Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,994)

Search Parameters:
Keywords = B-cell targeting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4758 KB  
Article
Arctigenin from Saussurea medusa Maxim. Targets the PI3K/AKT Pathway to Inhibit Hepatocellular Carcinoma Proliferation and Induces Apoptosis
by Ruitao Yu, Jinghua Chen and Ruixue Yu
Nutrients 2025, 17(19), 3151; https://doi.org/10.3390/nu17193151 - 2 Oct 2025
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly lethal malignancy with limited therapeutic options. Arctigenin (ARC), a natural lignan derived from Saussurea medusa, exhibits anti-cancer activity, but its mechanism against HCC remain incompletely elucidated. Methods: This study integrated network pharmacology, molecular docking, molecular [...] Read more.
Background: Hepatocellular carcinoma (HCC) is a highly lethal malignancy with limited therapeutic options. Arctigenin (ARC), a natural lignan derived from Saussurea medusa, exhibits anti-cancer activity, but its mechanism against HCC remain incompletely elucidated. Methods: This study integrated network pharmacology, molecular docking, molecular dynamics, in vitro, and in vivo experiments to investigate ARC’s anti-HCC effects. Results: Seventy-five potential targets shared between ARC and HCC were identified, with KEGG analysis highlighting the PI3K/AKT pathway as central. ARC showed strong binding to key proteins, and molecular dynamics indicated stable interactions with PIK3CA and GSK3B. In HepG2 cells, ARC inhibited proliferation in a dose- and time-dependent manner (IC50: 11.17 μM at 24 h, 4.888 μM at 48 h), induced apoptosis at high concentrations, suppressed PIK3CA phosphorylation, and increased GSK3B (Ser9) phosphorylation. In H22 tumor-bearing mice, ARC dose-dependently inhibited tumor growth (high dose: 50.6% vs. 63.0% for CTX) with minimal weight loss. Conclusions: These findings suggest ARC suppresses HCC by modulating the PI3K/AKT pathway, providing evidence for its development as a plant-derived therapeutic agent. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 5272 KB  
Article
Cyclodextrin Counteracts Coxsackievirus-Induced Cardiac Damage by Protecting Desmosome Integrity and Suppressing Proinflammatory Cytokine Expression
by Guangze Zhao, Huifang M. Zhang, Grace J. Zhang, Wenli Yang, Christoph Küper, Bruce M. McManus and Decheng Yang
Microorganisms 2025, 13(10), 2294; https://doi.org/10.3390/microorganisms13102294 - 2 Oct 2025
Abstract
Nuclear factor of activated T cells 5 (NFAT5), an osmosensitive transcription factor, has been shown to protect against coxsackievirus B3 (CVB3)-induced myocarditis but is susceptible to cleavage by viral proteases. Identifying agents that upregulate NFAT5 may offer a novel antiviral strategy. Cyclodextrins, cyclic [...] Read more.
Nuclear factor of activated T cells 5 (NFAT5), an osmosensitive transcription factor, has been shown to protect against coxsackievirus B3 (CVB3)-induced myocarditis but is susceptible to cleavage by viral proteases. Identifying agents that upregulate NFAT5 may offer a novel antiviral strategy. Cyclodextrins, cyclic oligosaccharides that influence cellular osmolality, are promising candidates. In this study, we demonstrate that NFAT5 is critical for maintaining desmosomal integrity in cardiomyocytes. Cardiac-specific Nfat5-knockout mice showed a significant reduction in desmosomes, as observed by transmission electron microscopy. Furthermore, we identified desmoplakin (DSP), a structural desmosomal protein, as a direct transcriptional target of NFAT5, with reduced expression in Nfat5-knockout mouse hearts and NFAT5-knockdown HeLa cells. Notably, treatment with 5 mM cyclodextrin significantly upregulated NFAT5 expression with minimal cytotoxicity, restored DSP expression, and suppressed CVB3 replication by inhibiting viral RNA transcription, protein synthesis, and virion production. Additionally, cyclodextrin reduced mRNA levels of proinflammatory cytokines interleukin-1 beta and interleukin-8, indicating its potential role as an alleviator of excessive cytokine production. These findings identify NFAT5 as a key regulator of desmoplakin expression and prove cyclodextrin as a dual-functioning agent in counteracting cardiac damage through NFAT5-DSP-mediated protection of desmosome integrity and suppressing proinflammatory cytokine expression in CVB3-induced myocarditis. Full article
(This article belongs to the Special Issue Viral Proteases in Viral Infection and Drug Development)
Show Figures

