Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Angelica archangelica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 920 KB  
Article
Natural Alternatives for Pain Relief: A Study on Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata
by Felicia Suciu, Oana Cristina Șeremet, Emil Ștefănescu, Ciprian Pușcașu, Cristina Isabel Viorica Ghiță, Cerasela Elena Gîrd, Robert Viorel Ancuceanu and Simona Negreș
J. Mind Med. Sci. 2025, 12(2), 39; https://doi.org/10.3390/jmms12020039 - 19 Jul 2025
Viewed by 443
Abstract
Background: Chronic pain poses a major global health burden, often inadequately managed by conventional analgesics due to limited efficacy and side effects. In this context, plant-based therapies offer a promising alternative. This study aimed to evaluate the antioxidant and analgesic potential of four [...] Read more.
Background: Chronic pain poses a major global health burden, often inadequately managed by conventional analgesics due to limited efficacy and side effects. In this context, plant-based therapies offer a promising alternative. This study aimed to evaluate the antioxidant and analgesic potential of four medicinal plants traditionally used for pain relief: Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata. Methods: Phytochemical analyses quantified total phenolic acid, flavonoid, and polyphenolic acid contents in the extracts. Antioxidant activity was assessed using the ABTS radical scavenging assay. Analgesic effects were evaluated in vivo using the hot-plate and tail-flick tests in mice treated for 14 days with plant extracts or paracetamol. Results: Morus alba showed the highest polyphenolic content and strongest antioxidant activity (IC50 = 0.0695 mg/mL). In analgesic tests, Angelica archangelica demonstrated the most significant effect in the hot-plate test (72.2% increase in latency), while Valeriana officinalis had the highest efficacy in the tail-flick test (41.81%), exceeding paracetamol’s performance in that model. Conclusions: While antioxidant activity correlated with polyphenol content, analgesic effects appeared to involve additional mechanisms. These findings support the potential of Angelica archangelica and Valeriana officinalis as effective natural alternatives for pain relief. Full article
Show Figures

Figure 1

23 pages, 2593 KB  
Article
Investigation of Anticonvulsant Potential of Morus alba, Angelica archangelica, Valeriana officinalis, and Passiflora incarnata Extracts: In Vivo and In Silico Studies
by Felicia Suciu, Dragos Paul Mihai, Anca Ungurianu, Corina Andrei, Ciprian Pușcașu, Carmen Lidia Chițescu, Robert Viorel Ancuceanu, Cerasela Elena Gird, Emil Stefanescu, Nicoleta Mirela Blebea, Violeta Popovici, Adrian Cosmin Rosca, Cristina Isabel Viorica Ghiță and Simona Negres
Int. J. Mol. Sci. 2025, 26(13), 6426; https://doi.org/10.3390/ijms26136426 - 3 Jul 2025
Viewed by 681
Abstract
The current study evaluated the anticonvulsant properties of ethanolic extracts from Morus alba, Angelica archangelica, Passiflora incarnata, and Valeriana officinalis using integrated phytochemical, in vivo, biochemical, and computational approaches. Phytochemical analysis by UHPLC-HRMS/MS revealed the presence of various bioactive compounds, notably [...] Read more.
The current study evaluated the anticonvulsant properties of ethanolic extracts from Morus alba, Angelica archangelica, Passiflora incarnata, and Valeriana officinalis using integrated phytochemical, in vivo, biochemical, and computational approaches. Phytochemical analysis by UHPLC-HRMS/MS revealed the presence of various bioactive compounds, notably flavonoids such as isorhamnetin, quercetin, and kaempferol. In an electroshock-induced seizure model, Morus alba extract (MAE, 100 mg/kg) demonstrated significant anticonvulsant effects, reducing both seizure duration and incidence, likely mediated by flavonoid interactions with GABA-A and 5-HT3A receptors, as suggested by target prediction and molecular docking analyses. The extracts of Angelica archangelica (AAE, 100 mg/kg) and Passiflora incarnata (PIE, 50 mg/kg) exhibited moderate, non-significant anticonvulsant activities. At the same time, Valeriana officinalis (VOE, 50 mg/kg) displayed considerable antioxidant and anti-inflammatory properties but limited seizure protection. All extracts significantly reduced brain inflammation markers (TNF-α) and enhanced antioxidant defenses, as indicated by total thiols. Molecular docking further supported the interaction of key phytochemicals, including naringenin and chlorogenic acid, with human and mouse 5-HT3A receptors. Overall, Morus alba extract exhibited promising therapeutic potential for epilepsy management, warranting further investigation into chronic seizure models and optimized dosing strategies. Full article
Show Figures

