oct 2025
Viewed by 170
Abstract
The National Research Council Canada (NRC) is actively engaged in the development of an advanced autonomy system for the Bell 412 helicopter. This system’s capabilities extend to the execution of complex missions, such as arctic resupply missions. In an arctic resupply mission, the [...] Read more.
The National Research Council Canada (NRC) is actively engaged in the development of an advanced autonomy system for the Bell 412 helicopter. This system’s capabilities extend to the execution of complex missions, such as arctic resupply missions. In an arctic resupply mission, the helicopter autonomously delivers supplies to a remote arctic base. During the mission it performs tasks such as takeoff, navigation, obstacle avoidance, and precise landing at its destination, all while minimizing the need for pilot intervention. The complexity of this autonomy system necessitates the inclusion of a high-level supervisory controller. This controller plays a critical role in monitoring mission progress, interacting with system components, and efficiently allocating resources. Conventionally, supervisory controllers are embedded within monolithic programs, lacking transparent state flows. This causes system modification and testing to be a significant challenge. In our research, we present an innovative approach and methodology to develop supervisory controllers for autonomous aircraft on the example of the NRC Bell 412. Using the Discrete Event System Specification (DEVS) formalism and the Cadmium simulation engine, we effectively address the challenges above. We discuss the entire development process for a state-based, event-driven supervisory controller for autonomous rotorcraft using the NRC’s Bell-412 autonomy system as a comprehensive case study. This process includes modeling, implementation, verification, validation, testing, and deployment. It incorporates a simulation phase, in which the supervisor integrates with components within a Digital Twin of the Bell 412, and a real-time operations phase, where the supervisor becomes an integral part of the actual Bell 412 helicopter. Our method outlines the smooth transition between these phases, ensuring a seamless and efficient process. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 1122 KB  
Article
Optimal Power Flow of Unbalanced Distribution Networks Using a Novel Shrinking Net Algorithm
by Xun Xu, Liangli Xiong, Menghan Xiao, Haoming Liu and Jian Wang
Processes 2025, 13(10), 3226; https://doi.org/10.3390/pr13103226 - 10 Oct 2025
Viewed by 234
Abstract
The increasing penetration of distributed energy resources (DERs) in unbalanced distribution networks presents significant challenges for optimal operation, particularly concerning power loss minimization and voltage regulation. This paper proposes a comprehensive Optimal Power Flow (OPF) model that coordinates various assets, including on-load tap [...] Read more.
The increasing penetration of distributed energy resources (DERs) in unbalanced distribution networks presents significant challenges for optimal operation, particularly concerning power loss minimization and voltage regulation. This paper proposes a comprehensive Optimal Power Flow (OPF) model that coordinates various assets, including on-load tap changers (OLTCs), reactive power compensators, and controllable electric vehicles (EVs). To solve this complex and non-convex optimization problem, we developed the Shrinking Net Algorithm (SNA), a novel metaheuristic with mathematically proven convergence. The proposed framework was validated using the standard IEEE 123-bus test system. The results demonstrate significant operational improvements: total active power loss was reduced by 32.1%, from 96.103 kW to 65.208 kW. Furthermore, all node voltage violations were eliminated, with the minimum system voltage improving from 0.937 p.u. to a compliant 0.973 p.u. The findings confirm that the proposed SNA is an effective and robust tool for this application, highlighting the substantial economic and technical benefits of coordinated asset control for modern distribution system operators. Full article
Show Figures

