Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = B(a)P-adducts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 577 KB  
Article
Placental Polycyclic Aromatic Hydrocarbon (PAH) Levels Are Associated with Spontaneous Preterm Birth
by Gwendolynn Hummel, Sohini Banerjee, Vasanta Putluri, Inaara Malick, Grace Johnson, Abu Hena Mostafa Kamal, Chandra Shekar R. Ambati, Nagireddy Putluri, Lori Showalter, Cynthia D. Shope, Joseph Hagan, Kjersti M. Aagaard, Bhagavatula Moorthy and Melissa A. Suter
Int. J. Mol. Sci. 2025, 26(17), 8179; https://doi.org/10.3390/ijms26178179 - 23 Aug 2025
Viewed by 576
Abstract
While the cause of preterm birth (PTB) (i.e., delivery before 37 weeks of gestation) is likely multifactorial, ambient exposure to environmental chemicals has been postulated to play a role in its etiology. Our prior studies of exposure to polycyclic aromatic hydrocarbons (PAHs) in [...] Read more.
While the cause of preterm birth (PTB) (i.e., delivery before 37 weeks of gestation) is likely multifactorial, ambient exposure to environmental chemicals has been postulated to play a role in its etiology. Our prior studies of exposure to polycyclic aromatic hydrocarbons (PAHs) in pregnancy have shown an increased level of placental PAH-induced bulky DNA adducts with increasing levels of PAH exposures. In this investigation, we hypothesized that higher levels of placental PAHs would be associated with an increased risk of PTB. Using gas chromatography and mass spectrometry (GC-MS/MS), we measured levels of benzo(a)pyrene (BaP), benzo(b)fluoranthene (BbF) and dibenz(a,h)anthracene (DBA) from n = 323 subjects. We found higher levels of BbF in placentae collected from preterm compared with term deliveries (mean 100.3 vs. 84.14 ng/mL, p = 0.038). Placental BbF levels negatively correlated with gestational age at delivery (rs = −0.171, p = 0.002) and placental DBA levels were higher in placentae from spontaneous PTBs compared to those that were medically indicated (mean 743.7 vs. 599.9 ng/mL, p = 0.049), suggesting a potentially causal role in spontaneous preterm birth. Lastly, we analyzed placental levels of each PAH in male (n = 164) and female (n = 159) gestations and found that levels of BaP are significantly higher in males (mean 204.4 vs. 169.9 ng/mL, p = 0.049). These studies show a potential causal role of PAH exposure in the etiology of spontaneous preterm birth. Full article
(This article belongs to the Collection New Advances in Molecular Toxicology)
Show Figures

Figure 1

20 pages, 2893 KB  
Review
Breast Cancer Cytochromes P450: Chemopreventive and/or Therapeutic Targets for Naturally Occurring Phytochemicals
by Hanna Szaefer, Barbara Licznerska, Hanna Sobierajska and Wanda Baer-Dubowska
Molecules 2025, 30(15), 3079; https://doi.org/10.3390/molecules30153079 - 23 Jul 2025
Viewed by 814
Abstract
Estrogens are considered the most important risk factor for the development of breast cancer. Therefore, attempts are being made to reduce their level through diminished synthesis on one hand and to protect against the formation of DNA-damaging estrogen metabolites on the other. Cytochromes [...] Read more.
Estrogens are considered the most important risk factor for the development of breast cancer. Therefore, attempts are being made to reduce their level through diminished synthesis on one hand and to protect against the formation of DNA-damaging estrogen metabolites on the other. Cytochromes P450 (CYPs) play key roles in estrogen synthesis and catabolism, leading to potentially carcinogenic metabolites. CYP19 (aromatase) catalyzes the conversion of androgens to estrogens. The estrogen receptor-dependent pathway induces cell growth. CYP1 family enzymes, particularly CYP1B1, are involved in the redox cycling of estrogen metabolites and the subsequent estrogen–DNA adducts formation. Naturally occurring phytochemicals of different classes were shown to modulate the CYP expression and activity in cell-free systems or breast cancer cells. One of the most promising CYP19 inhibitors is chrysin (flavone), while stilbenes seem to be the most effective CYP1B1 inhibitors. In most cases, their effect is not specific. Therefore, different approaches are made to find the best candidate for the drug prototype of a new therapeutic or chemopreventive agent and to improve its pharmacokinetic parameters. This review presents and discusses the possible effects on major CYPs involved in estrogen metabolism by phytochemicals from the most investigated classes, namely flavonoids, stilbenes, and glucosinolates breakdown products. Full article
Show Figures

