Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = African Easterly Jet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4489 KB  
Article
Effects of Large- and Meso-Scale Circulation on Uprising Dust over Bodélé in June 2006 and June 2011
by Ridha Guebsi and Karem Chokmani
Remote Sens. 2025, 17(15), 2674; https://doi.org/10.3390/rs17152674 - 2 Aug 2025
Viewed by 622
Abstract
This study investigates the effects of key atmospheric features on mineral dust emissions and transport in the Sahara–Sahel region, focusing on the Bodélé Depression, during June 2006 and 2011. We use a combination of high-resolution atmospheric simulations (AROME model), satellite observations (MODIS), and [...] Read more.
This study investigates the effects of key atmospheric features on mineral dust emissions and transport in the Sahara–Sahel region, focusing on the Bodélé Depression, during June 2006 and 2011. We use a combination of high-resolution atmospheric simulations (AROME model), satellite observations (MODIS), and reanalysis data (ERA5, ECMWF) to examine the roles of the low-level jet (LLJ), Saharan heat low (SHL), Intertropical Discontinuity (ITD), and African Easterly Jet (AEJ) in modulating dust activity. Our results reveal significant interannual variability in aerosol optical depth (AOD) between the two periods, with a marked decrease in June 2011 compared to June 2006. The LLJ emerges as a dominant factor in dust uplift over Bodélé, with its intensity strongly influenced by local topography, particularly the Tibesti Massif. The position and intensity of the SHL also play crucial roles, affecting the configuration of monsoon flow and Harmattan winds. Analysis of wind patterns shows a strong negative correlation between AOD and meridional wind in the Bodélé region, while zonal wind analysis emphasizes the importance of the AEJ and Tropical Easterly Jet (TEJ) in dust transport. Surprisingly, we observe no significant correlation between ITD position and AOD measurements, highlighting the complexity of dust emission processes. This study is the first to combine climatological context and case studies to demonstrate the effects of African monsoon variability on dust uplift at intra-seasonal timescales, associated with the modulation of ITD latitude position, SHL, LLJ, and AEJ. Our findings contribute to understanding the complex relationships between large-scale atmospheric features and dust dynamics in this key source region, with implications for improving dust forecasting and climate modeling efforts. Full article
Show Figures

Figure 1

15 pages, 10073 KB  
Article
Deciphering East Atlantic Low-Pressure System Formations: Exploring the Nexus of Tropical Jet Streams and Active Monsoon Phases
by Vinay Kumar, Dipak K. Sahu, Katelyn Simonsen and Sabrina Gonzalez
Atmosphere 2024, 15(7), 862; https://doi.org/10.3390/atmos15070862 - 21 Jul 2024
Viewed by 1888
Abstract
The formation of low-pressure systems (LPSs) over the eastern Atlantic Ocean, near the coast of West Africa, is an exceptional meteorological/climatological feature that can lead to the development of hurricanes. The upper level diffluence induced by the Tropical Easterly Jet (TEJ) plays a [...] Read more.
The formation of low-pressure systems (LPSs) over the eastern Atlantic Ocean, near the coast of West Africa, is an exceptional meteorological/climatological feature that can lead to the development of hurricanes. The upper level diffluence induced by the Tropical Easterly Jet (TEJ) plays a crucial role in the formation of LPSs over the eastern Atlantic Ocean, off the coast of West Africa. However, the exact influence of the enhanced TEJ and diffluence in relation to cyclogenesis remains unclear. An active precipitation period over the Indian subcontinent and Africa induces an intensification of the TEJ, African Easterly Jet, and the bifurcation of diffluence off the coast of Africa. Over the past five years (2019–2023), a delayed correlation has been observed between the formation of LPSs over the eastern Atlantic Ocean (7.5° N–20° N, 15° W–41° W), the TEJ over the Indian subcontinent (approximately 2 to 3 days), and the AEJ over Africa (approximately 1 day). This correlation is further linked to the bifurcation of diffluence at the 200 mb level. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 23208 KB  
Article
Atmospheric Conditions for Uplift and Dust Transport in the Latitudinal 10° North–20° North Band in Africa
by Abdoulaye Bouya Diop, Malick Wade, Abdoulaye Sy, Abdoul Karim Mbodji, Abdou Karim Farota, El hadji Deme, Babacar Niang, Bouya Diop, Amadou Thierno Gaye and Aboubakary Diakhaby
Atmosphere 2022, 13(7), 1083; https://doi.org/10.3390/atmos13071083 - 8 Jul 2022
Cited by 1 | Viewed by 2201
Abstract
Desert aerosols suspended in the atmosphere are a very marked fact in West Africa with estimates of 400 to 1000 million tons produced annually and concentrations exceeding 50 µg·m³ in Burkina. In Bamako, the daily dust concentration can go up to reach 504 [...] Read more.
Desert aerosols suspended in the atmosphere are a very marked fact in West Africa with estimates of 400 to 1000 million tons produced annually and concentrations exceeding 50 µg·m³ in Burkina. In Bamako, the daily dust concentration can go up to reach 504 µg/m³. The Sahara and the Sahel are recognized as the primary desert aerosol producing regions. Source areas continue to be discovered as the desert advances. Previous studies have mainly focused on the spatial and temporal variability of aerosols. The current question is: What makes an area a source of dust emission? Our study brings together all the climatic parameters of the 10–20 band, as well as the soil types and their characteristics; it reveals 4 soils characteristic of fine sandy semi-arid soils in Chad. The Ouadaï plateau in Chad was identified as a source area for dust emissions. We noted for JFM (January, February, March) that the strongest wind intensities were located mainly towards Chad for average rmaximum temperatures around 34.7 °C. The statistical study reveals a correlation of 66.8% between direct and indirect links between the climatic factors of the 10–20 band and the source area. The presence of vortexes throughout the year and a vertical wind profile that is among the strongest in the 10–20 band, this gradient is strongly localized in the grid “10° North, 20° North and 20° East, 30° East” next to the Kapka massif. The study shows that the AEJ (African Easterly Jet) profile, which is a strong wind, associated with the harmattan circulation, allows the transport of aerosols from Ouadaï to the West African coast. In Senegal, a significant deposition was observed. Full article
(This article belongs to the Special Issue Statistical Methods in Atmospheric Research)
Show Figures

