Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (198)

Search Parameters:
Keywords = Azospirillum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 291 KB  
Article
Agronomic Efficiency of a New Liquid Inoculant Formulated with a Mixture of Azospirillum brasilense Strains Ab-V5 and Ab-V6 in Corn (Zea mays L.)
by Ricardo Cancio Fendrich, Mayara Barbosa Silva and Ivanildo Evodio Marriel
Microorganisms 2025, 13(10), 2403; https://doi.org/10.3390/microorganisms13102403 - 21 Oct 2025
Viewed by 201
Abstract
Nitrogen fertilization is a critical factor in maize (Zea mays L.) production, as nitrogen is often the primary limiting nutrient. The use of microbial biostimulants has emerged as a promising strategy to enhance nitrogen use efficiency. This study assessed the field performance [...] Read more.
Nitrogen fertilization is a critical factor in maize (Zea mays L.) production, as nitrogen is often the primary limiting nutrient. The use of microbial biostimulants has emerged as a promising strategy to enhance nitrogen use efficiency. This study assessed the field performance of an industrially produced inoculant (Nodusoja™), formulated with Azospirillum brasilense strains Ab-V5 and Ab-V6, under contrasting soil and climatic conditions. The aim of this study is to assess the grain yield of maize cultivated in different edaphoclimatic conditions using the biostimulant, together with lower doses of topdressing fertilization. Field experiments were conducted across double cropping seasons in Sete Lagoas, Minas Gerais (19°28′ S; 44°15′ W), and Palmas, Tocantins (10°8′ S; 48°19′ W), Brazil, during the 2018, 2019, and 2021 harvests. Evaluated parameters included grain yield, shoot dry mass, and nitrogen content. The most pronounced effects were observed on productivity, with maximum grain yields of 8.76 and 9.05 t·ha−1 recorded in the 2019 season, under inoculation without topdressed N and inoculation with 50% of the recommended N dose, respectively. By contrast, uninoculated treatments with 20, 60, and 120 kg N·ha−1 yielded 6.41, 7.13, and 7.49 t·ha−1, respectively. Statistical analyses demonstrated that inoculation with strains Ab-V5 and Ab-V6 increased maize grain yield by up to 40% when combined with 50% of the recommended nitrogen fertilization. These findings highlight the potential of Azospirillum-based inoculants to improve N use efficiency and reduce dependence on synthetic fertilizers in maize cultivation. Full article
(This article belongs to the Special Issue Plant Growth-Promoting Bacteria)
21 pages, 4377 KB  
Article
Effects on Soil Fertility and Crop Productivity Under Residual Agricultural Gypsum and Azospirillum brasilense in Cover Crops in a Consolidated No-Tillage System
by Isadora Nicolielo de Souza, Maria Eduarda Pafetti Cristovam, Eduardo Leandro Moraes, Viviane Cristina Modesto, Naiane Antunes Alves Ribeiro, Vitória Almeida Moreira Girardi, Nelson Câmara de Souza Júnior, Aline Marchetti Silva Matos, Jussara Souza Salles, Camili Sardinha Gasparini, Wander Luís Barbosa Borges and Marcelo Andreotti
Plants 2025, 14(20), 3230; https://doi.org/10.3390/plants14203230 - 21 Oct 2025
Viewed by 331
Abstract
Most tropical soils, as in the case of Brazil, are highly weathered, with low fertility, high acidity, and toxic aluminum, which limits crop management. Promoting root development is essential to overcome these constraints, and agricultural gypsum has shown positive effects in no-tillage systems. [...] Read more.
Most tropical soils, as in the case of Brazil, are highly weathered, with low fertility, high acidity, and toxic aluminum, which limits crop management. Promoting root development is essential to overcome these constraints, and agricultural gypsum has shown positive effects in no-tillage systems. This study evaluated the residual effects of five gypsum rates in an integrated crop–livestock system, with or without inoculation of rotation grasses with Azospirillum brasilense, on crop productivity and soil fertility over 40 months. The experiment was conducted in a randomized block design with four replications in a 5 × 2 factorial scheme. Inoculated grasses increased yields of soybean, sorghum intercropped with Paiaguás grass, and black oat, whereas non-inoculated areas had the highest corn yield, likely due to hybrid metabolism. Gypsum had limited effects on crop yields, with lower doses performing slightly better. Inoculation improved soil fertility, increasing base sum, cation exchange capacity, and base saturation up to 0.60 m depth at 18 and 40 months. After 40 months, gypsum enhanced soil conditioning and increased calcium, sun of bases, and base saturation. Overall, inoculation with Azospirillum brasilense in rotation grasses under long-term no-tillage systems enhanced crop productivity and contributed to improved soil fertility. Full article
Show Figures

