Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = AgInS2-ZnS alloyed nanocrystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4610 KB  
Article
Organic-to-Aqueous Phase Transfer of Alloyed AgInS2-ZnS Nanocrystals Using Simple Hydrophilic Ligands: Comparison of 11-Mercaptoundecanoic Acid, Dihydrolipoic Acid and Cysteine
by Patrycja Kowalik, Piotr Bujak, Mateusz Penkala and Adam Pron
Nanomaterials 2021, 11(4), 843; https://doi.org/10.3390/nano11040843 - 25 Mar 2021
Cited by 9 | Viewed by 3627
Abstract
The exchange of primary hydrophobic ligands for hydrophilic ones was studied for two types of alloyed AgInS2-ZnS nanocrystals differing in composition and by consequence exhibiting two different emission colors: red (R) and green (G). Three simple hydrophilic ligands were tested, namely, [...] Read more.
The exchange of primary hydrophobic ligands for hydrophilic ones was studied for two types of alloyed AgInS2-ZnS nanocrystals differing in composition and by consequence exhibiting two different emission colors: red (R) and green (G). Three simple hydrophilic ligands were tested, namely, 11-mercaptoundecanoic acid, dihydrolipoic acid and cysteine. In all cases, stable aqueous colloidal dispersions were obtained. Detailed characterization of the nanocrystal surface before and after the ligand exchange by NMR spectroscopy unequivocally showed that the exchange process was the most efficient in the case of dihydrolipoic acid, leading to the complete removal of the primary ligands with a relatively small photoluminescence quantum yield drop from 68% to 40% for nanocrystals of the R type and from 48% to 28% for the G ones. Full article
(This article belongs to the Special Issue Nanocrystals: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

9 pages, 3474 KB  
Communication
The Composition-Dependent Photoluminescence Properties of Non-Stoichiometric ZnxAgyInS1.5+x+0.5y Nanocrystals
by Jian Feng, Xiaosheng Yang, Rong Li, Xianjiong Yang and Guangwei Feng
Micromachines 2019, 10(7), 439; https://doi.org/10.3390/mi10070439 - 1 Jul 2019
Cited by 2 | Viewed by 2575
Abstract
A facile hot injection approach to synthesize high-quality non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals (NCs) in the size range of 2.8–3.1 nm was presented. The fluorescence spectra had single band gap features, and indicated the formation of alloy states rather than [...] Read more.
A facile hot injection approach to synthesize high-quality non-stoichiometric ZnxAgyInS1.5+x+0.5y nanocrystals (NCs) in the size range of 2.8–3.1 nm was presented. The fluorescence spectra had single band gap features, and indicated the formation of alloy states rather than simple composite structures. The chemical compositions, photoluminescence (PL) emission wavelengths, and quantum yields of ZnxAgyInS1.5+x+0.5y nanocrystals were significantly influenced by the concentration of an organic capping agent. The appropriate proportion of 1-dodecanthiol in the precursor prevented the precipitation, increased the fluorescence quantum yield, and improved their optical properties. The proper ratio of capping agent allowed Zn, Ag, and In to form a better crystallinity and compositional homogeneity of ZnxAgyInS1.5+x+0.5y nanocrystals. The photoluminescence was tunable from blue to red in the range of 450–700 nm as the Ag content changed independently. The PL and absorption spectra of ZnxAgyInS1.5+x+0.5y nanocrystals showed a significant blue shift with the decrease of Ag content in the precursor. As there were no obvious differences on the average particle sizes of ZnxAgyInS1.5+x+0.5y samples, these results fully revealed the composition-dependent photoluminescence properties of ZnxAgyInS1.5+x+0.5y nanocrystals. The relative quantum yield reached 35%. The fluorescence lifetimes (τ1=115–148 ns and τ2=455–483 ns) were analogous to those of AgInS2 and (AgIn)xZn2(1−x)S2. Full article
(This article belongs to the Special Issue Nanostructured Light-Emitters)
Show Figures

Figure 1

Back to TopTop