Figure 1

21 pages, 3245 KB  
Article
Interactions of Nedaplatin with Nucleobases and Purine Alkaloids: Their Role in Cancer Therapy
by Kamil Szupryczyński and Beata Szefler
Biomedicines 2025, 13(7), 1551; https://doi.org/10.3390/biomedicines13071551 - 25 Jun 2025
Viewed by 611
Abstract
Background: Nedaplatin is a platinum-based anticancer drug that combines the benefits of Cisplatin and Carboplatin, retaining Cisplatin’s anticancer activity while reducing toxicity similar to Carboplatin. After hydrolysis, Nedaplatin targets purines in DNA and forms cross-links that induce cell death via apoptosis. However, [...] Read more.
Background: Nedaplatin is a platinum-based anticancer drug that combines the benefits of Cisplatin and Carboplatin, retaining Cisplatin’s anticancer activity while reducing toxicity similar to Carboplatin. After hydrolysis, Nedaplatin targets purines in DNA and forms cross-links that induce cell death via apoptosis. However, it is important to consider how the presence of other chemical compounds with structural similarities to Adenine or Guanine, such as aromatic, purine, or pyrimidine compounds containing a nitrogen atom with a free electron pair, might influence its activity at the cellular level. Alkaloids with structures similar to DNA nucleobases are common, and their influence on Nedaplatin’s activity requires investigation. Methods: In this study, the interactions between Nedaplatin (including its hydrolyzed forms, such as [Pt(NH3)2(H2O)2]2+ and [Pt(NH3)2(H2O)(OH)]+) and nucleobases (Adenine and Guanine) and purine alkaloids (Caffeine, Theobromine and Theophylline) were thoroughly investigated using theoretical (density functional theory, DFT) and experimental (UV-Vis spectroscopy) methods. DFT calculations were performed at the B3LYP/6-31G(d,p)/LANL2DZ and MN15/def2-TZVP levels, with structure optimization and harmonic analysis in the gas phase and aqueous solution (modeled using IEF-PCM). UV-Vis spectroscopy was used to verify theoretical findings by examining changes in absorption spectra. Results: Both theoretical and experimental studies confirmed that Nedaplatin forms complexes with both nucleobases and purine alkaloids. Nedaplatin was found to exhibit a higher affinity for nucleobases than for purine alkaloids. Furthermore, this affinity was dependent on the computational method used and on the hydrolyzed form of Nedaplatin. Theoretical calculations showed the formation of stable complexes through bonding with nitrogen atoms in the ligand molecules, which was confirmed by changes in UV-Vis spectra, indicating adduct formation. Conclusions: The results indicate that Nedaplatin readily forms complexes with both nucleobases and purine alkaloids, showing a stronger affinity for nucleobases. This finding highlights the potential importance of Nedaplatin’s interactions with other compounds present in the body, which may influence its effectiveness and mechanism of action in cancer therapy. These studies provide new insights into the molecular mechanisms of Nedaplatin’s action and may contribute to a better understanding of its pharmacological interactions. However, research requires confirmation not only in in vivo studies but also in clinical trials. Full article
(This article belongs to the Special Issue Chemoprevention to Dwindle Tumor Development)
Show Figures