Figure 1

22 pages, 849 KB  
Review
Botanical Antifeedants: An Alternative Approach to Pest Control
by Roman Pavela, Kateřina Kovaříková and Matěj Novák
Insects 2025, 16(2), 136; https://doi.org/10.3390/insects16020136 - 31 Jan 2025
Cited by 1 | Viewed by 1982
Abstract
Plant protection against phytophagous pests still largely relies on the application of synthetic insecticides, which can lead to environmental and health risks that are further exacerbated by the development of resistant pest populations. These are the driving forces behind the current trend of [...] Read more.
Plant protection against phytophagous pests still largely relies on the application of synthetic insecticides, which can lead to environmental and health risks that are further exacerbated by the development of resistant pest populations. These are the driving forces behind the current trend of research and the development of new ecological insecticides. The mode of action does not have to rely exclusively on acute or chronic toxicity. Another promising approach is the use of plant antifeedants, which can significantly reduce the food intake of phytophagous insects. However, the information on antifeedant substances has not yet been sufficiently evaluated. The aim of this review was to find the most promising plants that provide potent extracts, essential oils (EOs), or isolated compounds with antifeedant properties. The selection was based on a comparison of effective concentrations or doses. Effective extracts were obtained from 85 plant species belonging to 35 families and the EOs came from 38 aromatic plant species from 11 families. Based on the results, Angelica archangelica, Caesalpinia bonduc, Grindelia camporum, Inula auriculata, Lavandula luisieri, Mentha pulegium, Piper hispidinervum, and Vitis vinifera were selected as promising plants with antifeedant potential. These plants are potent antifeedants, and at the same time provide sufficient biomass for industrial use in the development and production of botanical antifeedants. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

15 pages, 2474 KB  
Article
Analysis of the Effects of Organic and Synthetic Mulching Films on the Weed, Root Yield, Essential Oil Yield, and Chemical Composition of Angelica archangelica L.
by Jovan Lazarević, Sava Vrbničanin, Ana Dragumilo, Tatjana Marković, Rada Đurović Pejčev, Svetlana Roljević Nikolić and Dragana Božić
Horticulturae 2024, 10(11), 1199; https://doi.org/10.3390/horticulturae10111199 - 14 Nov 2024
Cited by 1 | Viewed by 1331
Abstract
Angelica archangelica L. (Garden angelica) is a medicinal and aromatic plant from the Apiaceae family, originating from North Europe (Iceland, Greenland, and Scandinavian countries). A. archangelica is commonly used in traditional medicine to treat anxiety, insomnia, stomach and intestinal disorders, skin conditions, respiratory [...] Read more.
Angelica archangelica L. (Garden angelica) is a medicinal and aromatic plant from the Apiaceae family, originating from North Europe (Iceland, Greenland, and Scandinavian countries). A. archangelica is commonly used in traditional medicine to treat anxiety, insomnia, stomach and intestinal disorders, skin conditions, respiratory problems, and arthritis. This plant is generally cultivated for its root and seed where the essential oil (EO) is concentrated the most. Angelica archangelica cultivation has a lot of challenges but the main one is weed control; so, the aim of this study was to investigate the influence of four different mulch types as non-chemical weed control measures on weediness, fresh root yield, and EO chemical composition and yield from A. archangelica roots. A field trial was conducted with the following six treatments: two organic mulches, two synthetic mulches, and two controls (regular hand-weeded and weeded). The results show that the most present weeds were Ambrosia artemisiifolia, Chenopodium album, Polygonum aviculare, and Polygonum lapathyfolium, but synthetic mulch foils achieved the best weed suppression (100%). These fields also achieved the highest fresh root yield in both of the experimental seasons. The highest EO yield was detected with agrotextile mulch foil at season I (0.41%, v/w) and with the weeded control (0.51%, v/w) at season II, but dominant components at both seasons were α-pinene and β-phellandrene. The results suggest that the agrotextile black and silver–brown mulch foils achieved complete weed suppression, but the agrotextile black mulch foil had a better effect on fresh root yield, EO yield, and its chemical composition. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