Figure 1

18 pages, 1688 KB  
Article
Thymoquinone Upregulates microRNA-199a-3p and Downregulates COX-2 Expression and PGE2 Production via Deactivation of p38/ERK/JNK-MAPKs and p65/p50-NF-κB Signaling in Human Lung Cancer Cells
by Yusuf Saleem Khan, Aisha Farhana, Ghorashy E. Y. Mohammed, Abuzar Abdulwahab Osman, Abdullah Alsrhani, Syed M. A. Shahid, Mohammed Kuddus and Zafar Rasheed
Biology 2025, 14(10), 1348; https://doi.org/10.3390/biology14101348 - 2 Oct 2025
Abstract
Chronic inflammation driven by Cyclooxygenase-2 (COX-2) overexpression plays a key role in lung cancer (LC) progression, making it a critical therapeutic target. This study explores thymoquinone (TQ), a potent bioactive phytochemical derived from Nigella sativa, known for its anti-inflammatory and anti-cancer effects, focusing [...] Read more.
Chronic inflammation driven by Cyclooxygenase-2 (COX-2) overexpression plays a key role in lung cancer (LC) progression, making it a critical therapeutic target. This study explores thymoquinone (TQ), a potent bioactive phytochemical derived from Nigella sativa, known for its anti-inflammatory and anti-cancer effects, focusing on its ability to suppress lipopolysaccharide (LPS)-induced COX-2 expression via microRNA hsa-miR-199a-3p modulation in LC cells. Using A549 and SHP-77 LC cells, we tested the effect of TQ under LPS stimulation and miRNA inhibition. Advanced techniques like TaqMan qPCR, luciferase reporter gene constructs, and anti-miRNA transfection confirmed that miR-199a-3p directly silences COX-2. Western blot and ELISA assays revealed that TQ dramatically reduces COX-2 protein and PGE2 levels by boosting miRNA-199a-3p. Importantly, TQ also blocked MAPK (p38, JNK, ERK) and NF-κB activation, even when miR-199a-3p was suppressed, proving its multi-targeted action beyond miRNA regulation. These findings reveal a novel anti-inflammatory mechanism, where TQ curbs COX-2-driven inflammation by enhancing miR-199a-3p, simultaneously shutting down pro-cancer MAPK/NF-κB signaling pathways. Given the strong link between chronic inflammation and LC aggressiveness, this study positions TQ as a promising therapeutic candidate, especially for inflammation-mediated lung cancer progression. Its dual ability to modulate miRNA and key signaling cascades makes it a compelling option for future LC treatment strategies. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
Show Figures