Figure 1

13 pages, 2094 KB  
Article
The Impact of Co-Inoculation with Bradyrhizobium japonicum and Azospirillum brasilense on Cowpea Symbiosis and Growth
by Luiz Eduardo de Morais Fernandes Fontes, Guilherme Cristyan Garcia Penha, Ana Carina da Silva Cândido, Cid Naudi Silva Campos, Alek Sandro Dutra, Márcio Dias Pereira and Charline Zaratin Alves
Nitrogen 2025, 6(4), 94; https://doi.org/10.3390/nitrogen6040094 - 16 Oct 2025
Viewed by 240
Abstract
Biological nitrogen (N) fixation is a well-established practice in various legumes, such as soybeans. However, it has not been widely studied in cowpeas (Vigna unguiculata L. Walp). In this context, it is important to understand how the application of nitrogen-fixing bacteria, either [...] Read more.
Biological nitrogen (N) fixation is a well-established practice in various legumes, such as soybeans. However, it has not been widely studied in cowpeas (Vigna unguiculata L. Walp). In this context, it is important to understand how the application of nitrogen-fixing bacteria, either alone or in association, can benefit the crop’s nitrogen demand. This study aimed to determine whether co-inoculation of Bradyrhizobium and Azospirillum favors nodulation and isoflavone production, and increases the nitrogen content, in cowpea crops. The experiment was set up using a randomized block design on two cowpea varieties, with seven treatments consisting of a control and the isolated application of Bradyrhizobium japonicum and Azospirillum brasilense, as well as different co-inoculation doses (75, 150, 225 and 300 mL per 50 kg of seed for each inoculant). There were four replications. Thirty days after emergence, the number of nodules and the dry masses of the nodules, roots and shoots of the plants were assessed. N content and isoflavone content in the fully developed third trifoliate leaf from the apex of the plants were also assessed. Statistical differences were observed between treatments for all analyzed variables, with higher values generally observed for co-inoculation treatments. Co-inoculation of B. japonicum and A. brasilense in cowpea seeds can be a viable and efficient practice. A dose of 75 mL of each inoculant favored nodule formation, root development and N content, as well as contributing to isoflavone production in the cowpea crop. Full article
Show Figures

Graphical abstract

26 pages, 4175 KB  
Article
Rhizosphere Engineering in Saline Soils: Role of PGPR and Organic Manures in Root–Soil Biochemical Interactions for Allium Crops
by Tarek Alshaal, Nevien Elhawat and Szilvia Veres
Plants 2025, 14(19), 3075; https://doi.org/10.3390/plants14193075 - 4 Oct 2025
Viewed by 483
Abstract
Soil salinity disrupts rhizosphere interactions, impairing root–microbe symbioses, nutrient uptake, and water relations in onion (Allium cepa L.) and garlic (Allium sativum L.). This study evaluated the efficacy of biofertilizers (Azotobacter chroococcum SARS 10 and Azospirillum lipoferum SP2) and organic [...] Read more.
Soil salinity disrupts rhizosphere interactions, impairing root–microbe symbioses, nutrient uptake, and water relations in onion (Allium cepa L.) and garlic (Allium sativum L.). This study evaluated the efficacy of biofertilizers (Azotobacter chroococcum SARS 10 and Azospirillum lipoferum SP2) and organic amendments (sewage sludge and poultry manure) in salt-affected soils in Kafr El-Sheikh, Egypt. Five treatments were applied: (T1) control (no amendments); (T2) biofertilizer (3 L/ha for onion, 12 L/ha for garlic) + inorganic P (150 kg/ha P2O5 for onion, 180 kg/ha for garlic) and K (115 kg/ha K2SO4 for onion, 150 kg/ha for garlic); (T3) 50% inorganic N (160 kg/ha for onion, 127.5 kg/ha for garlic) + 50% organic manure (6000 kg/ha for onion, 8438 kg/ha for garlic) + P and K; (T4) biofertilizer + T3; and (T5) conventional inorganic NPK (320 kg/ha N for onion, 255 kg/ha N for garlic + P and K). Soil nutrients (N, P, K), microbial biomass carbon (MBC), dehydrogenase activity, and microbial populations were analyzed using standard protocols. Plant growth (chlorophyll, photosynthetic rate), stress indicators (malondialdehyde, proline), and yield (bulb diameter, fresh yield) were measured. Treatment T4 increased MBC by 30–40%, dehydrogenase activity by 25–35%, available N (39.7 mg/kg for onion, 35.7 mg/kg for garlic), P (17.9 mg/kg for onion), and K (108 mg/kg for garlic). Soil organic matter rose by 8–12%, and cation exchange capacity by 26–36%. Chlorophyll content improved by 25%, malondialdehyde decreased by 20–30%, and fresh yields increased by 20–30% (12.17 tons/ha for garlic). A soybean bioassay confirmed sustained fertility with 20–25% higher dry weight and 30% greater N uptake in T4 plots. These findings highlight biofertilizers and organic amendments as sustainable solutions for Allium productivity in saline rhizospheres. Full article
(This article belongs to the Topic Plant-Soil Interactions, 2nd Volume)
Show Figures