Figure 1

26 pages, 7995 KB  
Article
Smart Home Control Using Real-Time Hand Gesture Recognition and Artificial Intelligence on Raspberry Pi 5
by Thomas Hobbs and Anwar Ali
Electronics 2025, 14(20), 3976; https://doi.org/10.3390/electronics14203976 - 10 Oct 2025
Viewed by 673
Abstract
This paper outlines the process of developing a low-cost system for home appliance control via real-time hand gesture classification using Computer Vision and a custom lightweight machine learning model. This system strives to enable those with speech or hearing disabilities to interface with [...] Read more.
This paper outlines the process of developing a low-cost system for home appliance control via real-time hand gesture classification using Computer Vision and a custom lightweight machine learning model. This system strives to enable those with speech or hearing disabilities to interface with smart home devices in real time using hand gestures, such as is possible with voice-activated ‘smart assistants’ currently available. The system runs on a Raspberry Pi 5 to enable future IoT integration and reduce costs. The system also uses the official camera module v2 and 7-inch touchscreen. Frame preprocessing uses MediaPipe to assign hand coordinates, and NumPy tools to normalise them. A machine learning model then predicts the gesture. The model, a feed-forward network consisting of five fully connected layers, was built using Keras 3 and compiled with TensorFlow Lite. Training data utilised the HaGRIDv2 dataset, modified to consist of 15 one-handed gestures from its original of 23 one- and two-handed gestures. When used to train the model, validation metrics of 0.90 accuracy and 0.31 loss were returned. The system can control both analogue and digital hardware via GPIO pins and, when recognising a gesture, averages 20.4 frames per second with no observable delay. Full article
Show Figures

Figure 1

28 pages, 4762 KB  
Article
Conditional Ablation of PKCλ/ι in CD4+ T Cells Ameliorates Hepatic Fibrosis in Schistosoma japonicum-Infected Mice via T Follicular Helper (Tfh) Cell Suppression Coupled with Increased Follicular Regulatory T (Tfr) and Regulatory B (Breg) Cell Activities
by Congjin Mei, Yingying Yang, Panpan Dong, Julu Lu, Xinyue Zhang, Jingping Li, Lijun Song and Chuanxin Yu
Biomolecules 2025, 15(10), 1430; https://doi.org/10.3390/biom15101430 - 9 Oct 2025
Viewed by 246
Abstract
To further investigate the role of PKCλ/ι in Schistosoma japonicum-induced hepatic fibrosis, we employed a CD4+ T-cell-specific PKCλ/ι conditional knockout (KOSJ) mouse model, with wild-type (WTSJ) mice used as controls. Transcriptomic profiling of hepatic mRNA was used to reveal the immune [...] Read more.
To further investigate the role of PKCλ/ι in Schistosoma japonicum-induced hepatic fibrosis, we employed a CD4+ T-cell-specific PKCλ/ι conditional knockout (KOSJ) mouse model, with wild-type (WTSJ) mice used as controls. Transcriptomic profiling of hepatic mRNA was used to reveal the immune regulatory mechanisms underlying the role of PKCλ/ι in the hepatic fibrosis caused by S. japonicum infection. Flow cytometry, RT–qPCR and ELISA were used to analyze the effects of PKCλ/ι on Tfh and Tfr cells, and single-cell RNA sequencing was used to elucidate the interactions between Tfr and B cells. The results showed that PKCλ/ι deficiency led to altered BCR signaling gene expression, reduced germinal center activity, and decreased anti-SEA antibody levels. Tfh cells and key factors including IL-21, CXCR5, and ICOS were downregulated, while Tfr cells and IL-10+ B cells increased. Additionally, hepatic neutrophils decreased and Treg/Tfr ratios rose, with enhanced IL-10-mediated cellular crosstalk. These findings indicate that PKCλ/ι deficiency attenuates liver fibrosis by inhibiting Tfh differentiation, promoting Tfr function, and activating IL-10-producing Breg cells, suggesting its potential as a therapeutic target. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