Figure 1

28 pages, 3546 KB  
Article
SCAMP3-Driven Regulation of ERK1/2 and Autophagy Phosphoproteomics Signatures in Triple-Negative Breast Cancer
by Beatriz M. Morales-Cabán, Yadira M. Cantres-Rosario, Eduardo L. Tosado-Rodríguez, Abiel Roche-Lima, Loyda M. Meléndez, Nawal M. Boukli and Ivette J. Suarez-Arroyo
Int. J. Mol. Sci. 2025, 26(19), 9577; https://doi.org/10.3390/ijms26199577 - 1 Oct 2025
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors show therapeutic potential in triple-negative breast cancer (TNBC), but resistance through compensatory signaling limits their efficacy. We previously identified the secretory carrier membrane protein 3 (SCAMP3) as a regulator of TNBC progression and ERK1/2 activation. Here, we [...] Read more.
Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitors show therapeutic potential in triple-negative breast cancer (TNBC), but resistance through compensatory signaling limits their efficacy. We previously identified the secretory carrier membrane protein 3 (SCAMP3) as a regulator of TNBC progression and ERK1/2 activation. Here, we investigated the role of SCAMP3 in ERK1/2 signaling and therapeutic response using TMT-based LC-MS/MS phosphoproteomics of wild-type (WT) and SCAMP3 knockout (SC3KO) SUM-149 cells under basal conditions, after epidermal growth factor (EGF) stimulation, and during ERK1/2 inhibition with MK-8353. A total of 4408 phosphosites were quantified, with 1093 significantly changed. SC3KO abolished residual ERK activity under MK-8353 and affected the compensatory activation of oncogenic pathways observed in WT cells. SC3KO reduced the phosphorylation of ERK feedback regulators RAF proto-oncogene serine/threonine-protein kinase Raf-1 (S43) and the dual-specificity mitogen-activated protein kinase kinase 2 (MEK2) (T394), affected other ERK targets, including nucleoporins, transcription factors, and metabolic enzymes triosephosphate isomerase (TPI1) (S21) and ATP-citrate lyase (ACLY) (S455). SCAMP3 loss also impaired the mammalian target of rapamycin complex I (mTORC1) signaling and disrupted autophagic flux, evidenced by elevated sequestosome-1 (SQSTM1/p62) and microtubule-associated protein light chain 3 (LC3B-II) with reduced levels of the autophagosome lysosome maturation marker, Rab7A. Beyond ERK substrates, SC3KO affected phosphorylation events mediated by other kinases. These findings position SCAMP3 as a central coordinator of ERK signaling and autophagy. Our results support SCAMP3 as a potential therapeutic target to enhance ERK1/2 inhibitor clinical efficacy and overcome adaptive resistance mechanisms in TNBC. Full article
Show Figures