Figure 1

15 pages, 2951 KB  
Article
Passive versus Active Transport of Saharan Dust Aerosols by African Easterly Waves
by Dustin F. P. Grogan and Terrence R. Nathan
Atmosphere 2021, 12(11), 1509; https://doi.org/10.3390/atmos12111509 - 16 Nov 2021
Cited by 3 | Viewed by 2172
Abstract
Theory and modeling are combined to reveal the physical and dynamical processes that control Saharan dust transport by amplifying African easterly waves (AEWs). Two cases are examined: active transport, in which the dust is radiatively coupled to the circulation; passive transport, in which [...] Read more.
Theory and modeling are combined to reveal the physical and dynamical processes that control Saharan dust transport by amplifying African easterly waves (AEWs). Two cases are examined: active transport, in which the dust is radiatively coupled to the circulation; passive transport, in which the dust is radiatively decoupled from the circulation. The theory is built around a dust conservation equation for dust-coupled AEWs in zonal-mean African easterly jets. The theory predicts that, for both the passive and active cases, the dust transports will be largest where the zonal-mean dust gradients are maximized on an AEW critical surface. Whether the dust transports are largest for the radiatively passive or radiatively active case depends on the growth rate of the AEWs, which is modulated by the dust heating. The theoretical predictions are confirmed via experiments carried out with the Weather Research and Forecasting model, which is coupled to a dust conservation equation. The experiments show that the meridional dust transports dominate in the passive case, while the vertical dust transports dominate in the active case. Full article
Show Figures