Figure 1

18 pages, 1736 KB  
Article
Water Availability Associated with Coinoculation with Growth-Promoting Rhizobacteria in Cowpea
by Júlio José Nonato, Tonny José Araújo da Silva, Alessana Franciele Schlichting, Luana Aparecida Menegaz Meneghetti, Niclene Ponce Rodrigues de Oliveira, Thiago Franco Duarte, Salomão Lima Guimarães, Marcio Koetz, Ivis Andrei Campos e Silva, Patrícia Ferreira da Silva, Adriano Bicioni Pacheco and Edna Maria Bonfim-Silva
Nitrogen 2025, 6(3), 74; https://doi.org/10.3390/nitrogen6030074 - 29 Aug 2025
Viewed by 587
Abstract
Soil water availability can become one of the decisive factors for crop production. The technology of coinoculation with plant growth-promoting bacteria capable of performing biological nitrogen fixation and producing plant hormones may be an alternative that minimizes the effects of variations in soil [...] Read more.
Soil water availability can become one of the decisive factors for crop production. The technology of coinoculation with plant growth-promoting bacteria capable of performing biological nitrogen fixation and producing plant hormones may be an alternative that minimizes the effects of variations in soil water availability. In this context, the objective was to evaluate the phytometric and productive characteristics of cowpea coinoculated with Azospirillum brasilense and Bradyrhizobium japonicum subjected to soil water availability stress. The experiment was carried out in a greenhouse in a completely randomized block design with four replications in a 4 × 4 factorial arrangement: not inoculated; inoculated with B. japonicum; and coinoculated with B. japonicum + A. brasilense and N fertilizer, associated with soil water tensions of 15, 30, 45, and 60 kPa. Statistically, the lowest soil water tension, 15 kPa, and the coinoculated and nitrogen fertilizer treatments resulted in greater development of plant height, stem diameter, and number of leaflets. The shoot dry mass was significantly different for only the soil water stress treatments, which showed a decrease in mass accumulation from 15 kPa to 50.22 kPa. Regarding the SPAD index, soil water tension showed a decreasing linear adjustment 24 days after plant emergence (DAEs), with the lowest value of 51.38 at a tension of 60 kPa. At 39 DAEs, the adjustment was polynomial, with the lowest tension index of 59.62 kPa, corresponding to 44.14. The treatments with the use of inoculants had a significant effect on the SPAD index, in which coinoculation with Bradyrhizobium and Azospirillum brasilense resulted in values equal to those of nitrogen fertilizer and greater than those of uninoculated treatments or those inoculated with Bradyrhizobium. Water tension influenced the total water consumption, and at a tension of 18.13 kPa, the lowest accumulation occurred, equivalent to 2.20 g of dry matter for each liter of irrigated water. Statistically, the lowest soil water tension, 15 kPa, resulted in higher numbers, lengths, and widths of pods. In relation to the length of pods, the uninoculated, inoculated with Bradyrhizobium, and coinoculated with Bradyrhizobium and A. brasilense treatments were superior to nitrogen fertilization. Coinoculation and nitrogen fertilization influenced phytometric characteristics. The productive characteristics of cowpea decreased as the soil water tension increased. These results highlight the importance of leveraging biological solutions, such as coinoculation, to mitigate the adverse effects of water stress on crop yields. In addition, by optimizing these practices, farmers ensure greater resilience in bean production, thereby guaranteeing food security in the face of changing environmental conditions. Full article
Show Figures