Figure 1

34 pages, 22066 KB  
Article
Gadd45B Deficiency Drives Radio-Resistance in BRAFV600E-Mutated Differentiated Thyroid Cancer by Disrupting Iodine Metabolic Genes
by Shan Jiang, Zhiwen Hong, Qianjiang Wu, Rouhan A, Zhaobo Wang, Xue Guan, Xinghua Wang, Ari A. Kassardjian, Yali Cui and Tengchuang Ma
Cancers 2025, 17(19), 3201; https://doi.org/10.3390/cancers17193201 - 30 Sep 2025
Abstract
Background: Differentiated thyroid cancer (DTC) is commonly treated with radioactive iodine (RAI), but resistance to RAI remains a significant clinical challenge. The molecular mechanisms driving dedifferentiation and RAI refractoriness, particularly in BRAFV600E-mutated tumors, are not fully understood. Methods: RNA sequencing was [...] Read more.
Background: Differentiated thyroid cancer (DTC) is commonly treated with radioactive iodine (RAI), but resistance to RAI remains a significant clinical challenge. The molecular mechanisms driving dedifferentiation and RAI refractoriness, particularly in BRAFV600E-mutated tumors, are not fully understood. Methods: RNA sequencing was conducted on BRAFV600E-mutated DTC and RAIR-DTC tissue samples to identify differentially expressed genes. Gadd45B was identified as significantly downregulated in RAIR-DTC. Functional studies including overexpression and knockdown experiments were performed in thyroid cancer cell lines and xenograft models. Downstream targets, including MAP3K4 and MYCBP, were evaluated through co-immunoprecipitation, luciferase assays, and Western blot. The therapeutic efficacy of recombinant Gadd45B protein in combination with BRAFV600E and TERT inhibitors was assessed in patient-derived xenograft (PDX) models. Results: Gadd45B overexpression suppressed MAPK pathway activity by interacting with MAP3K4 and downregulated c-MYC stability through competition with MYCBP. These interactions enhanced the expression of iodine-metabolism genes (NIS, TPO, Tg), increased RAI uptake, and reversed tumor dedifferentiation. In vivo, Gadd45B restoration reduced tumor burden and improved RAI uptake. Combined treatment with Gadd45B protein, PLX4720, and BIBR1532 produced synergistic therapeutic effects in PDX models. Conclusions: Gadd45B plays a pivotal role in regulating the differentiation status and RAI sensitivity of BRAFV600E-mutated thyroid cancer. These findings identify Gadd45B as a promising therapeutic target for restoring RAI responsiveness in RAIR-DTC patients. Full article
(This article belongs to the Special Issue Advanced Research on Radioresistant Tumors)
22 pages, 1443 KB  
Article
Unveiling Metabolic Subtypes in Endometrial Cancer Cell Lines: Insights from Metabolomic Analysis Under Standard and Stress Conditions
by Lana McCaslin, Simon Lagies, Daniel A. Mohl, Dietmar A. Plattner, Markus Jäger, Claudia Nöthling, Matthias C. Huber, Ingolf Juhasz-Böss, Bernd Kammerer and Clara Backhaus
Int. J. Mol. Sci. 2025, 26(19), 9573; https://doi.org/10.3390/ijms26199573 - 30 Sep 2025
Abstract
Endometrial carcinoma (EC) is the most common malignancy of the female reproductive tract, with increasing incidence driven by aging populations and obesity. While molecular classification has improved diagnostic precision, the identification of clinically relevant metabolic biomarkers remains incomplete, and targeted therapies are not [...] Read more.
Endometrial carcinoma (EC) is the most common malignancy of the female reproductive tract, with increasing incidence driven by aging populations and obesity. While molecular classification has improved diagnostic precision, the identification of clinically relevant metabolic biomarkers remains incomplete, and targeted therapies are not yet standardized. In this study, we investigated metabolic alterations in four EC cell lines (AN3-CA, EFE-184, HEC-1B and MFE-296) compared to non-malignant controls under normoxic and stress conditions (hypoxia and lactic acidosis) to identify metabolomic differences with potential clinical relevance. Untargeted gas chromatography–mass spectrometry (GC/MS) and targeted liquid chromatography–mass spectrometry (LC/MS) profiling revealed two distinct metabolic subtypes of EC. Cells of metabolic subtype 1 (AN3-CA and EFE-184) exhibited high biosynthetic and energy demands, enhanced cholesterol and hexosyl-ceramides synthesis and increased RNA stability, consistent with classical cancer-associated metabolic reprogramming. Cells of metabolic subtype 2 (HEC-1B and MFE-296) displayed a phospholipid-dominant metabolic profile and greater hypoxia tolerance, suggesting enhanced tumor aggressiveness and metastatic potential. Key metabolic findings were validated via real-time quantitative PCR. This study identifies and characterizes distinct metabolic subtypes of EC within the investigated cancer cell lines, thereby contributing to a better understanding of tumor heterogeneity. The results provide a basis for potential diagnostic differentiation based on specific metabolic profiles and may support the identification of novel therapeutic targets. Further validation in three-dimensional culture models and ultimately patient-derived samples is required to assess clinical relevance and integration with current molecular classifications. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Cancer Metabolism)
16 pages, 5726 KB  
Article
The LINC02381/let-7g-5p/THBS1 Signaling Axis Modulates Cellular Proliferative Activity in Osteosarcoma
by Jing Wang, Shuming Hou, Ning Kong, Jiashi Cao, Xiangzhi Ni, Cheng Peng, Pei Yang and Kunzheng Wang
Cancers 2025, 17(19), 3194; https://doi.org/10.3390/cancers17193194 - 30 Sep 2025
Abstract
Objective: This study aimed to elucidate the regulatory mechanisms of the long intergenic non-protein coding RNA 02381 (LINC02381)/microRNA-let-7g-5p (let-7g-5p)/thrombospondin 1 (THBS1) signaling axis in osteosarcoma (OS). Methods: The expression levels of LINC02381, let-7g-5p, [...] Read more.
Objective: This study aimed to elucidate the regulatory mechanisms of the long intergenic non-protein coding RNA 02381 (LINC02381)/microRNA-let-7g-5p (let-7g-5p)/thrombospondin 1 (THBS1) signaling axis in osteosarcoma (OS). Methods: The expression levels of LINC02381, let-7g-5p, and THBS1 were quantified in OS and adjacent normal tissues via reverse transcription quantitative polymerase chain reaction. Their correlations with clinicopathological features were analyzed. Expression patterns were further validated in OS cell lines (143B, U-2OS, Saos-2, MNNG-HOS, MG-63) and normal osteoblast cell line hFOB1.19. The molecular interaction between LINC02381 and let-7g-5p and the targeting relationship of let-7g-5p with THBS1 were verified via dual-luciferase reporter and RNA pull-down assays. Functional effects were assessed using cell counting kit-8, colony formation, Transwell migration, and xenograft tumor models. Results: Compared to adjacent normal tissues, LINC02381 and THBS1 were upregulated in OS tissues (fold change > 3.0, p < 0.001), while let-7g-5p was downregulated (fold change ≈ 0.038, p < 0.001). Similar expression trends were observed in U-2OS cells. Knockdown of LINC02381 or overexpression of let-7g-5p reduced cell proliferation, colony formation, migration, THBS1 expression, and tumor volume (p < 0.001). These inhibitory effects were partially reversed by let-7g-5p inhibitors, restoring cell viability and migration by approximately 70%. Mechanistically, LINC02381 functioned as a competing endogenous RNA (ceRNA), directly binding to let-7g-5p and mitigating its suppression of THBS1. Conclusions:LINC02381 promotes OA progression by acting as a ceRNA for let-7g-5p, thereby upregulating THBS1 expression. This signaling axis represents a potential therapeutic target for OS. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