24 pages, 5285 KB  
Article
Thermosetting Resins Based on Poly(Ethylene Glycol Fumarate) and Acrylic Acid: Rheological and Thermal Analysis
by Gulsym Burkeyeva, Anna Kovaleva, Zhansaya Ibrayeva, David Havlicek, Yelena Minayeva, Aiman Omasheva, Elmira Zhakupbekova and Margarita Nurmaganbetova
Molecules 2025, 30(19), 4020; https://doi.org/10.3390/molecules30194020 - 8 Oct 2025
Viewed by 212
Abstract
The rheological behavior and low-temperature curing kinetics of poly(ethylene glycol fumarate)–acrylic acid systems initiated by benzoyl peroxide/N,N-dimethylaniline have been investigated for the first time with a focus on the development of thermosetting binders with controllable properties. It has been established that both composition [...] Read more.
The rheological behavior and low-temperature curing kinetics of poly(ethylene glycol fumarate)–acrylic acid systems initiated by benzoyl peroxide/N,N-dimethylaniline have been investigated for the first time with a focus on the development of thermosetting binders with controllable properties. It has been established that both composition and temperature have a significant effect on rheological behavior and kinetic parameters. Rheological studies revealed non-Newtonian flow behavior and thixotropic properties, while oscillatory tests demonstrated structural transformations during curing. Increasing the temperature was found to accelerate gelation, whereas a higher polyester content retarded the process, which is crucial for controlling the pot life of the reactive mixture. DSC analysis indicated that isothermal curing at 30–40 °C can be satisfactorily described by the Kamal autocatalytic model, whereas at 20 °C, at later stages, and at higher polyester contents, diffusion control becomes significant. The thermal behavior of cured systems was investigated using thermogravimetry. Calculations using the isoconversional Kissinger–Akahira–Sunose and Friedman methods confirmed an increase in the apparent activation energy for thermal decomposition, suggesting a stabilizing effect of poly(ethylene glycol fumarate) in the polymer structure. The studied systems are characterized by controllable kinetics, tunable viscosity, and high thermal stability, making them promising thermosetting binders for applications in composites, construction, paints and coatings, and adhesives. Full article
Show Figures

Figure 1

17 pages, 677 KB  
Article
The Therapeutic Potential of Laurus nobilis L. Leaves Ethanolic Extract in Cancer Therapy
by Farah Al-Mammori, Ashraf M. A. Qasem, Deniz Al-Tawalbeh, Duaa Abuarqoub and Ali Hmedat
Molecules 2025, 30(19), 4012; https://doi.org/10.3390/molecules30194012 - 7 Oct 2025
Viewed by 458
Abstract
This study explores the anticancer, antioxidant, and phytochemical activities of Laurus nobilis L. ethanolic leaf extract. The extract demonstrated selective cytotoxicity against four human cancer cell lines, showing strong cytotoxic effect against ovarian (ES2), head and neck (SAS), and colorectal (HT-29) cancer cells, [...] Read more.
This study explores the anticancer, antioxidant, and phytochemical activities of Laurus nobilis L. ethanolic leaf extract. The extract demonstrated selective cytotoxicity against four human cancer cell lines, showing strong cytotoxic effect against ovarian (ES2), head and neck (SAS), and colorectal (HT-29) cancer cells, with IC50 values ranging from 3.8 ± 0.3 to 4.4 ± 0.6 µg/mL. Notably, it exhibited only moderate inhibition of the MDA-MB-231 breast cancer cell line (IC50 = 18.5 ± 0.8 µg/mL), possibly reflecting intrinsic differences in cell line sensitivity. Importantly, the extract showed low toxicity toward normal human fibroblasts (HDF), with an IC50 value exceeding 100 µg/mL, indicating a favorable selectivity profile. The flow cytometry analysis showed that the extract caused cell death and stopped the cell cycle in both SAS and ES2 cancer cell lines. In SAS cells, extract treatment significantly increased apoptotic cells (21.1% ± 0.3%) compared to the control (6.3% ± 0.4%), along with G2 phase accumulation, indicating G2 arrest. Similarly, in ES2 cells, apoptosis increased (16.2% ± 1.3% vs. control 8.1% ± 1.0%), and a significant cell accumulation in the S phase was observed, suggesting disruption of cell cycle progression. Antioxidant screenings showed impressive dose-dependent DPPH radical scavenging activity (25–2000 µg/mL), although less potent than ascorbic acid (2.6 µg/mL). UPLC-QTOF/MS phytochemical analysis revealed various phenolic constituents, such as flavonoids and phenolic acids, and an inferred association with the recorded bioactivities. This preliminary work indicates that L. nobilis extracts may act as natural anticancer and antioxidant agents; however, it was limited to in vitro testing with non-standardized samples, underscoring the need for further research to validate and extend these findings for future applications. Full article
(This article belongs to the Special Issue Advances in Plant-Sourced Natural Compounds as Anticancer Agents)
Show Figures