Figure 1

17 pages, 4429 KB  
Article
Optimizing Common Bean Symbiosis via Stage-Specific Reinoculation and Co-Inoculation
by Tamires Ester Peixoto Bravo, Itamar Rosa Teixeira, Gisele Carneiro da Silva Teixeira, Nathan Mickael de Bessa Cunha, Ednaldo Cândido Rocha, Lucas Boaretto Comachio and Gessiele Pinheiro da Conceição Alves
Plants 2025, 14(17), 2676; https://doi.org/10.3390/plants14172676 - 27 Aug 2025
Viewed by 832
Abstract
The common bean relies on biological nitrogen fixation to meet part of its nitrogen requirements. This study aimed to evaluate the effect of reinoculation with Rhizobium tropici, alone or combined with Azospirillum brasilense, at different phenological stages. The experiments were conducted [...] Read more.
The common bean relies on biological nitrogen fixation to meet part of its nitrogen requirements. This study aimed to evaluate the effect of reinoculation with Rhizobium tropici, alone or combined with Azospirillum brasilense, at different phenological stages. The experiments were conducted in the winter of 2023 and the rainy season of 2023/24, and significant differences were observed between seasons, mainly due to temperature and water stress, which impacted nodulation, plant growth and grain yield. However, appropriate water management mitigated these limitations, allowing reinoculation combined with co-inoculation at the V4 stage to improve nodular and morphophysiological traits, ensuring adequate nutrition through biological nitrogen fixation. This strategy promoted nodulation and plant development, resulting in an 8.5% increase in yield compared to nitrogen fertilization (80 kg ha−1), reaching 2197.87 kg ha−1. These results suggest that reinoculation with co-inoculation at the V4 stage can enhance biological nitrogen fixation, reduce dependence on synthetic fertilizers and serve as a sustainable and economically viable alternative. Full article
(This article belongs to the Special Issue Bio-Based Solutions for Sustainable Plant Systems)
Show Figures

Graphical abstract

18 pages, 330 KB  
Article
Bacterial Isolates from Avocado Orchards with Different Agronomic Management Systems with Potential for Promoting Plant Growth in Tomate and Phytopathogen Control
by Adilene Velázquez-Medina, Evangelina Esmeralda Quiñones-Aguilar, Ernestina Gutiérrez-Vázquez, Nuria Gómez-Dorantes, Gabriel Rincón-Enríquez and Luis López-Pérez
Microorganisms 2025, 13(9), 1974; https://doi.org/10.3390/microorganisms13091974 - 23 Aug 2025
Viewed by 992
Abstract
The bacterial diversity of soils cultivated with avocado (Persea americana M.) is influenced by different factors, perhaps the most decisive being the type of agronomic management used by farmers. In conventional agronomic management (CM), high doses of agrochemicals are applied, in contrast [...] Read more.
The bacterial diversity of soils cultivated with avocado (Persea americana M.) is influenced by different factors, perhaps the most decisive being the type of agronomic management used by farmers. In conventional agronomic management (CM), high doses of agrochemicals are applied, in contrast to organic agronomic management (OM), where organic fertilizers are used. This alters the diversity and abundance of soil microorganism populations, which in turn affects crop health. This study aimed to isolate and morphologically characterize rhizospheric bacteria from avocado trees under different agronomic management systems (CM and OM). For the bacterial isolates, their ability to promote plant growth in vitro was determined through biochemical tests for phosphorus and calcium solubilization and nitrogen fixation. In addition, their in vivo effect on tomato (S. lycopersicum) growth was evaluated, and their antagonistic capacity against Fusarium sp. was assessed. The results showed differences in the quantity, diversity, and morphologies of bacterial isolates depending on the type of agronomic management. A higher Shannon diversity index was found in OM (2.44) compared to CM (1.75). A total of 35 bacterial isolates were obtained from both management types. A greater number of isolates from OM soils exhibited in vitro PGP activity; notably, eight isolates from OM plots showed phosphate-solubilizing activity, compared to only one from CM plots. Furthermore, although all isolates demonstrated nitrogen fixing capacity, those from OM orchards produced significantly higher nitrate levels than the control (Azospirillum vinelandii). On the other hand, inoculation of tomato plants with bacterial isolates from OM soils increased plant height, root length, and total fresh and dry biomass compared to isolates from CM soils. Likewise, OM isolates exhibited greater antagonistic activity against Fusarium sp. These findings demonstrate the impact of agronomic management on soil bacterial populations and its effect on plant growth and protection against pathogens. Full article
(This article belongs to the Special Issue Advances in Plant–Soil–Microbe Interactions)
34 pages, 2259 KB  
Review
Unveiling the Molecular Mechanism of Azospirillum in Plant Growth Promotion
by Bikash Ranjan Giri, Sourav Chattaraj, Subhashree Rath, Mousumi Madhusmita Pattnaik, Debasis Mitra and Hrudayanath Thatoi
Bacteria 2025, 4(3), 36; https://doi.org/10.3390/bacteria4030036 - 18 Jul 2025
Cited by 1 | Viewed by 2830
Abstract
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, [...] Read more.
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, including nitrogen fixation, the production of phytohormones (auxins, cytokinins, indole acetic acid (IAA), and gibberellins), plant growth regulators, siderophore production, phosphate solubilization, and the synthesis of various bioactive molecules, such as flavonoids, hydrogen cyanide (HCN), and catalase. Thus, Azospirillum is involved in plant growth and development. The genus Azospirillum also enhances membrane activity by modifying the composition of membrane phospholipids and fatty acids, thereby ensuring membrane fluidity under water deficiency. It promotes the development of adventitious root systems, increases mineral and water uptake, mitigates environmental stressors (both biotic and abiotic), and exhibits antipathogenic activity. Biological nitrogen fixation (BNF) is the primary mechanism of Azospirillum, which is governed by structural nif genes present in all diazotrophic species. Globally, Azospirillum spp. are widely used as inoculants for commercial crop production. It is considered a non-pathogenic bacterium that can be utilized as a biofertilizer for a variety of crops, particularly cereals and grasses such as rice and wheat, which are economically significant for agriculture. Furthermore, Azospirillum spp. influence gene expression pathways in plants, enhancing their resistance to biotic and abiotic stressors. Advances in genomics and transcriptomics have provided new insights into plant-microbe interactions. This review explored the molecular mechanisms underlying the role of Azospirillum spp. in plant growth. Additionally, BNF phytohormone synthesis, root architecture modification for nutrient uptake and stress tolerance, and immobilization for enhanced crop production are also important. A deeper understanding of the molecular basis of Azospirillum in biofertilizer and biostimulant development, as well as genetically engineered and immobilized strains for improved phosphate solubilization and nitrogen fixation, will contribute to sustainable agricultural practices and help to meet global food security demands. Full article
Show Figures