21 pages, 11538 KB  
Article
Genomic Analysis Defines Increased Circulating, Leukemia-Induced Macrophages That Promote Immune Suppression in Mouse Models of FGFR1-Driven Leukemogenesis
by Ting Zhang, Atsuko Matsunaga, Xiaocui Lu, Hui Fang, Nandini Chatterjee, Ahmad Alimadadi, Stephanie F. Mori, Xuexiu Fang, Gavin Wang, Huidong Shi, Litao Zhang, Catherine C. Hedrick, Bo Cheng, Tianxiang Hu and John K. Cowell
Cells 2025, 14(19), 1533; https://doi.org/10.3390/cells14191533 - 30 Sep 2025
Abstract
The development of FGFR1-driven stem cell leukemia and lymphoma syndrome (SCLL) in mouse models is accompanied by an increase in highly heterogenous myeloid derived suppressor cells (MDSCs), which promote immune evasion. To dissect this heterogeneity, we used a combination of CyTOF and scRNA-Seq [...] Read more.
The development of FGFR1-driven stem cell leukemia and lymphoma syndrome (SCLL) in mouse models is accompanied by an increase in highly heterogenous myeloid derived suppressor cells (MDSCs), which promote immune evasion. To dissect this heterogeneity, we used a combination of CyTOF and scRNA-Seq to define the phenotypes and genotypes of these MDSCs. CyTOF demonstrated increased levels of circulating macrophages in the peripheral blood of leukemic mice, and flow cytometry demonstrated that these macrophages were derived from Ly6CHi M-MDSC as well as the Ly6CInt and Ly6CLow monocytic populations. Consistently, scRNA-Seq analysis demonstrated the accumulation of non-classical monocytes (ncMono) during leukemia progression, which also express macrophage markers. These leukemia-induced macrophages show continuous transcriptional reprogramming during leukemia progression, with the upregulation of cellular stress response genes Hspa1a and Hspa1b and inflammation-related gene Nfkbia. Trajectory analysis revealed a transition from classical monocytes (cMono) to ncMono, and potential genes orchestrating this transition process have been identified. Furthermore, T-cell suppression assays demonstrated the immune suppressive abilities of leukemia-induced circulatory macrophages. Targeting these macrophages with the GW2580 CSF1R inhibitor leads to restored immune surveillance and improved survival. Overall, we demonstrate that circulating macrophages are responsible, at least in part, for the immune suppression in SCLL leukemia models, and targeting macrophages in this system improves the survival of leukemic mice. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