20 pages, 355 KB  
Article
Antioxidant and Antibacterial Activity of Extracts from Selected Plant Material
by Mariola Kozłowska, Iwona Ścibisz, Jarosław L. Przybył, Agnieszka E. Laudy, Ewa Majewska, Katarzyna Tarnowska, Jolanta Małajowicz and Małgorzata Ziarno
Appl. Sci. 2022, 12(19), 9871; https://doi.org/10.3390/app12199871 - 30 Sep 2022
Cited by 33 | Viewed by 7950
Abstract
Plants are a valuable source of biologically active molecules, mainly phenolic compounds. In the present study, the total phenolic content (TPC), DPPH· and ABTS+ scavenging activity as well as ferric reducing ability (FRAP) of aqueous ethanolic (70%) extracts of Cistus incanus [...] Read more.
Plants are a valuable source of biologically active molecules, mainly phenolic compounds. In the present study, the total phenolic content (TPC), DPPH· and ABTS+ scavenging activity as well as ferric reducing ability (FRAP) of aqueous ethanolic (70%) extracts of Cistus incanus L. and Asarum europaeum L. herb, Geum urbanum L. rhizome, Angelica archangelica L. root, white mulberry (Morus alba L.), lemon balm (Melisa officinalis L.), red raspberry (Rubus idaeus L.) and Betula pendula Roth. leaves were determined. In addition, the phenolic profiles of the studied plant extracts and antibacterial activity have been investigated. The extracts from C. incanus and G. urbanum demonstrated the highest TPC and antioxidant capacity, while the extracts from A. archangelica and white mulberry were characterized by the lowest values. A remarkable correlation was also found between the TPC and antioxidant activity of the examined extracts. HPLC analysis showed that the studied extracts were sources of both phenolic acids and flavonoids. More flavonoids than phenolic acids were identified in the extracts of C. incanus, M. alba, R. idaeus and B. pendula compared to the other extracts tested. Not all extracts showed a significant impact on the growth of the tested bacterial strains. Escherichia coli was the most sensitive strain to lemon balm extract (MIC, 0.125 mg/mL), whereas the strains of Acinetobacter baumannii and Bordetella bronchiseptica were sensitive to the G. urbanum extract (MIC, 0.125 mg/mL). Among Gram-positive bacteria, Enterococcus faecalis was the most sensitive to G. urbanum extract. In turn, Staphylococcus aureus and Staphylococcus epidermidis were sensitive to the extracts from C. incanus herb (MIC, 0.125 mg/mL), red raspberry (MIC, 0.125 mg/mL) and lemon balm leaves (MIC. 0.25 mg/mL). Based on the obtained results, the applicability of the studied plant extracts as additives to food and cosmetic products may be considered in the future. Full article
13 pages, 1610 KB  
Review
Biological and Chemical Diversity of Angelica archangelica L.—Case Study of Essential Oil and Its Biological Activity
by Milica Aćimović, Milica Rat, Lato Pezo, Biljana Lončar, Milada Pezo, Ana Miljković and Jovan Lazarević
Agronomy 2022, 12(7), 1570; https://doi.org/10.3390/agronomy12071570 - 29 Jun 2022
Cited by 14 | Viewed by 5052
Abstract
Garden angelica (Angelica archangelica L.), native to the northern temperate region, is widespread in Europe and Asia. Since the middle ages, it has been used for healing and as a vegetable in traditional dishes. In the modern era, it has been proven [...] Read more.
Garden angelica (Angelica archangelica L.), native to the northern temperate region, is widespread in Europe and Asia. Since the middle ages, it has been used for healing and as a vegetable in traditional dishes. In the modern era, it has been proven that A. archangelica has a complex chemical composition. The main derivatives that contribute to the plant’s biological activities are essential oil and coumarins. In this review, the focus is on the cross-analysis of the taxonomy of A. archangelica, and its distribution in different regions, with the presentation of the richness of its biochemical composition, which overall contributes to the widespread use of the roots of this plant in folk medicine. It belongs to the plants that were introduced to the wider area of Central, Eastern, and Southern Europe; as a medicinal plant, it represents a significant part of the medical flora of many areas. Cluster analysis of pooled data indicates a clear differentiation of chemotypes. Full article
(This article belongs to the Special Issue Chemical Diversity, Yield and Quality of Aromatic Plant)
Show Figures

