Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Amorgos

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 12422 KB  
Article
Real-Time Foreshock–Aftershock–Swarm Discrimination During the 2025 Seismic Crisis near Santorini Volcano, Greece: Earthquake Statistics and Complex Networks
by Ioanna Triantafyllou, Gerassimos A. Papadopoulos, Constantinos Siettos and Konstantinos Spiliotis
Geosciences 2025, 15(8), 300; https://doi.org/10.3390/geosciences15080300 - 4 Aug 2025
Viewed by 3027
Abstract
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused [...] Read more.
The advanced determination of the type (foreshock–aftershock–swarm) of an ongoing seismic cluster is quite challenging; only retrospective solutions have thus far been proposed. In the period of January–March 2025, a seismic cluster, recorded between Santorini volcano and Amorgos Island, South Aegean Sea, caused considerable social concern. A rapid increase in both the seismicity rate and the earthquake magnitudes was noted until the mainshock of ML = 5.3 on 10 February; afterwards, activity gradually diminished. Fault-plane solutions indicated SW-NE normal faulting. The epicenters moved with a mean velocity of ~0.72 km/day from SW to NE up to the mainshock area at a distance of ~25 km. Crucial questions publicly emerged during the cluster. Was it a foreshock–aftershock activity or a swarm of possibly volcanic origin? We performed real-time discrimination of the cluster type based on a daily re-evaluation of the space–time–magnitude changes and their significance relative to background seismicity using earthquake statistics and the topological metric betweenness centrality. Our findings were periodically documented during the ongoing cluster starting from the fourth cluster day (2 February 2025), at which point we determined that it was a foreshock and not a case of seismic swarm. The third day after the ML = 5.3 mainshock, a typical aftershock decay was detected. The observed foreshock properties favored a cascade mechanism, likely facilitated by non-volcanic material softening and the likely subdiffusion processes in a dense fault network. This mechanism was possibly combined with an aseismic nucleation process if transient geodetic deformation was present. No significant aftershock expansion towards the NE was noted, possibly due to the presence of a geometrical fault barrier east of the Anydros Ridge. The 2025 activity offered an excellent opportunity to investigate deciphering the type of ongoing seismicity cluster for real-time discrimination between foreshocks, aftershocks, and swarms. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Natural Hazards)
Show Figures

Figure 1

42 pages, 42620 KB  
Article
Increased Preparedness During the 2025 Santorini–Amorgos (Greece) Earthquake Swarm and Comparative Insights from Recent Cases for Civil Protection and Disaster Risk Reduction
by Spyridon Mavroulis, Maria Mavrouli, Andromachi Sarantopoulou, Assimina Antonarakou and Efthymios Lekkas
GeoHazards 2025, 6(2), 32; https://doi.org/10.3390/geohazards6020032 - 14 Jun 2025
Cited by 1 | Viewed by 5735
Abstract
In early 2025, the Santorini–Amorgos area (Aegean Volcanic Arc, Greece) experienced a seismic swarm, with dozens of M ≥ 4.0 earthquakes and a maximum magnitude of M = 5.2. Beyond its seismological interest, the sequence was notable for triggering rare increased preparedness actions [...] Read more.
In early 2025, the Santorini–Amorgos area (Aegean Volcanic Arc, Greece) experienced a seismic swarm, with dozens of M ≥ 4.0 earthquakes and a maximum magnitude of M = 5.2. Beyond its seismological interest, the sequence was notable for triggering rare increased preparedness actions by Greek Civil Protection operational structures in anticipation of an imminent destructive earthquake. These actions included (i) risk communication, (ii) the reinforcement of operational structures with additional personnel and equipment on the affected islands, (iii) updates to local emergency plans, (iv) the dissemination of self-protection guidance, (v) the activation of emergency alert systems, and (vi) volunteer mobilization, including first aid and mental health first aid courses. Although it was in line with contingency plans, public participation was limited. Volunteers helped bridge this gap, focusing on vulnerable groups. The implemented actions in Greece are also compared with increased preparedness during the 2024–2025 seismic swarms in Ethiopia, as well as preparedness before the highly anticipated major earthquake in Istanbul (Turkey). In Greece and Turkey, legal and technical frameworks enabled swift institutional responses. In contrast, Ethiopia highlighted the risks of limited preparedness and the need to embed disaster risk reduction in national development strategies. All cases affirm that preparedness, through infrastructure, planning, communication, and community engagement, is vital to reducing earthquake impacts. Full article
Show Figures