Figure 1

28 pages, 6252 KB  
Article
An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L.
by Francisco Rafael Santos da Conceição, Layara Alexandre Bessa, Marconi Batista Teixeira, Bárbara Gonçalves Cruvinel and Luciana Cristina Vitorino
Agronomy 2025, 15(7), 1668; https://doi.org/10.3390/agronomy15071668 - 10 Jul 2025
Viewed by 955
Abstract
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. [...] Read more.
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. This study employed an integrative approach combining in vitro and plant-based assays to assess the effects of starch, carboxymethyl cellulose (CMC), and trehalose in formulations containing Azospirillum brasilense, Bradyrhizobium diazoefficiens, Methylobacterium symbioticum, and Paenibacillus alvei, applied to Glycine max seeds. Our hypothesis was that the presence of these additives, each with distinct functional roles (starch as a slow-release carbon source, CMC as a structural agent and protector against physical stress, and trehalose as an osmoprotectant and membrane stabilizer), would influence not only bacterial viability but also the seed germination, growth, and physiological responses of inoculated G. max plants. Starch improved viability in A. brasilense formulations, while both starch and trehalose had positive effects on M. symbioticum. These additives also enhanced plant traits, including dry biomass, chlorophyll content, carboxylation efficiency (A/Ci), and photochemical efficiency (Fv/Fm and Pi_Abs). Trehalose was particularly effective in formulations with B. diazoefficiens and M. symbioticum, supporting its use as a versatile stabilizer. In contrast, CMC (0.25%) negatively impacted bacterial viability, especially for B. diazoefficiens and P. alvei, and impaired physiological parameters in G. max when combined with M. symbioticum. These results highlight the need to evaluate formulation components not only for their physical roles but also for their specific interactions with microbial strains and effects on host plants. Such an integrative approach is essential for designing stable, efficient bioinoculants that align with sustainable agricultural practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 2838 KB  
Article
Transcriptomic Response of Azospirillum brasilense Co-Cultured with Green Microalgae Chlorella sp. and Scenedesmus sp. During CO2 Biogas Fixation
by Carolina Garciglia-Mercado, Oskar A. Palacios, Claudia A. Contreras-Godínez, Jony Ramiro Torres-Velázquez and Francisco J. Choix
Processes 2025, 13(7), 2177; https://doi.org/10.3390/pr13072177 - 8 Jul 2025
Viewed by 968
Abstract
Microalgal–bacterial consortia are the environmentally sustainable biotechnological strategy to enhance the potential of microalgae. Understanding the regulatory mechanisms that enable bacteria to adapt to culture conditions of each bioprocess is crucial to ensure a successful synergic interaction. Thus, the present study evaluated the [...] Read more.
Microalgal–bacterial consortia are the environmentally sustainable biotechnological strategy to enhance the potential of microalgae. Understanding the regulatory mechanisms that enable bacteria to adapt to culture conditions of each bioprocess is crucial to ensure a successful synergic interaction. Thus, the present study evaluated the transcriptomic response of microalgal growth-promoting bacteria (MGPB) A. brasilense separately co-cultured with both green microalgae Scenedesmus sp. and Chlorella sorokiniana during CO2 fixation from biogas through a microarray-based approach. The transcriptome profiling revealed a total of 416 differentially expressed genes (DEGs) in A. brasilense: 228 (140 upregulated and 88 downregulated) interacting with Scenedesmus sp. and 188 (40 upregulated and 148 downregulated) associated with C. sorokiniana. These results support the modulation of signal molecules: indole-3-acetic acid (IAA), riboflavin, and biotin, during co-cultivation with both microalgae. The findings suggest that the metabolic A. brasilense adaptation was mainly favored during the mutualistic interaction with Scenedesmus sp. Finally, a valuable contribution is provided to the biotechnological potential of the microalga–Azospirillum consortium as an environmentally sustainable strategy to improve the bio-refinery capacity of these microalgae and biogas upgrading by valorizing CO2 of these gaseous effluent. Full article
Show Figures