Figure 1

21 pages, 395 KB  
Article
Essential Oils and Supercritical CO2 Extracts of Arctic Angelica (Angelica archangelica L.), Marsh Labrador Tea (Rhododendron tomentosum) and Common Tansy (Tanacetum vulgare)—Chemical Compositions and Antimicrobial Activities
by Risto I. Korpinen, Anna-Liisa Välimaa, Jaana Liimatainen and Susan Kunnas
Molecules 2021, 26(23), 7121; https://doi.org/10.3390/molecules26237121 - 25 Nov 2021
Cited by 26 | Viewed by 4267
Abstract
Traditionally, arctic Finnish Angelica (Angelica archangelica L.), marsh Labrador tea (Rhododendron tomentosum, syn. Ledum palustre) and common tansy (Tanacetum vulgare) have been used as medicinal herbs in folklore medicine. However, these underutilised plants are a source of, [...] Read more.
Traditionally, arctic Finnish Angelica (Angelica archangelica L.), marsh Labrador tea (Rhododendron tomentosum, syn. Ledum palustre) and common tansy (Tanacetum vulgare) have been used as medicinal herbs in folklore medicine. However, these underutilised plants are a source of, e.g., oil-based compounds, which could benefit many modern applications implemented by the green chemistry extraction methods, as well. We extracted Angelica, marsh Labrador tea and common tansy by non-toxic and recyclable extraction methods, i.e., hydrodistillation and supercritical carbon dioxide (scCO2) extraction; characterised the essential oils (EOs) and scCO2 extracts by combination of gas chromatography and mass spectrometry (GC-MS), and in addition, analysed the antimicrobial properties. As expected for Angelica root and common tansy inflorescence, the scCO2 extraction method produced less amount of volatile compounds compared to hydrodistillation. On the other hand, more coumarins, alkanes, fatty alcohols and fatty acids were obtained. Additionally, sesquiterpenoids palustrol and ledol were predominant compounds in both marsh Labrador tea EO and scCO2 extract. According to our results, however, all the EOs and scCO2 extracts showed broad spectrum of antimicrobial activities against the selected microbes, but the effects were extract-specific. The strongest and broadest antimicrobial activities were performed by marsh Labrador tea scCO2 extract, which showed extremely strong effect on Staphylococcusaureus subsp. aureus and strong effect on Candida albicans. Full article
(This article belongs to the Special Issue Essential Oils 2021)
51 pages, 2150 KB  
Review
Back to the Roots—An Overview of the Chemical Composition and Bioactivity of Selected Root-Essential Oils
by Karin Lunz and Iris Stappen
Molecules 2021, 26(11), 3155; https://doi.org/10.3390/molecules26113155 - 25 May 2021
Cited by 44 | Viewed by 9905
Abstract
Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that—besides their aromatic properties—their biological activity can often be attributed to volatile constituents. [...] Read more.
Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that—besides their aromatic properties—their biological activity can often be attributed to volatile constituents. This review provides a comprehensive overview of investigations into the chemical composition of essential oils and volatile components obtained from selected aromatic roots, including Angelica archangelica, Armoracia rusticana, Carlina sp., Chrysopogon zizanioides, Coleus forskohlii, Inula helenium, Sassafras albidum, Saussurea costus, and Valeriana officinalis. Additionally, their most important associated biological impacts are reported, such as anticarcinogenic, antimicrobial, antioxidant, pesticidal, and other miscellaneous properties. Various literature and electronic databases—including PubMed, ScienceDirect, Springer, Scopus, Google Scholar, and Wiley—were screened and data was obtained accordingly. The results indicate the promising properties of root-essential oils and their potential as a source for natural biologically active products for flavor, pharmaceutical, agricultural, and fragrance industries. However, more research is required to further establish the mechanism of action mediating these bioactivities as well as essential oil standardization because the chemical composition often strongly varies depending on external factors. Full article
(This article belongs to the Special Issue Featured Reviews on Bioactive Flavour and Fragrance Compounds)
Show Figures