Figure 1

10 pages, 3225 KB  
Communication
First Record of the Red Cornetfish Fistularia petimba Lacepède, 1803 from Amorgos Island (Central Aegean Sea; Greece) and a Review of Its Current Distribution in the Mediterranean Sea
by Nefeli Tsaousi and Stefanos Kalogirou
Fishes 2024, 9(6), 237; https://doi.org/10.3390/fishes9060237 - 18 Jun 2024
Viewed by 1860
Abstract
The rapid spread of non-native species (NNS) poses a significant threat to biodiversity globally, with the Mediterranean region being particularly susceptible due to increased human activities and its status as a marine biodiversity hotspot. In this study, we focus on the introduction and [...] Read more.
The rapid spread of non-native species (NNS) poses a significant threat to biodiversity globally, with the Mediterranean region being particularly susceptible due to increased human activities and its status as a marine biodiversity hotspot. In this study, we focus on the introduction and distribution of Fistularia petimba, a member of the Fistulariidae family, in the eastern Mediterranean Sea and a record from the coasts of Amorgos Island, Greece. Through a baseline fishery study conducted over 12 months, utilizing experimental sampling with gillnets, trammel nets, and longlines, one individual of F. petimba was captured off the coast of Katapola Bay. Morphological examination confirmed its identity, with measurements on meristic characteristics obtained and the stomach content analysed. This finding represents a significant addition to the documented distribution of F. petimba in the Mediterranean Sea, particularly in the Aegean Sea, underscoring the importance of ongoing research in uncovering new occurrences and expanding our understanding of marine biodiversity and ecosystem changes. Further investigation into the ecological preferences and population dynamics of F. petimba in the Aegean Sea is crucial for informed conservation and management efforts if this species is considered to be established. Full article
(This article belongs to the Special Issue Diagnosis and Management of Small-Scale and Data-Limited Fisheries)
Show Figures

Figure 1

19 pages, 6263 KB  
Review
Tsunamis in the Greek Region: An Overview of Geological and Geomorphological Evidence
by Anna Karkani, Niki Evelpidou, Maria Tzouxanioti, Alexandros Petropoulos, Marilia Gogou and Eleni Mloukie
Geosciences 2022, 12(1), 4; https://doi.org/10.3390/geosciences12010004 - 22 Dec 2021
Cited by 9 | Viewed by 14266
Abstract
The Greek region is known as one of the most seismically and tectonically active areas and it has been struck by some devastating tsunamis, with the most prominent one being the 365 AD event. During the past decade significant research efforts have been [...] Read more.
The Greek region is known as one of the most seismically and tectonically active areas and it has been struck by some devastating tsunamis, with the most prominent one being the 365 AD event. During the past decade significant research efforts have been made in search of geological and geomorphological evidence of palaeotsunamis along the Greek coasts, primarily through the examination of sediment corings (72% of studies) and secondarily through boulders (i.e., 18%). The published data show that some deposits have been correlated with well-known events such as 365 AD, 1303 AD, the Minoan Santorini Eruption and the 1956 Amorgos earthquake and tsunami, while coastal studies from western Greece have also reported up to five tsunami events, dating as far back as the 6th millennium BC. Although the Ionian Islands, Peloponnese and Crete has been significantly studied, in the Aegean region research efforts are still scarce. Recent events such as the 1956 earthquake and tsunami and the 2020 Samos earthquake and tsunami highlight the need for further studies in this region, to better assess the impact of past events and for improving our knowledge of tsunami history. As Greece is amongst the most seismically active regions globally and has suffered from devastating tsunamis in the past, the identification of tsunami prone areas is essential not only for the scientific community but also for public authorities to design appropriate mitigation measures and prevent tsunami losses in the future. Full article
Show Figures

Figure 1

36 pages, 57944 KB  
Article
The Santorini-Amorgos Shear Zone: Evidence for Dextral Transtension in the South Aegean Back-Arc Region, Greece
by Konstantina Tsampouraki-Kraounaki, Dimitris Sakellariou, Grigoris Rousakis, Ioannis Morfis, Ioannis Panagiotopoulos, Isidoros Livanos, Kyriaki Manta, Fratzeska Paraschos and George Papatheodorou
Geosciences 2021, 11(5), 216; https://doi.org/10.3390/geosciences11050216 - 14 May 2021
Cited by 16 | Viewed by 7865
Abstract
Bathymetric and seismic data provide insights into the geomorphological configuration, seismic stratigraphy, structure, and evolution of the area between Santorini, Amorgos, Astypalea, and Anafi islands. Santorini-Amorgos Shear Zone (SASZ) is a NE-SW striking feature that includes seven basins, two shallow ridges, and hosts [...] Read more.
Bathymetric and seismic data provide insights into the geomorphological configuration, seismic stratigraphy, structure, and evolution of the area between Santorini, Amorgos, Astypalea, and Anafi islands. Santorini-Amorgos Shear Zone (SASZ) is a NE-SW striking feature that includes seven basins, two shallow ridges, and hosts the volcanic centers of Santorini and Kolumbo. The SASZ initiated in the Early Pliocene as a single, W-E oriented basin. A major reorganization of the geodynamic regime led to (i) reorientation of the older faults and initiation of NE-SW striking ones, (ii) disruption of the single basin and localized subsidence and uplift, (iii) creation of four basins out of the former single one (Anafi, Amorgos South, Amorgos North, and Kinairos basins), (iv) rifting of the northern and southern margins and creation of Anydros, Astypalea North, and Astypalea South basins, and (v) uplift of the ridges. Dextral shearing and oblique rifting are accommodated by NE-SW striking, dextral oblique to strike-slip faults and by roughly W-E striking, normal, transfer faults. It is suggested here that enhanced shearing in NE-SW direction and oblique rifting may be the dominant deformation mechanism in the South Aegean since Early Quaternary associated with the interaction of North Anatolian Fault with the slab roll-back. Full article
(This article belongs to the Special Issue Seismotectonics, Active Deformation, and Structure of the Crust)
Show Figures