Graphical abstract

11 pages, 775 KB  
Review
Cooperation Between Aflatoxin-Induced p53 Aberrations and Hepatitis B Virus in Hepatocellular Carcinoma
by Carolina Moreno-León and Francisco Aguayo
J. Xenobiot. 2025, 15(4), 96; https://doi.org/10.3390/jox15040096 - 20 Jun 2025
Viewed by 1732
Abstract
Hepatocellular carcinoma (HCC) imposes a significant burden on global public health. Exposure to aflatoxins, potent mycotoxins produced by Aspergillus fungi contaminating staple foods, and chronic hepatitis B virus (HBV) infection are major etiological factors, especially where they co-exist. This review examines the critical [...] Read more.
Hepatocellular carcinoma (HCC) imposes a significant burden on global public health. Exposure to aflatoxins, potent mycotoxins produced by Aspergillus fungi contaminating staple foods, and chronic hepatitis B virus (HBV) infection are major etiological factors, especially where they co-exist. This review examines the critical role of the p53 tumor suppressor pathway as a primary target and convergence point for the carcinogenic actions of aflatoxins and HBV. Aflatoxin B1 (AFB1), a Group 1 carcinogen, exerts significant genotoxicity, characteristically inducing a specific hotspot mutation (R249S) in the TP53 gene via DNA adduct formation, thereby compromising p53’s critical tumor suppressor functions. This R249S mutation is considered a molecular fingerprint of aflatoxin exposure. Concurrently, the HBV X protein (HBx) functionally inactivates wild-type p53 through direct binding and by promoting its degradation. The synergistic disruption of the p53 pathway, driven by AFB1-induced mutation and amplified by HBV-mediated functional inhibition, significantly enhances the risk of HCC development. This review addresses how aflatoxin exposure alters key aspects of p53 and how this damage interacts with HBV-mediated p53 suppression, providing crucial insights into hepatocarcinogenesis. The knowledge synthesized here underscores the importance of mitigating aflatoxin exposure alongside HBV control for effective HCC prevention and treatment strategies. Full article
Show Figures

Figure 1

17 pages, 1433 KB  
Article
Insights into Chemopreventive Effects of Rosmarinic Acid Against Aflatoxin B1-Induced Genotoxic Effects
by Veronika Furlan, Matjaž Novak, Martina Štampar, Alja Štern, Bojana Žegura and Urban Bren
Foods 2025, 14(12), 2111; https://doi.org/10.3390/foods14122111 - 16 Jun 2025
Viewed by 658
Abstract
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation [...] Read more.
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation of the chemical reactions between rosmarinic acid and the carcinogenic metabolite of AFB1, aflatoxin B1 exo-8,9-epoxide (AFBO), was conducted by activation free energies calculations with DFT functionals M11-L and MN12-L, in conjunction with the 6-311++G(d,p) flexible basis set and implicit solvation model density (SMD), according to a newly developed quantum mechanics-based protocol for the evaluation of carcinogen scavenging activity (QM-CSA). Following the computational analyses, the chemoprotective effects of RA were further studied in vitro in human hepatocellular carcinoma HepG2 cells by analyzing its influence on AFB1-induced genotoxicity using a comet assay, γH2AX, and p-H3, while its impact on cell proliferation and cell cycle modulation was assessed using flow cytometry. Our computational results revealed that the activation free energy required for the reaction of RA with AFBO (14.86 kcal/mol) is significantly lower than the activation free energy for the competing reaction of AFBO with guanine (16.88 kcal/mol), which indicates that RA acts as an efficient natural scavenger of AFBO, potentially preventing AFB1-specific DNA adduct formation. The chemoprotective activity of RA was confirmed through in vitro experiments, which demonstrated a statistically significant (p < 0.05) reduction in AFB1-induced single- and double-strand breaks in HepG2 cells exposed to a mixture of AFB1 and RA at non-cytotoxic concentrations. In addition, RA reversed the AFB1-induced reduction in cell proliferation. Full article
(This article belongs to the Special Issue Potential Health Benefits of Plant Food-Derived Bioactive Compounds)
Show Figures