Figure 1

10 pages, 1042 KB  
Article
A Combined Protective Dose of Angelica archangelica and Ginkgo biloba Restores Normal Functional Hemoglobin Derivative Levels in Rabbits after Oxidative Stress Induced by Gallium-68
by Bassem M. Raafat, Walaa F. Alsanie, Abdulellah Al Thobaity, Abdulhakeem S. Alamri, Basem H. Elesawy and Haytham Dahlawi
Appl. Sci. 2021, 11(11), 4804; https://doi.org/10.3390/app11114804 - 24 May 2021
Cited by 2 | Viewed by 2719
Abstract
Oxidative stress is a physiological imbalance between the production of reactive oxygen species (ROS) and the body’s ability to detoxify these products. Oxidative stress induced by ionizing radiation is one of the late biological effects of radiation. The aim of this study was [...] Read more.
Oxidative stress is a physiological imbalance between the production of reactive oxygen species (ROS) and the body’s ability to detoxify these products. Oxidative stress induced by ionizing radiation is one of the late biological effects of radiation. The aim of this study was to assess the protective role of Angelica archangelica and Ginkgo biloba extracts, which are commonly used as antioxidants in counteracting effects related to functional and non-functional hemoglobin derivative concentrations, as well as the rate of hemoglobin autoxidation before exposing rabbits to ionizing radiation. The experimental design included four groups of rabbits: a control group that did not receive gallium or antioxidants; Group 1, which received 68Ga isotope as a source of ionizing radiation with no prior treatment; Groups 2 and 3, which received A. archangelica and G. biloba root powder water extracts, respectively, for seven days prior to irradiation; and Group 4, which received a combined dose of both antioxidants, A. archangelica and G. biloba, prior to irradiation, with the same dose, time, and duration as used in Groups 2 and 3. The results demonstrate that both antioxidants had the ability to counteract oxidative stress induced by ionizing radiation, as well as to reduce the hemoglobin autoxidation rate. A synergistic effect was revealed when using a combined dose of both antioxidants at the same concentrations, times, and durations. A lower rate of free radical formation was also recorded, reflected by a reduction in superoxide dismutase (SOD) and glutathione peroxidase activity. The data here presented support the radioprotective role of both investigated antioxidants. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Graphical abstract

15 pages, 1383 KB  
Article
Photosensitizing Furocoumarins: Content in Plant Matrices and Kinetics of Supercritical Carbon Dioxide Extraction
by Łukasz Woźniak, Marzena Połaska, Krystian Marszałek and Sylwia Skąpska
Molecules 2020, 25(17), 3805; https://doi.org/10.3390/molecules25173805 - 21 Aug 2020
Cited by 13 | Viewed by 3450
Abstract
Furocoumarins are a group of plant phytoalexins exhibiting various bioactive properties; the most important of which are photosensitization and alteration of P450 cytochrome activity. Supercritical fluid extraction with carbon dioxide has been proposed as a green alternative for an organic solvent extraction of [...] Read more.
Furocoumarins are a group of plant phytoalexins exhibiting various bioactive properties; the most important of which are photosensitization and alteration of P450 cytochrome activity. Supercritical fluid extraction with carbon dioxide has been proposed as a green alternative for an organic solvent extraction of the furocoumarins. Four plant matrices rich in furocoumarins were extracted with CO2 at a temperature of 80 °C and pressure of 40 MPa, as these conditions were characterized by the highest solubility of furocoumarins. The extracts collected were analyzed using the HPLC method and the results obtained were used for the mathematical modeling of the observed phenomena. The total content of the furocoumarins in the matrices was 4.03–26.45 mg g−1 of dry weight. The impact of the process parameters on the solubility was consistent with the Chrastil equation. The broken plus intact cell model proved to be suitable to describe extraction curves obtained. The research proved the possibility of supercritical carbon dioxide utilization for the extraction of the furocoumarins from plant material and provided valuable data for prospective industrial-scale experiments. Full article
(This article belongs to the Special Issue Bioactive Compounds of Fruits, Vegetables and Mushrooms)
Show Figures