Figure 1

15 pages, 2738 KB  
Article
Silver Nanoparticles Alter the Diazotrophic Community Structure and Co-Occurrence Patterns in Maize Rhizosphere
by Hui Chen, Siyao Li, Chengheng Fan and Jiling Cao
Agronomy 2025, 15(7), 1601; https://doi.org/10.3390/agronomy15071601 - 30 Jun 2025
Viewed by 680
Abstract
Biological nitrogen (N) fixation is an ecological method used to provide nutrition for crops and reduce fertilizer application in terrestrial ecosystems. Silver nanoparticles (AgNPs) are becoming environmental contaminants, and, thus, could negatively affect the activity and diversity of soil diazotrophs. To test this, [...] Read more.
Biological nitrogen (N) fixation is an ecological method used to provide nutrition for crops and reduce fertilizer application in terrestrial ecosystems. Silver nanoparticles (AgNPs) are becoming environmental contaminants, and, thus, could negatively affect the activity and diversity of soil diazotrophs. To test this, a greenhouse pot experiment for growing maize was performed under different concentrations of AgNPs (0, 1, 5, 10, 20 mg kg−1). We measured the N2-fixation activity and abundance of nifH gene encoding the nitrogenase reductase subunit and analyzed the diversity, composition and co-occurrence networks of diazotrophic communities in maize rhizospheric soil. Results showed that a lower dose of AgNPs did not show significant influence on soil diazotrophs, while a higher dose of AgNPs decreased both soil N2-fixation activity and nifH gene abundance, though diazotrophic diversity remained unchanged. AgNPs at 10 mg kg−1 and 20 mg kg−1 strongly shifted the community composition of diazotrophs, increasing the proportions of Bradyrhizobium and Paenibacillus, while decreasing Azospirillum and Rhizobium. Network analysis revealed weakened negative associations among species under AgNPs, with keystone taxa shifting from Bradyrhizobium, Geobacter, Azospirillum and Burkholderia to Bradyrhizobium, Paenibacillus and Skermanella under AgNPs. Soil-soluble Ag, dissolved organic carbon and soil pH were identified as the factors most closely driving the diazotrophic community composition. In conclusion, higher doses of AgNPs could inhibit N2-fixation activity and shape the diazotrophic communities. These findings provide empirical evidence of AgNPs’ ecological impacts on soil microbial functions. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