Graphical abstract

37 pages, 7538 KB  
Review
Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review
by Innokenty M. Mokhosoev, Dmitry V. Astakhov, Alexander A. Terentiev and Nurbubu T. Moldogazieva
Cells 2024, 13(23), 1958; https://doi.org/10.3390/cells13231958 - 26 Nov 2024
Cited by 17 | Viewed by 6409
Abstract
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that [...] Read more.
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug–drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. Conclusions: The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumor Pathogenesis)
Show Figures

Figure 1

14 pages, 5332 KB  
Article
Differential Effects of Biomimetic Thymine Dimers and Corresponding Photo-Adducts in Primary Human Keratinocytes and Fibroblasts
by Rosanna Monetta, Denise Campagna, Valeria Bartolocci, Alessio Capone, Massimo Teson, Silvia Filippi, Sofia Gabellone, Davide Piccinino, Raffaele Saladino and Elena Dellambra
Biomolecules 2024, 14(12), 1484; https://doi.org/10.3390/biom14121484 - 21 Nov 2024
Cited by 1 | Viewed by 1465
Abstract
UVB radiation induces DNA damage generating several thymine photo-adducts (TDPs), which can lead to mutations and cellular transformation. The DNA repair pathways preserve genomic stability by recognizing and removing photodamage. These DNA repair side products may affect cellular processes. We previously synthesized novel [...] Read more.
UVB radiation induces DNA damage generating several thymine photo-adducts (TDPs), which can lead to mutations and cellular transformation. The DNA repair pathways preserve genomic stability by recognizing and removing photodamage. These DNA repair side products may affect cellular processes. We previously synthesized novel thymine biomimetic thymine dimers (BTDs) bearing different alkane spacers between nucleobases. Thus, the present study investigates whether novel BTDs and their TDPs can modulate DNA damage safeguard pathways of primary keratinocytes and fibroblasts using 2D and 3D models. We found that the p53/p21waf1 pathway is activated by BTDs and TDPs in primary cells similar to UVB exposure. Compound 1b can also induce the p53/p21waf1 pathway in a 3D skin model. However, BTDs and TDPs exhibit distinct effects on cell survival. They have a protective action in keratinocytes, which maintain their clonogenic ability following treatments. Conversely, compounds induce pro-apoptotic pathways in fibroblasts that exhibit reduced clonogenicity. Moreover, compounds induce inflammatory cytokines mainly in keratinocytes rather than fibroblasts. Matrix metalloproteinase 1 is up-regulated in both cell types after treatments. Therefore, BTDs and TDPs can act in the short term as safeguard mechanisms helping DNA damage response. Furthermore, they have distinct biological effects depending on photodamage form and cell type. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Graphical abstract

13 pages, 1269 KB  
Article
Variable Inhibition of DNA Unwinding Rates Catalyzed by the SARS-CoV-2 Helicase Nsp13 by Structurally Distinct Single DNA Lesions
by Ana H. Sales, Iwen Fu, Alexander Durandin, Sam Ciervo, Tania J. Lupoli, Vladimir Shafirovich, Suse Broyde and Nicholas E. Geacintov
Int. J. Mol. Sci. 2024, 25(14), 7930; https://doi.org/10.3390/ijms25147930 - 19 Jul 2024
Viewed by 3313
Abstract
The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5′ → 3′ direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected [...] Read more.
The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5′ → 3′ direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[a]pyrene (B[a]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6–4) pyrimidone (6–4PP) photolesion. The experimentally observed unwinding rate constants (kobs) and processivities (P) were examined. Relative to undamaged DNA, the kobs values were diminished by factors of up to ~15 for B[a]P adducts but only by factors of ~2–5 for photolesions. A minor-groove-oriented B[a]P adduct showed the smallest impact on P, which decreased by ~11% compared to unmodified DNA, while an intercalated one reduced P by ~67%. However, the photolesions showed a greater impact on the processivities; notably, the CPD, with the highest kobs value, exhibited the lowest P, which was reduced by ~90%. Our findings thus show that DNA unwinding efficiencies are lesion-dependent and most strongly inhibited by the CPD, leading to the conclusion that processivity is a better measure of DNA lesions’ inhibitory effects than unwinding rate constants. Full article
(This article belongs to the Special Issue Protein and DNA Interactions: 2nd Edition)
Show Figures