Figure 1

25 pages, 6298 KB  
Article
Model Sensitivity Study of the Direct Radiative Impact of Saharan Dust on the Early Stage of Hurricane Earl
by Jianyu Liang, Yongsheng Chen, Avelino F. Arellano and Abdulla Al Mamun
Atmosphere 2021, 12(9), 1181; https://doi.org/10.3390/atmos12091181 - 13 Sep 2021
Cited by 2 | Viewed by 2782
Abstract
Current studies report inconsistent results about the impacts of Saharan dust on the development of African Easterly Waves (AEWs), the African Easterly Jet (AEJ), and tropical cyclones (TCs). We present a modeling case study to further elucidate the direct radiative impacts of dust [...] Read more.
Current studies report inconsistent results about the impacts of Saharan dust on the development of African Easterly Waves (AEWs), the African Easterly Jet (AEJ), and tropical cyclones (TCs). We present a modeling case study to further elucidate the direct radiative impacts of dust on the early development stage of a TC. We conducted experiments using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem-V3.9.1) to simulate Hurricane Earl (2010) which was influenced by the dusty Saharan Air Layer (SAL). We used the aerosol product from ECMWF MACC-II as the initial and boundary conditions to represent aerosol distribution, along with typical model treatment of its radiative and microphysical effects in WRF. Our simulations at 36-km resolution show that, within the first 36 h, the presence of dust weakens the low-pressure system over North Africa by less than 1 hPa and reduces its mean temperature by 0.03 K. Dust weakens and intensifies the AEJ at its core and periphery, respectively, with magnitudes less than 0.2 m/s. Dust slightly shifts the position of 600 hPa AEW to the south and reduces its intensity prior to impacting the TC. Finally, TC with dust remains weaker. Full article
Show Figures

Figure 1

20 pages, 10590 KB  
Article
Late 21st Century Projected Changes in the Relationship between Precipitation, African Easterly Jet, and African Easterly Waves
by Ibourahima Kebe, Ismaila Diallo, Mouhamadou Bamba Sylla, Fernando De Sales and Arona Diedhiou
Atmosphere 2020, 11(4), 353; https://doi.org/10.3390/atmos11040353 - 4 Apr 2020
Cited by 19 | Viewed by 5059
Abstract
The present study utilizes three high-resolution simulations from the Regional Climate Model version 4 (RegCM4) to examine the late 21st century changes (2080–2099) in the West African Monsoon (WAM) features. A set of three Earth System Models are utilized to provide initial and [...] Read more.
The present study utilizes three high-resolution simulations from the Regional Climate Model version 4 (RegCM4) to examine the late 21st century changes (2080–2099) in the West African Monsoon (WAM) features. A set of three Earth System Models are utilized to provide initial and lateral boundary conditions to the RegCM4 experiments. Our analysis focuses on seasonal mean changes in WAM large-scale dynamical features, along with their connections with the summer monsoon precipitation. In the historical period, the simulation ensemble means mimic reasonably well the intensity and spatial distribution of the WAM rainfall as well as the WAM circulation patterns at different scales. The future projection of the WAM climate exhibits warming over the whole West Africa leading to precipitation reduction over the Sahel region, and a slight increase over some areas of the Guinea Coast. The position of the African Easterly Jet (AEJ) is shifted southward and the African Easterly Waves (AEWs) activities are reduced, which affect in turn the WAM rainbelt characteristics in terms of position and strength. Overall the changes in simulated AEJ and AEWs contribute substantially to reduce the seasonal summer mean precipitation in West Africa by the late 21st century, with prevailing negative changes in the Savanna-Sahel region. To further explore the robustness of the relationships revealed in this paper, future studies using different high-resolution regional climate models with large ensemble are recommended. Full article
(This article belongs to the Special Issue Trends in Hydrological and Climate Extremes in Africa)
Show Figures

Figure 1

16 pages, 4622 KB  
Article
Understanding the Variability of West African Summer Monsoon Rainfall: Contrasting Tropospheric Features and Monsoon Index
by Akintomide Afolayan Akinsanola and Wen Zhou
Atmosphere 2020, 11(3), 309; https://doi.org/10.3390/atmos11030309 - 22 Mar 2020
Cited by 27 | Viewed by 8527
Abstract
West African Summer Monsoon (WASM) rainfall exhibits large variability at interannual and decadal timescales, causing droughts and floods in many years. Therefore it is important to investigate the major tropospheric features controlling the WASM rainfall and explore its potential to develop an objective [...] Read more.
West African Summer Monsoon (WASM) rainfall exhibits large variability at interannual and decadal timescales, causing droughts and floods in many years. Therefore it is important to investigate the major tropospheric features controlling the WASM rainfall and explore its potential to develop an objective monsoon index. In this study, monthly mean reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and monthly rainfall data from three gridded observations during the 65-year period of 1950–2014 were employed. Dry and wet rainfall years were identified using a standardized precipitation index. In a composite analysis of wet and dry years, the dynamical features controlling the WASM exhibit an obvious contrast between these years, and a weaker (stronger) African Easterly Jet (Tropical Easterly Jet) is observed during the wet years. Also, a well-developed and deep low-level westerly flow at about 850 hPa is evident in wet years while an obvious reversal is observed in dry years. Considering this, the main regions of the two easterly jet streams and low-level westerly wind are proposed for objectively defining an effective WASM index (WASMI). The results indicate that the WASMI defined herein can reflect variations in June–September rainfall over West Africa. The index exhibits most of the variabilities observed in the rainfall series, with high (low) index values occurring in the 1950–1960s (1970–1980s), suggesting that the WASMI is skilled in capturing the respective wet and dry rainfall episodes over the region. Also, the WASMI is significantly correlated (r = 0.8) with summer monsoon rainfall, which further affirms that it can indicate not only variability but also the intensity of WASM rainfall. Full article
(This article belongs to the Special Issue Trends in Hydrological and Climate Extremes in Africa)
Show Figures