17 pages, 2025 KB  
Article
Cerebellar Mechanisms Underlying Autism-like Cognitive Deficits in Mouse Offspring with Prenatal Valproic Acid Exposure
by Juan Wang, Xu-Lan Zhou, Zi-Han Ma, Li Liu, Qian Zhou, Jia-Wei Wen, Jia-Hui Wen, Hui Su, Yu-Han Zhang and Xiao-Chun Xia
Toxics 2025, 13(10), 833; https://doi.org/10.3390/toxics13100833 - 30 Sep 2025
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social communication and repetitive behaviors, involving various brain regions. Emerging evidence highlights the critical role of the cerebellum in the pathophysiology of autism; however, the underlying molecular mechanisms remain poorly [...] Read more.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social communication and repetitive behaviors, involving various brain regions. Emerging evidence highlights the critical role of the cerebellum in the pathophysiology of autism; however, the underlying molecular mechanisms remain poorly understood. This study aimed to establish a prenatal valproic acid (VPA)-induced mouse model of ASD and explore the potential molecular mechanisms underlying cerebellar ASD-like phenotypes through DIA-based proteomics and bioinformatics analyses. Significant cognitive impairment and anxiety-like behaviors were detected using an open field test and novel object test following VPA exposure, respectively. Additionally, reduced numbers of Purkinje cells with irregular arrangement were observed in the cerebellum. Furthermore, cerebellar proteomics analyses revealed that they identified 193 differentially expressed proteins (DEPs) involved in multiple pathways, including axon guidance, glutamatergic synapse, long-term potentiation, and calcium signaling, among others. Notably, dysfunction of glutamate receptor signaling and disruptions in axon-guidance signaling appear to be major molecular mechanisms underlying cerebellar impairment. Together, these findings suggest that Grin2b may serve as a critical molecule linking synaptic neurotransmission and neurodevelopmental disorders. Thus, Grin2b may represent a potential therapeutic target for addressing cognitive impairment in ASD. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Graphical abstract

20 pages, 2624 KB  
Article
Design and Preclinical Validation of an Anti-B7-H3-Specific Radiotracer: A Non-Invasive Imaging Tool to Guide B7-H3-Targeted Therapies
by Cyprine Neba Funeh, Fien Meeus, Niels Van Winnendael, Timo W. M. De Groof, Matthias D’Huyvetter and Nick Devoogdt
Pharmaceuticals 2025, 18(10), 1477; https://doi.org/10.3390/ph18101477 - 30 Sep 2025
Abstract
Background: B7-H3, an immunoregulatory protein of the B7 family, has been associated with both anti-cancer immunity and tumor promotion, with its expression commonly correlated with poor prognosis. Although it is frequently expressed across cancers, its heterogeneity may limit the effectiveness of B7-H3-targeted therapies. [...] Read more.
Background: B7-H3, an immunoregulatory protein of the B7 family, has been associated with both anti-cancer immunity and tumor promotion, with its expression commonly correlated with poor prognosis. Although it is frequently expressed across cancers, its heterogeneity may limit the effectiveness of B7-H3-targeted therapies. Consequently, a sensitive and non-invasive method is needed to assess B7-H3 expression for patient selection and stratification. Single-domain antibody fragments (sdAbs) offer a promising platform for developing such a diagnostic tool. Methods: To generate B7-H3 sdAbs, two Ilamas were immunized with the recombinant human B7-H3 protein. Positive clones were selected through Phage biopanning and characterized for thermal stability, binding specificity, and affinity to human and murine B7-H3 proteins. Selected sdAbs were radiolabeled with Technetium-99m (99mTc) and evaluated for B7-H3 detection in two xenograft tumor models using micro-SPECT/CT imaging and dissection studies. Results: Sixteen purified sdAbs bound specifically to recombinant B7-H3 proteins and cells expressing native B7-H3 antigens, with nanomolar affinities. The four best-performing sdAbs bound promiscuously to tested mouse and human B7-H3 isoforms. Lead sdAb C51 labeled with 99mTc displayed specific accumulation across two human B7-H3+ tumor models, achieving high contrast with a tumor-to-blood ratio of up to 10 ± 3.16, and a tumor uptake of up to 4.96 ± 1.4%IA/g at 1.5 h post injection. Conclusions: The lead sdAb enabled rapid, specific, and non-invasive imaging of human B7-H3+ tumors. Its isoform promiscuity supports broad applicability across cancers expressing different human B7-H3 isoforms. These results support further development for clinical translation to enable patient selection and improved B7-H3-targeted therapies. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Figure 1