Figure 1

14 pages, 1653 KB  
Article
DNA Fingerprinting and Species Identification Uncovers the Genetic Diversity of Katsouni Pea in the Greek Islands Amorgos and Schinoussa
by Evangelia Stavridou, Georgios Lagiotis, Lefkothea Karapetsi, Maslin Osathanunkul and Panagiotis Madesis
Plants 2020, 9(4), 479; https://doi.org/10.3390/plants9040479 - 9 Apr 2020
Cited by 14 | Viewed by 4874
Abstract
Pea (P. sativum L.), one of the most important legume crops worldwide, has been traditionally cultivated in Lesser Cyclades since ancient times. The commonly known traditional pea cultivar, ‘Katsouni’, is endemic to the islands of Amorgos and Schinoussa and is of great [...] Read more.
Pea (P. sativum L.), one of the most important legume crops worldwide, has been traditionally cultivated in Lesser Cyclades since ancient times. The commonly known traditional pea cultivar, ‘Katsouni’, is endemic to the islands of Amorgos and Schinoussa and is of great local economic importance. Despite the widespread cultivation of ‘Katsouni’ in both islands, it is still unknown whether the current Schinoussa and Amorgos pea populations are distinct landraces, and if they have common evolutionary origin. To assist conservation and breeding of the pea crop, the genetic diversity and phylogenetic relationships of 39 pea samples from Amorgos and 86 from Schinoussa were studied using DNA barcoding and ISSR marker analyses. The results indicate that both populations are different landraces with distinct geographical distribution and are more closely related to P. sativum subsp. elatius than the P. abyssinicum and P. fulvum species. Further characterization of the ‘Katsouni’ landraces for functional polymorphisms regarding pathogen resistance, revealed susceptibility to the powdery mildew (Erysiphe pisi DC.). This work represents the first investigation on the genetic diversity and population structure of the ‘Katsouni’ cultivar. Exploiting the local genetic diversity of traditional landraces is fundamental for conservation practices and crop improvement through breeding strategies. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Figure 1

15 pages, 5101 KB  
Article
Multi-Temporal InSAR Analysis for Monitoring Ground Deformation in Amorgos Island, Greece
by Stavroula Alatza, Ioannis Papoutsis, Demitris Paradissis, Charalampos Kontoes and Gerassimos A. Papadopoulos
Sensors 2020, 20(2), 338; https://doi.org/10.3390/s20020338 - 7 Jan 2020
Cited by 36 | Viewed by 5803
Abstract
Radar Interferometry is a widely used method for estimating ground deformation, as it provides precision to a few millimeters to centimeters, and at the same time, a wide spatial coverage of the study area. On 9 July 1956, one of the strongest earthquakes [...] Read more.
Radar Interferometry is a widely used method for estimating ground deformation, as it provides precision to a few millimeters to centimeters, and at the same time, a wide spatial coverage of the study area. On 9 July 1956, one of the strongest earthquakes of the 20th century in the area of the South Aegean, occurred in Amorgos, with a magnitude of Mw = 7.7. The objective of this research is to map ground deformation in Amorgos island, using InSAR techniques. We conducted a multi-temporal analysis of all available data from 2003 to 2019 by exploiting historical ENVISAT SAR imagery, as well as the dense archive of Sentinel-1 SLC imagery. Persistent Scatterer Interferometry (PS) and Small Baseline Subset (SBAS) methods were implemented. Results of both data-sets indicate a small-scale deformation on the island. A multi-track analysis was implemented on Sentinel-1 data to decompose the line of sight velocities to vertical and horizontal. The central south coast is experiencing horizontal movement, while uplift of a maximum value of 5 mm/y is observed in the southeastern coast. The combination of the good spatial coverage achievable via InSAR, with GPS measurements, is suggested an important tool for the seamless monitoring of Amorgos island towards tectonic hazard estimation. Full article
Show Figures

Figure 1

Back to TopTop