Figure 1

19 pages, 2300 KB  
Article
Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries
by Alessandra Piras, Silvia Porcedda, Antonella Smeriglio, Domenico Trombetta, Mariella Nieddu, Franca Piras, Valeria Sogos and Antonella Rosa
Molecules 2024, 29(11), 2577; https://doi.org/10.3390/molecules29112577 - 30 May 2024
Cited by 6 | Viewed by 2624
Abstract
This study investigates the chemical composition, nutritional, and biological properties of extracts obtained from A. melanocarpa berries using different extraction methods and solvents. Hydrodistillation and supercritical fluid extraction with CO2 allowed us to isolate fruit essential oil (HDEX) and fixed [...] Read more.
This study investigates the chemical composition, nutritional, and biological properties of extracts obtained from A. melanocarpa berries using different extraction methods and solvents. Hydrodistillation and supercritical fluid extraction with CO2 allowed us to isolate fruit essential oil (HDEX) and fixed oil (SFEEX), respectively. A phenol-enriched extract was obtained using a mild ultrasound-assisted maceration with methanol (UAMM). The HDEX most abundant component, using gas chromatography-mass spectrometry (GC/MS), was italicene epoxide (17.2%), followed by hexadecanoic acid (12.4%), khusinol (10.5%), limonene (9.7%), dodecanoic acid (9.7%), and (E)-anethole (6.1%). Linoleic (348.9 mg/g of extract, 70.5%), oleic (88.9 mg/g, 17.9%), and palmitic (40.8 mg/g, 8.2%) acids, followed by α-linolenic and stearic acids, were the main fatty acids in SFEEX determined using high-performance liquid chromatography coupled with a photodiode array detector and an evaporative light scattering detector (HPLC-DAD/ELSD). HPLC-DAD analyses of SFEEX identified β-carotene as the main carotenoid (1.7 mg/g), while HPLC with fluorescence detection (FLU) evidenced α-tocopherol (1.2 mg/g) as the most abundant tocopherol isoform in SFEEX. Liquid chromatography-electrospray ionization-MS (LC-ESI-MS) analysis of UAMM showed the presence of quercetin-sulfate (15.6%, major component), malvidin 3-O-(6-O-p-coumaroyl) glucoside-4-vinylphenol adduct (pigment B) (9.3%), di-caffeoyl coumaroyl spermidine (7.6%), methyl-epigallocatechin (5.68%), and phloretin (4.1%), while flavonoids (70.5%) and phenolic acids (23.9%) emerged as the most abundant polyphenol classes. UAMM exerted a complete inhibition of the cholesterol oxidative degradation at 140 °C from 75 μg of extract, showing 50% protection at 30.6 μg (IA50). Furthermore, UAMM significantly reduced viability (31–48%) in A375 melanoma cells in the range of 500–2000 μg/mL after 96 h of incubation (MTT assay), with a low toxic effect in normal HaCaT keratinocytes. The results of this research extend the knowledge of the nutritional and biological properties of A. melanocarpa berries, providing useful information on specific extracts for potential food, cosmetic, and pharmaceutical applications. Full article
Show Figures

Graphical abstract

16 pages, 2885 KB  
Article
Attenuation of Polycyclic Aromatic Hydrocarbon (PAH)-Induced Carcinogenesis and Tumorigenesis by Omega-3 Fatty Acids in Mice In Vivo
by Guobin Xia, Guodong Zhou, Weiwu Jiang, Chun Chu, Lihua Wang and Bhagavatula Moorthy
Int. J. Mol. Sci. 2024, 25(7), 3781; https://doi.org/10.3390/ijms25073781 - 28 Mar 2024
Cited by 2 | Viewed by 2239
Abstract
Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as [...] Read more.
Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people. Full article
(This article belongs to the Special Issue Cytochrome P450 (CYP) 2.0)
Show Figures