Figure 1

22 pages, 5744 KB  
Review
On the Predictability of 30-Day Global Mesoscale Simulations of African Easterly Waves during Summer 2006: A View with the Generalized Lorenz Model
by Bo-Wen Shen
Geosciences 2019, 9(7), 281; https://doi.org/10.3390/geosciences9070281 - 26 Jun 2019
Cited by 18 | Viewed by 5600
Abstract
Recent advances in computational and global modeling technology have provided the potential to improve weather predictions at extended-range scales. In earlier studies by the author and his coauthors, realistic 30-day simulations of multiple African easterly waves (AEWs) and an averaged African easterly jet [...] Read more.
Recent advances in computational and global modeling technology have provided the potential to improve weather predictions at extended-range scales. In earlier studies by the author and his coauthors, realistic 30-day simulations of multiple African easterly waves (AEWs) and an averaged African easterly jet (AEJ) were obtained. The formation of hurricane Helene (2006) was also realistically simulated from Day 22 to Day 30. In this study, such extended predictability was further analyzed based on recent understandings of chaos and instability within Lorenz models and the generalized Lorenz model. The analysis suggested that a statement of the theoretical predictability of two weeks is not universal. New insight into chaotic and non-chaotic processes revealed by the generalized Lorenz model (GLM) indicated the potential for extending prediction lead times. Two major features within the GLM included: (1) three types of attractors (that also appeared in the original Lorenz model) and (2) two kinds of attractor coexistence. The features suggest a refined view on the nature of weather, as follows: The entirety of weather is a superset that consists of chaotic and non-chaotic processes. Better predictability can be obtained for stable, steady-state solutions and nonlinear periodic solutions that occur at small and large Rayleigh parameters, respectively. By comparison, chaotic solutions appear only at moderate Rayleigh parameters. Errors associated with dissipative small-scale processes do not necessarily contaminate the simulations of large scale processes. Based on the nonlinear periodic solutions (also known as limit cycle solutions), here, we propose a hypothetical mechanism for the recurrence (or periodicity) of successive AEWs. The insensitivity of limit cycles to initial conditions implies that AEW simulations with strong heating and balanced nonlinearity could be more predictable. Based on the hypothetical mechanism, the possibility of extending prediction lead times at extended range scales is discussed. Future work will include refining the model to better examine the validity of the mechanism to explain the recurrence of multiple AEWs. Full article
Show Figures