41 pages, 9366 KB  
Article
Soil Bioindicators and Crop Productivity Affected by Legacy Phosphate Fertilization and Azospirillum brasilense Inoculation in No-Till Systems
by Naiane Antunes Alves Ribeiro, Aline Marchetti Silva Matos, Viviane Cristina Modesto, Nelson Câmara de Souza Júnior, Vitória Almeida Moreira Girardi, Iêda de Carvalho Mendes and Marcelo Andreotti
Appl. Sci. 2025, 15(13), 7146; https://doi.org/10.3390/app15137146 - 25 Jun 2025
Viewed by 747
Abstract
Pressure on agroecosystems is increasing with rising agricultural demand, pushing Brazilian agriculture toward more sustainable systems that prioritize soil health. This study aimed to evaluate whether long-term no-till management and inoculation with Azospirillum brasilense influenced soil bioindicators; chemical, biological, and enzymatic attributes; and [...] Read more.
Pressure on agroecosystems is increasing with rising agricultural demand, pushing Brazilian agriculture toward more sustainable systems that prioritize soil health. This study aimed to evaluate whether long-term no-till management and inoculation with Azospirillum brasilense influenced soil bioindicators; chemical, biological, and enzymatic attributes; and how these attributes correlated with crop productivity in a rotational system. The experiment also assessed the residual effects of phosphate fertilization (initially applied in 2013 and reapplied in 2020) and its interaction with inoculation on soil phosphorus fractions and crop performance. This study was conducted on Dystrophic Red Oxisol in the low-altitude Cerrado region under 20 years of no-tillage management, using a randomized block design in a 5 × 2 factorial scheme: five phosphorus doses (0, 30, 60, 120, and 240 kg ha−1 P2O5) and inoculated or non-inoculated grasses, with four replicates. The results showed that inoculation influenced dry matter (DM) production and nutrient cycling, improving soil health despite lower fertility and total DM. The correlation between bioindicators and productivity suggests that soil health indicators can be used to monitor system sustainability. No consistent effects of inoculation or phosphate fertilization were observed for some crop components, indicating complex interactions under long-term conservationist systems. Full article
(This article belongs to the Special Issue Soil Health and Soil Microbiology)
Show Figures

Figure 1

21 pages, 1894 KB  
Article
Optimizing Cocoa Productivity Through Soil Health and Microbiome Enhancement: Insights from Organic Amendments and a Locally Derived Biofertilizer
by Jennifer E. Schmidt, Julia Flores, Luigy Barragan, Freddy Amores and Sat Darshan S. Khalsa
Microorganisms 2025, 13(6), 1408; https://doi.org/10.3390/microorganisms13061408 - 17 Jun 2025
Viewed by 1286
Abstract
Despite growing interest in improving soil health on cocoa farms, applied research on the impacts of specific amendments on soil and plant outcomes is lacking. An integrated assessment of the impacts of two different organic amendments (compost and vermicompost) and a microbial biofertilizer [...] Read more.
Despite growing interest in improving soil health on cocoa farms, applied research on the impacts of specific amendments on soil and plant outcomes is lacking. An integrated assessment of the impacts of two different organic amendments (compost and vermicompost) and a microbial biofertilizer on soil physical, chemical, and biological properties, as well as cocoa flowering, fruit set, and yield, was conducted in Guayaquil, Ecuador. Complementary culture-dependent and culture-independent methods were used to assess the impacts of amendments on microbial diversity, community composition, and specific taxa. Compost or vermicompost application affected soil chemical properties, including potassium, phosphorus, and sodium, and had small but significant effects on fungal beta diversity. Biofertilizer application slightly lowered soil pH and altered the total abundance of specific taxonomic groups including Azotobacter sp. and Trichoderma sp., with borderline significant effects on Azospirillum sp., Lactobacillus sp., Pseudomonas sp., calcium-solubilizing bacteria, and phosphorus-solubilizing bacteria. Amplicon sequencing (16S, ITS) identified 15 prokaryotic and 68 fungal taxa whose relative abundance was influenced by organic amendments or biofertilizer. Biofertilizer application increased cherelle formation by 19% and monthly harvestable pod counts by 11% despite no impact on flowering index or annual pod totals. This study highlights the tangible potential of microbiome optimization to simultaneously improve on-farm yield and achieve soil health goals on cocoa farms. Full article
Show Figures