Figure 1

19 pages, 8701 KB  
Article
Deciphering the Molecular Mechanisms of Reactive Metabolite Formation in the Mechanism-Based Inactivation of Cytochrome p450 1B1 by 8-Methoxypsoralen and Assessing the Driving Effect of phe268
by Emadeldin M. Kamel, Maha A. Alwaili, Hassan A. Rudayni, Ahmed A. Allam and Al Mokhtar Lamsabhi
Molecules 2024, 29(7), 1433; https://doi.org/10.3390/molecules29071433 - 22 Mar 2024
Cited by 39 | Viewed by 2090
Abstract
This study provides a comprehensive computational exploration of the inhibitory activity and metabolic pathways of 8-methoxypsoralen (8-MP), a furocoumarin derivative used for treating various skin disorders, on cytochrome P450 (P450). Employing quantum chemical DFT calculations, molecular docking, and molecular dynamics (MD) simulations analyses, [...] Read more.
This study provides a comprehensive computational exploration of the inhibitory activity and metabolic pathways of 8-methoxypsoralen (8-MP), a furocoumarin derivative used for treating various skin disorders, on cytochrome P450 (P450). Employing quantum chemical DFT calculations, molecular docking, and molecular dynamics (MD) simulations analyses, the biotransformation mechanisms and the active site binding profile of 8-MP in CYP1B1 were investigated. Three plausible inactivation mechanisms were minutely scrutinized. Further analysis explored the formation of reactive metabolites in subsequent P450 metabolic processes, including covalent adduct formation through nucleophilic addition to the epoxide, 8-MP epoxide hydrolysis, and non-CYP-catalyzed epoxide ring opening. Special attention was paid to the catalytic effect of residue Phe268 on the mechanism-based inactivation (MBI) of P450 by 8-MP. Energetic profiles and facilitating conditions revealed a slight preference for the C4′=C5′ epoxidation pathway, while recognizing a potential kinetic competition with the 8-OMe demethylation pathway due to comparable energy demands. The formation of covalent adducts via nucleophilic addition, particularly by phenylalanine, and the generation of potentially harmful reactive metabolites through autocatalyzed ring cleavage are likely to contribute significantly to P450 metabolism of 8-MP. Our findings highlight the key role of Phe268 in retaining 8-MP within the active site of CYP1B1, thereby facilitating initial oxygen addition transition states. This research offers crucial molecular-level insights that may guide the early stages of drug discovery and risk assessment related to the use of 8-MP. Full article
(This article belongs to the Special Issue Cytochrome P450)
Show Figures

Figure 1

14 pages, 3486 KB  
Article
A Triplet/Singlet Ground-State Switch via the Steric Inhibition of Conjugation in 4,6-Bis(trifluoromethyl)-1,3-phenylene Bisnitroxide
by Nagito Haga and Takayuki Ishida
Molecules 2024, 29(1), 70; https://doi.org/10.3390/molecules29010070 - 21 Dec 2023
Cited by 3 | Viewed by 1903
Abstract
Ground triplet 4,6-bis(trifluoromethyl)-1,3-phenylene bis(tert-butyl nitroxide) (TF2PBN) reacted with [Y(hfac)3(H2O)2] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), affording a doubly hydrogen-bonded adduct [Y(hfac)3(H2O)2(TF2PBN)]. The biradical was recovered from the adduct through recrystallization. Crystallographic analysis [...] Read more.
Ground triplet 4,6-bis(trifluoromethyl)-1,3-phenylene bis(tert-butyl nitroxide) (TF2PBN) reacted with [Y(hfac)3(H2O)2] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), affording a doubly hydrogen-bonded adduct [Y(hfac)3(H2O)2(TF2PBN)]. The biradical was recovered from the adduct through recrystallization. Crystallographic analysis indicates that the torsion angles (|θ| ≤ 90°) between the benzene ring and nitroxide groups were 74.9 and 84.8° in the adduct, which are larger than those of the starting material TF2PBN. Steric congestion due to o-trifluoromethyl groups gives rise to the reduction of π-conjugation. Two hydrogen bonds enhance this deformation. Susceptometry of the adduct indicates a ground singlet with 2J/kB = −128(2) K, where 2J corresponds to the singlet–triplet gap. The observed magneto-structure relation is qualitatively consistent with Rajca’s pioneering work. A density functional theory calculation at the UB3LYP/6-311+G(2d,p) level using the atomic coordinates determined provided a result of 2J/kB = −162.3 K for the adduct, whilst the corresponding calculation on intact TF2PBN provided +87.2 K. After a comparison among a few known compounds, the 2J vs. |θ| plot shows a negative slope with a critical torsion of 65(3)°. The ferro- and antiferromagnetic coupling contributions are balanced in TF2PBN, being responsible for ground-state interconversion by means of small structural perturbation like hydrogen bonds. Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials)
Show Figures