Figure 1

20 pages, 6642 KB  
Article
Mesoscale Convective Systems: A Case Scenario of the ‘Heavy Rainfall’ Event of 15–20 January 2013 over Southern Africa
by Modise Wiston and Kgakgamatso Marvel Mphale
Climate 2019, 7(6), 73; https://doi.org/10.3390/cli7060073 - 28 May 2019
Cited by 6 | Viewed by 5416
Abstract
Southern east Africa is prone to some extreme weather events and interannual variability of the hydrological cycle, including tropical cyclones and heavy rainfall events. Most of these events occur during austral summer and are linked to shifts in the intertropical convergence zone, changes [...] Read more.
Southern east Africa is prone to some extreme weather events and interannual variability of the hydrological cycle, including tropical cyclones and heavy rainfall events. Most of these events occur during austral summer and are linked to shifts in the intertropical convergence zone, changes in El Niño Southern Oscillation signatures, sea surface temperature and sea level pressure. A typical example include mesoscale convective systems (MCSs) that occur between October and March along the eastern part, adjacent to the warm waters of Mozambique Channel and Agulhas Current. In this study we discuss a heavy rainfall event over southern Africa, focusing particularly on the period 15–20 January 2013, the period during which MCSs were significant over the subcontinent. This event recorded one of the historic rainfalls due to extreme flooding and overflows, loss of lives and destruction of economic and social infrastructure. An active South Indian Convergence Zone was associated with the rainfall event sustained by a low-level trough linked to a Southern Hemisphere planetary wave pattern and an upper-level ridge over land. In addition, also noteworthy is a seemingly strong connection to the strength of the African Easterly Jet stream. Using rainfall data, satellite imagery and re-analysis (model processed data combined with observations) data, our analysis indicates that there was a substantial relation between rainfall totals recorded/observed and the presence of MCSs. The low-level trough and upper-level ridge contributed to moisture convergence, particularly from tropical South East Atlantic Ocean, which in turn contributed to the prolonged life span of the rainfall event. Positive temperature anomalies favored the substantial contribution of moisture fluxes from the Atlantic Ocean. This study provides a contextual assessment of rainfall processes and insight into the physical control mechanisms and feedback of large-scale convective interactions over tropical southern Africa. Full article
Show Figures

Figure 1

16 pages, 4160 KB  
Article
Investigating West African Monsoon Features in Warm Years Using the Regional Climate Model RegCM4
by Ibrahima Diba, Moctar Camara and Arona Diedhiou
Atmosphere 2019, 10(1), 23; https://doi.org/10.3390/atmos10010023 - 10 Jan 2019
Cited by 10 | Viewed by 6002
Abstract
This study investigates the changes in West African monsoon features during warm years using the Regional Climate Model version 4.5 (RegCM4.5). The analysis uses 30 years of datasets of rainfall, surface temperature and wind parameters (from 1980 to 2009). We performed a simulation [...] Read more.
This study investigates the changes in West African monsoon features during warm years using the Regional Climate Model version 4.5 (RegCM4.5). The analysis uses 30 years of datasets of rainfall, surface temperature and wind parameters (from 1980 to 2009). We performed a simulation at a spatial resolution of 50 km with the RegCM4.5 model driven by ERA-Interim reanalysis. The rainfall amount is weaker over the Sahel (western and central) and the Guinea region for the warmest years compared to the coldest ones. The analysis of heat fluxes show that the sensible (latent) heat flux is stronger (weaker) during the warmest (coldest) years. When considering the rainfall events, there is a decrease of the number of rainy days over the Guinea Coast (in the South of Cote d’Ivoire, of Ghana and of Benin) and the western and eastern Sahel during warm years. The maximum length of consecutive wet days decreases over the western and eastern Sahel, while the consecutive dry days increase mainly over the Sahel band during the warm years. The percentage of very warm days and warm nights increase mainly over the Sahel domain and the Guinea region. The model also simulates an increase of the warm spell duration index in the whole Sahel domain and over the Guinea Coast in warm years. The analysis of the wind dynamic exhibits during warm years a weakening of the monsoon flow in the lower levels, a strengthening in the magnitude of the African Easterly Jet (AEJ) in the mid-troposphere and a slight increase of the Tropical Easterly Jet (TEJ) in the upper levels of the atmosphere during warm years. Full article
(This article belongs to the Special Issue Monsoons)
Show Figures

Figure 1

13 pages, 4611 KB  
Article
Downscaling Atmosphere-Ocean Global Climate Model Precipitation Simulations over Africa Using Bias-Corrected Lateral and Lower Boundary Conditions
by Leonard M. Druyan and Matthew Fulakeza
Atmosphere 2018, 9(12), 493; https://doi.org/10.3390/atmos9120493 - 12 Dec 2018
Cited by 3 | Viewed by 3841
Abstract
A prequel study showed that dynamic downscaling using a regional climate model (RCM) over Africa improved the Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model (GISS AOGCM: ModelE) simulation of June–September rainfall patterns over Africa. The current study applies bias corrections to [...] Read more.
A prequel study showed that dynamic downscaling using a regional climate model (RCM) over Africa improved the Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model (GISS AOGCM: ModelE) simulation of June–September rainfall patterns over Africa. The current study applies bias corrections to the lateral and lower boundary data from the AOGCM driving the RCM, based on the comparison of a 30-year simulation to the actual climate. The analysis examines the horizontal pattern of June–September total accumulated precipitation, the time versus latitude evolution of zonal mean West Africa (WA) precipitation (showing monsoon onset timing), and the latitude versus altitude cross-section of zonal winds over WA (showing the African Easterly Jet and the Tropical Easterly Jet). The study shows that correcting for excessively warm AOGCM Atlantic sea-surface temperatures (SSTs) improves the simulation of key features, whereas applying 30-year mean bias corrections to atmospheric variables driving the RCM at the lateral boundaries does not improve the RCM simulations. We suggest that AOGCM climate projections for Africa should benefit from downscaling by nesting an RCM that has demonstrated skill in simulating African climate, driven with bias-corrected SST. Full article
(This article belongs to the Special Issue African Rainfall Variability: Science and Society)
Show Figures