Figure 1

11 pages, 801 KB  
Article
Productive Performance of Brachiaria brizantha cv. Paiaguás in Response to Different Inoculation Techniques of Azospirillum brasilense Associated with Nitrogen Fertilization in the Brazilian Amazon
by Gianna Maria Oscar Bezerra, Cleyton de Souza Batista, Daryel Henrique Abreu de Queluz, Gabriela de Jesus Coelho, Daiane de Cinque Mariano, Pedro Henrique Oliveira Simões, Perlon Maia dos Santos, Ismael de Jesus Matos Viégas, Ricardo Shigueru Okumura and Raylon Pereira Maciel
Nitrogen 2025, 6(2), 47; https://doi.org/10.3390/nitrogen6020047 - 17 Jun 2025
Viewed by 1172
Abstract
With the increase in prices of correctives and fertilizers, the investigation of the interactions between plants and plant growth-promoting bacteria shows an economically viable and sustainable alternative, and the use of Azospirillum brasilense has shown an increase in efficiency of nitrogen use and [...] Read more.
With the increase in prices of correctives and fertilizers, the investigation of the interactions between plants and plant growth-promoting bacteria shows an economically viable and sustainable alternative, and the use of Azospirillum brasilense has shown an increase in efficiency of nitrogen use and increased pasture yield. This study, conducted in the Brazilian Amazon, aimed to evaluate the effect of different inoculation techniques of Azospirillum brasilense associated with the dose of nitrogen topdressing on the productive performance of Brachiaria brizantha cv. Paiaguás is a grass species commonly cultivated in this region. The experiment was conducted in the Experimental Forage Sector of the Federal Rural University of the Amazon, Parauapebas city, Brazil. The experimental design was a randomized block design in a 3 × 3 factorial arrangement, with three inoculation methods (control, seed, and foliar) and three nitrogen fertilization doses (0, 75, and 150 kg ha−1 of N), with four replicates. An effect was observed in interaction between inoculation and nitrogen fertilization (p ≤ 0.05) for the variables total forage green mass, total forage dry mass, dry mass of leaf blade, dry stem mass, and number of tillers m−2. The dose of 150 kg ha−1 of N promoted a positive effect of N on the total forage dry mass and LAI (leaf area index). Inoculation with Azospirillum brasilense, especially foliar application, efficiently increased Brachiaria brizantha cv. Paiaguás yield, potentially reducing the use of nitrogen fertilizers, promotes greater sustainability in pasture management. Full article
Show Figures

Figure 1

17 pages, 1496 KB  
Article
Enhanced Anaerobic Biodegradation of PAHs by Rhamnolipid and Earthworm Casts in Contaminated Soil
by Tao Chen and Yilin Ma
Sustainability 2025, 17(12), 5417; https://doi.org/10.3390/su17125417 - 12 Jun 2025
Viewed by 672
Abstract
Rhamnolipids and earthworm casts, as efficient and environmentally friendly biostimulants, influence the biodegradation of organic pollutants. However, it remains unclear how rhamnolipids and earthworm casts affect the anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs). This work aimed to investigate the efficacy and mechanism [...] Read more.
Rhamnolipids and earthworm casts, as efficient and environmentally friendly biostimulants, influence the biodegradation of organic pollutants. However, it remains unclear how rhamnolipids and earthworm casts affect the anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs). This work aimed to investigate the efficacy and mechanism of biostimulants on the anaerobic biodegradation of PAHs through PAH degradation, functional gene abundance, and bacterial community structure. The results revealed that both stimulants promoted the anaerobic degradation of typical PAHs, such as phenanthrene, pyrene, and benzo(a)pyrene. Rhamnolipids and earthworm casts promoted the degradation of phenanthrene and pyrene more significantly, with the degradation rate increasing by 13.75% and 16.92%, respectively, and the degradation rate of benzo(a)pyrene increased by 10.26% and 11.7%, respectively. The addition of rhamnolipids and earthworm casts significantly stimulated the abundance of functional genes (UbiD, UbiE) in bacterial communities, and this study indicated a strong association between the abundance of functional genes and PAH degradation efficiency. Furthermore, biostimulants altered the microbial community structure and affected microbial diversity and function. Earthworm casts significantly promoted the Azospirillum (0.02–20.17%) and Acinetobacter (0.01–15.70%) genera, which played an important role in the degradation process of PAHs. Therefore, these findings suggested that the enhancement of anaerobic biodegradation of PAHs by rhamnolipids and earthworm casts is probably due to an increase in abundance of both PAH-degraders and their degrading genes (UbiD, UbiE). This study could provide valuable insights for advancing the sustainable remediation of PAH-contaminated soils. Full article
Show Figures

Figure 1

Back to TopTop