Graphical abstract

17 pages, 2509 KB  
Article
Feasibility Study of Flywheel Mitigation Controls Using Hamiltonian-Based Design for E3 High-Altitude Electromagnetic Pulse Events
by Connor A. Lehman, Rush D. Robinett, David G. Wilson and Wayne W. Weaver
Energies 2025, 18(19), 5294; https://doi.org/10.3390/en18195294 - 7 Oct 2025
Viewed by 299
Abstract
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel [...] Read more.
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel system presents the advantage of employing custom optimal control laws, in contrast to the conventional approach of utilizing passive blocking capacitors. A Hamiltonian-based optimal control law for energy storage is derived and integrated into models of both the transformer and the flywheel energy storage system. This Hamiltonian-based feedback control law is subsequently compared against an energy-optimal feedforward control law to validate its optimality. The analysis reveals that the required energy storage capacity is 13Wh, the necessary power output is less than 5kW at any given time during the insult, and the required bandwidth for the controller is around 5Hz. These specifications can be met by commercially available flywheel devices. This methodology can be extended to other energy storage devices to ensure that their specifications adequately address the requirements for HEMP mitigation. Full article
Show Figures

Figure 1

23 pages, 11972 KB  
Article
The Variability in the Thermophysical Properties of Soils for Sustainability of the Industrial-Affected Zone of the Siberian Arctic
by Tatiana V. Ponomareva, Kirill Yu. Litvintsev, Konstantin A. Finnikov, Nikita D. Yakimov, Georgii E. Ponomarev and Evgenii I. Ponomarev
Sustainability 2025, 17(19), 8892; https://doi.org/10.3390/su17198892 - 6 Oct 2025
Viewed by 445
Abstract
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the [...] Read more.
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the seasonally thawed soil layer. The study concentrated on the variability in the soil’s thermophysical properties in Central Siberia’s permafrost zone (the northern part of Krasnoyarsk Region, Taimyr, Russia). In the industrially affected area of interest, we evaluated and contrasted the differences in the thermophysical properties of soils between two opposing types of landscapes. On the one hand, these are soils that are characteristic of the natural landscape of flat shrub tundra, with a well-developed moss–lichen cover. An alternative is the soils in the landscape, which have exhibited significant degradation in the vegetation cover due to both natural and human-induced factors. The heat-insulating properties of background areas are controlled by the layer of moss and shrubs, while its disturbance determines the excessive heating of the soil at depth. In comparison to the background soil characteristics, degradation of on-ground vegetation causes the active layer depth of the soils to double and the temperature gradient to decrease. With respect to depth, we examine the changes in soil temperature and heat flow dynamics (q, W/m2). The ranges of thermal conductivity (λ, W/(m∙K)) were assessed using field-measured temperature profiles and heat flux values in the soil layers. The background soil was discovered to have lower thermal conductivity values, which are typical of organic matter, in comparison to the soil of the transformed landscape. Thermal diffusivity coefficients for soil layers were calculated using long-term temperature monitoring data. It is shown that it is possible to use an adjusted model of the thermal conductivity coefficient to reconstruct the dynamics of moisture content from temperature dynamics data. A satisfactory agreement is shown when the estimated (Wcalc, %) and observed (Wexp, %) moisture content values in the soil layer are compared. The findings will be employed to regulate the effects on landscapes in order to implement sustainable nature management in the region, thereby preventing the significant degradation of ecosystems and the concomitant risks to human well-being. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

Back to TopTop