Figure 1

32 pages, 18835 KB  
Article
Potential Impacts of Land Cover Change on the Interannual Variability of Rainfall and Surface Temperature over West Africa
by Ibrahima Diba, Moctar Camara, Alioune Badara Sarr and Arona Diedhiou
Atmosphere 2018, 9(10), 376; https://doi.org/10.3390/atmos9100376 - 28 Sep 2018
Cited by 11 | Viewed by 4168
Abstract
We used the Abdu Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 4.5 (RegCM4.5), to investigate the potential impacts of land cover change of the Sahel–Sahara interface on the West African climate over an interannual timescale from 1990 to 2009. [...] Read more.
We used the Abdu Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 4.5 (RegCM4.5), to investigate the potential impacts of land cover change of the Sahel–Sahara interface on the West African climate over an interannual timescale from 1990 to 2009. A simulation at 50 km grid spacing is performed with the standard version of the RegCM4.5 model (control run), followed by three vegetation change experiments at the Sahel-Sahara interface (15° N and 20° N): forest, tall grass, and short grass savanna. The impacts of land cover change are assessed by analyzing the difference between the altered runs and the control one in different sub-domains (western Sahel, central Sahel, eastern Sahel, and Guinea). Results show that the presence of forest, tall grass, and short grass savanna at the Sahel–Sahara interface tends to decrease the mean summer surface temperature in the whole domain. Nevertheless, this decrease is more pronounced over the Central Sahel when considering the forest experiment. This temperature decrease is associated with a weakening (strengthening) of the sensible (latent) heat flux in the whole domain. An analysis of the radiation field is performed to better explain the changes noted in the latent heat flux, the sensible heat flux, and the surface temperature. When considering the rainfall signal, the analysis shows that the afforestation options tend to alter the precipitation in the considered sub-domains substantially by increasing it in the whole Sahel region, with strong interannual variability. This rainfall increase is associated with an increase of the atmospheric moisture. Finally, we investigated the impacts of the afforestation options on some features of the rainfall events, and on the atmospheric dynamics during wet and dry years. All afforestation options tend to increase the frequency of the number of rainy days in regions located south of 18° N during both periods. Nevertheless, this increase is stronger over the Central and Eastern Sahel during wet years in the forest case. All afforestation experiments induce an increase (decrease) of the low-levels monsoon flux in the Eastern Sahel (western Sahel) during both periods. At the mid-levels, the three afforestation options tend to move northward and to decrease the intensity of the African Easterly Jet (AEJ) south of 13° N during wet and dry years.The intensity of the AEJ is weaker during the wet period. The vegetation change experiments also affect the Tropical Easterly Jet (TEJ), especially during wet years, by increasing its intensity over the southern Sahel. The analysis of the activity of African Easterly Waves (AEWs) patterns exhibits a decrease of the intensity of these disturbances over the Sahel during both periods. This may be due to the weakening of the meridional temperature contrast between the continent and the Gulf of Guinea due to the Sahel–Sahara surface temperature cooling induced by the afforestation. In summary, this study shows that during both periods, the increase of the atmospheric moisture due to the afforestation is associated with favorable AEJ/TEJ configurations (weaker and northward position of the AEJ; stronger TEJ) which in turn may create a stronger convection and then, an increase in the Sahel rainfall. This Sahel rainfall increase is associated with a strengthening of the intense and heavy rainfall events which may impact diversely local populations. Full article
(This article belongs to the Special Issue Precipitation Variability and Change in Africa)
Show Figures

Figure 1

Back to TopTop