Graphical abstract

15 pages, 2621 KB  
Article
Characterizing Benzo[a]pyrene Adducts in Transfer RNAs Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS)
by Cassandra Herbert, Corinna L. Ohrnberger, Ella Quinlisk, Balasubrahmanyam Addepalli and Patrick A. Limbach
Biomedicines 2023, 11(12), 3270; https://doi.org/10.3390/biomedicines11123270 - 11 Dec 2023
Cited by 3 | Viewed by 1924
Abstract
The activated forms of the environmental pollutant benzo[a]pyrene (B[a]P), such as benzo[a]pyrene diol epoxide (BPDE), are known to cause damage to genomic DNA and proteins. However, the impact of BPDE on ribonucleic acid (RNA) remains unclear. To understand the full spectrum of potential [...] Read more.
The activated forms of the environmental pollutant benzo[a]pyrene (B[a]P), such as benzo[a]pyrene diol epoxide (BPDE), are known to cause damage to genomic DNA and proteins. However, the impact of BPDE on ribonucleic acid (RNA) remains unclear. To understand the full spectrum of potential BPDE-RNA adducts formed, we reacted ribonucleoside standards with BPDE and characterized the reaction products using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To understand the potential types of adducts that could form with biological RNAs, eukaryotic transfer RNAs (tRNAs) were also reacted with BPDE. The isolation and analysis of the modified and adducted ribonucleosides using LC-MS/MS revealed several BPDE derivatives of post-transcriptional modifications. The approach outlined in this work enables the identification of RNA adducts from BPDE, which can pave the way for understanding the potential impacts of such adducts on the higher-order structure and function of modified RNAs. Full article
(This article belongs to the Special Issue Technologies and Methods for Studying Epitranscriptomes)
Show Figures