Figure 1

17 pages, 3840 KB  
Article
Imperatorin as a Promising Chemotherapeutic Agent against Human Larynx Cancer and Rhabdomyosarcoma Cells
by Aneta Grabarska, Krystyna Skalicka-Woźniak, Michał Kiełbus, Magdalena Dmoszyńska-Graniczka, Paulina Miziak, Justyna Szumiło, Ewa Nowosadzka, Krystyna Kowalczuk, Sherief Khalifa, Jolanta Smok-Kalwat, Janusz Klatka, Krzysztof Kupisz, Krzysztof Polberg, Adolfo Rivero-Müller and Andrzej Stepulak
Molecules 2020, 25(9), 2046; https://doi.org/10.3390/molecules25092046 - 28 Apr 2020
Cited by 21 | Viewed by 4258
Abstract
Naturally occurring coumarins are bioactive compounds widely used in Asian traditional medicine. They have been shown to inhibit proliferation, induce apoptosis, and/or enhance the cytotoxicity of currently used drugs against a variety of cancer cell types. The aim of our study was to [...] Read more.
Naturally occurring coumarins are bioactive compounds widely used in Asian traditional medicine. They have been shown to inhibit proliferation, induce apoptosis, and/or enhance the cytotoxicity of currently used drugs against a variety of cancer cell types. The aim of our study was to examine the antiproliferative activity of different linear furanocoumarins on human rhabdomyosarcoma, lung, and larynx cancer cell lines, and dissolve their cellular mechanism of action. The coumarins were isolated from fruits of Angelica archangelica L. or Pastinaca sativa L., and separated using high-performance counter-current chromatography (HPCCC). The identity and purity of isolated compounds were confirmed by HPLC-DAD and NMR analyses. Cell viability and toxicity assessments were performed by means of methylthiazolyldiphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, respectively. Induction of apoptosis and cell cycle progression were measured using flow cytometry analysis. qPCR method was applied to detect changes in gene expression. Linear furanocoumarins in a dose-dependent manner inhibited proliferation of cancer cells with diverse activity regarding compounds and cancer cell type specificity. Imperatorin (IMP) exhibited the most potent growth inhibitory effects against human rhabdomyosarcoma and larynx cancer cell lines owing to inhibition of the cell cycle progression connected with specific changes in gene expression, including CDKN1A. As there are no specific chemotherapy treatments dedicated to laryngeal squamous cell carcinoma and rhabdomyosarcoma, and IMP seems to be non-toxic for normal cells, our results could open a new direction in the search for effective anti-cancer agents. Full article
Show Figures

Graphical abstract

10 pages, 502 KB  
Article
Screening of Six Medicinal Plant Extracts Obtained by Two Conventional Methods and Supercritical CO2 Extraction Targeted on Coumarin Content, 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Capacity and Total Phenols Content
by Maja Molnar, Igor Jerković, Dragica Suknović, Blanka Bilić Rajs, Krunoslav Aladić, Drago Šubarić and Stela Jokić
Molecules 2017, 22(3), 348; https://doi.org/10.3390/molecules22030348 - 24 Feb 2017
Cited by 42 | Viewed by 8618
Abstract
Six medicinal plants Helichrysum italicum (Roth) G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane) extraction, maceration with [...] Read more.
Six medicinal plants Helichrysum italicum (Roth) G. Don, Angelica archangelica L., Lavandula officinalis L., Salvia officinalis L., Melilotus officinalis L., and Ruta graveolens L. were used. The aim of the study was to compare their extracts obtained by Soxhlet (hexane) extraction, maceration with ethanol (EtOH), and supercritical CO2 extraction (SC-CO2) targeted on coumarin content (by high performance liquid chromatography with ultraviolet detection, HPLC-UV), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging capacity, and total phenols (TPs) content (by Folin–Ciocalteu assay). The highest extraction yields were obtained by EtOH, followed by hexane and SC-CO2. The highest coumarin content (316.37 mg/100 g) was found in M. officinalis EtOH extracts, but its SC-CO2 extraction yield was very low for further investigation. Coumarin was also found in SC-CO2 extracts of S. officinalis, R. graveolens, A. archangelica, and L. officinalis. EtOH extracts of all plants exhibited the highest DPPH scavenging capacity. SC-CO2 extracts exhibited antiradical capacity similar to hexane extracts, while S. officinalis SC-CO2 extracts were the most potent (95.7%). EtOH extracts contained the most TPs (up to 132.1 mg gallic acid equivalents (GAE)/g from H. italicum) in comparison to hexane or SC-CO2 extracts. TPs content was highly correlated to the DPPH scavenging capacity of the extracts. The results indicate that for comprehensive screening of different medicinal plants, various extraction techniques should be used in order to get a better insight into their components content or antiradical capacity. Full article
(This article belongs to the Special Issue Sub- and Supercritical Fluids and Green Chemistry)
Show Figures

Figure 1

Back to TopTop