Figure 1

12 pages, 1691 KB  
Article
Treatment of Metaphyseal Defects in Plated Proximal Humerus Fractures with a New Augmentation Technique—A Biomechanical Cadaveric Study
by Daniel Zhelev, Stoyan Hristov, Ivan Zderic, Stoyan Ivanov, Luke Visscher, Asen Baltov, Simeon Ribagin, Karl Stoffel, Franz Kralinger, Jörg Winkler, R. Geoff Richards, Peter Varga and Boyko Gueorguiev
Medicina 2023, 59(9), 1604; https://doi.org/10.3390/medicina59091604 - 5 Sep 2023
Cited by 1 | Viewed by 2102
Abstract
Background and Objectives: Unstable proximal humerus fractures (PHFs) with metaphyseal defects—weakening the osteosynthesis construct—are challenging to treat. A new augmentation technique of plated complex PHFs with metaphyseal defects was recently introduced in the clinical practice. This biomechanical study aimed to analyze the [...] Read more.
Background and Objectives: Unstable proximal humerus fractures (PHFs) with metaphyseal defects—weakening the osteosynthesis construct—are challenging to treat. A new augmentation technique of plated complex PHFs with metaphyseal defects was recently introduced in the clinical practice. This biomechanical study aimed to analyze the stability of plated unstable PHFs augmented via implementation of this technique versus no augmentation. Materials and Methods: Three-part AO/OTA 11-B1.1 unstable PHFs with metaphyseal defects were created in sixteen paired human cadaveric humeri (average donor age 76 years, range 66–92 years), pairwise assigned to two groups for locked plate fixation with identical implant configuration. In one of the groups, six-milliliter polymethylmethacrylate bone cement with medium viscosity (seven minutes after mixing) was placed manually through the lateral window in the defect of the humerus head after its anatomical reduction to the shaft and prior to the anatomical reduction of the greater tuberosity fragment. All specimens were tested biomechanically in a 25° adduction, applying progressively increasing cyclic loading at 2 Hz until failure. Interfragmentary movements were monitored by motion tracking and X-ray imaging. Results: Initial stiffness was not significantly different between the groups, p = 0.467. Varus deformation of the humerus head fragment, fracture displacement at the medial humerus head aspect, and proximal screw migration and cut-out were significantly smaller in the augmented group after 2000, 4000, 6000, 8000 and 10,000 cycles, p ≤ 0.019. Cycles to 5° varus deformation of the humerus head fragment—set as a clinically relevant failure criterion—and failure load were significantly higher in the augmented group, p = 0.018. Conclusions: From a biomechanical standpoint, augmentation with polymethylmethacrylate bone cement placed in the metaphyseal humerus head defect of plated unstable PHFs considerably enhances fixation stability and can reduce the risk of postoperative complications. Full article
Show Figures

Figure 1

13 pages, 5383 KB  
Communication
1,8-Dihydroxy Naphthalene—A New Building Block for the Self-Assembly with Boronic Acids and 4,4′-Bipyridine to Stable Host–Guest Complexes with Aromatic Hydrocarbons
by Chamila P. Manankandayalage, Daniel K. Unruh, Ryan Perry and Clemens Krempner
Molecules 2023, 28(14), 5394; https://doi.org/10.3390/molecules28145394 - 14 Jul 2023
Viewed by 2129
Abstract
The new Lewis acid–base adducts of general formula X(nad)B←NC5H4-C5H4N→B(nad)X [nad = 1,8-O2C10H6, X = C6H5 (2c), 3,4,5-F3-C6H2 (2d)] [...] Read more.
The new Lewis acid–base adducts of general formula X(nad)B←NC5H4-C5H4N→B(nad)X [nad = 1,8-O2C10H6, X = C6H5 (2c), 3,4,5-F3-C6H2 (2d)] were synthesized in high yields via reactions of 1,8-dihydroxy naphthalene [nadH2] and 4,4′-bipyridine with the aryl boronic acids C6H5B(OH)2 and 3,4,5-F3-C6H2B(OH)2, respectively, and structurally characterized by multi-nuclear NMR spectroscopy and SCXRD. Self-assembled H-shaped Lewis acid–base adduct 2d proved to be effective in forming thermally stable host–guest complexes, 2d × solvent, with aromatic hydrocarbon solvents such as benzene, toluene, mesitylene, aniline, and m-, p-, and o-xylene. Crystallographic analysis of these solvent adducts revealed host–guest interactions to primarily occur via π···π contacts between the 4,4′-bipyridyl linker and the aromatic solvents, resulting in the formation of 1:1 and 1:2 host–guest complexes. Thermogravimetric analysis of the isolated complexes 2d × solvent revealed their high thermal stability with peak temperatures associated with the loss of solvent ranging from 122 to 147 °C. 2d, when self-assembled in an equimolar mixture of m-, p-, and o-xylene (1:1:1), preferentially binds to o-xylene. Collectively, these results demonstrate the ability of 1,8-dihydroxy naphthalene to serve as an effective building block in the selective self-assembly to supramolecular aggregates through dative covalent N→B bonds. Full article
Show Figures

Graphical abstract

Back to TopTop