34 pages, 4740 KB  
Article
In Silico Design and Computational Elucidation of Hypothetical Resveratrol–Curcumin Hybrids as Potential Cancer Pathway Modulators
by Nil Sazlı and Deniz Karataş
Pharmaceuticals 2025, 18(10), 1473; https://doi.org/10.3390/ph18101473 - 30 Sep 2025
Abstract
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), [...] Read more.
Background/Objectives: Cancer progression is characterized by the suppression of apoptosis, activation of metastatic processes, and dysregulation of cell proliferation. The proper functioning of these mechanisms relies on critical signaling pathways, including Phosphoinositide 3-kinase/Protein kinase B/mammalian Target of Rapamycin (PI3K/Akt/mTOR), Mitogen-Activated Protein Kinase (MAPK), and Signal Transducer and Activator of Transcription 3 (STAT3). Although curcumin and resveratrol exhibit anticancer properties and affect these pathways, their pharmacokinetic limitations, including poor bioavailability and low solubility, restrict their clinical application. The aim of our study was to evaluate the synergistic anticancer potential of curcumin and resveratrol through hybrid molecules rationally designed from these compounds to mitigate their pharmacokinetic limitations. Furthermore, we analyzed the multi-target anticancer effects of these hybrids on the AKT serine/threonine kinase 1 (AKT1), MAPK, and STAT3 pathways using in silico molecular modeling approaches. Methods: Three hybrid molecules, including a long-chain (ELRC-LC) and a short-chain (ELRC-SC) hybrid, an ester-linked hybrid, and an ether-linked hybrid (EtLRC), were designed using the Avogadro software (v1.2.0), and their geometry optimization was carried out using Density Functional Theory (DFT). The electronic properties of the structures were characterized through Frontier Molecular Orbital (FMO), Molecular Electrostatic Potential (MEP), and Fourier Transform Infrared (FTIR) analyses. The binding energies of the hybrid molecules, curcumin, resveratrol, their analogs, and the reference inhibitor were calculated against the AKT1, MAPK, and STAT3 receptors using molecular docking. The stabilities of the best-fitting complexes were evaluated through 100 ns molecular dynamics (MD) simulations, and their binding free energies were estimated using the Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method. Results: DFT analyses demonstrated stable electronic characteristics for the hybrids. Molecular docking analyses revealed that the hybrids exhibited stronger binding compared to curcumin and resveratrol. The binding energy of −11.4 kcal/mol obtained for the ELRC-LC hybrid against AKT1 was particularly remarkable. Analysis of 100 ns MD simulations confirmed the conformational stability of the hybrids. Conclusions: Hybrid molecules have been shown to exert multi-target mechanisms of action on the AKT1, MAPK, and STAT3 pathways, and to represent potential anticancer candidates capable of overcoming pharmacokinetic limitations. Our in silico-based study provides data that will guide future in vitro and in vivo studies. These rationally designed hybrid molecules, owing to their receptor affinity, may serve as de novo hybrid inhibitors. Full article
Show Figures

Figure 1

17 pages, 3218 KB  
Article
Antiviral Activity of Eugenol Against Largemouth Bass Ranavirus Through Regulation of Autophagy and Apoptosis In Vitro and In Vivo
by Yewen Wang, Lifang Cao, Leshan Ruan, Xingyu Chen, Chunhui Song, Shina Wei and Yunchang Xie
Microorganisms 2025, 13(10), 2281; https://doi.org/10.3390/microorganisms13102281 - 30 Sep 2025
Abstract
Largemouth bass ranavirus (LMBV) causes high mortality rate in largemouth bass during outbreaks, resulting in huge economic losses. Eugenol (EUG) has potent antiviral activity, showing promising potential against LMBV. Thus, to investigate EUG’s efficacy against LMBV, corresponding analysis was conducted in vivo and [...] Read more.
Largemouth bass ranavirus (LMBV) causes high mortality rate in largemouth bass during outbreaks, resulting in huge economic losses. Eugenol (EUG) has potent antiviral activity, showing promising potential against LMBV. Thus, to investigate EUG’s efficacy against LMBV, corresponding analysis was conducted in vivo and in vitro. Firstly, EUG demonstrated to be able to down-regulate both the mRNA and protein levels of the major capsid protein (MCP) in LMBV-infected cells. In addition, EUG could inhibit the expression of cleaved-caspase-3 in LMBV-infected fathead minnow (FHM) cell. On the other hand, EUG would not only directly regulate the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway but also affect the AMP-activated protein kinase (AMPK) pathway in FHM cells during LMBV infection. These results indicated that EUG exerts its antiviral effects by modulating both LMBV-induced apoptosis and autophagy. Notably, EUG reduced the viral load present within the tissues of LMBV-infected largemouth bass, thereby ultimately enhancing their survival rate in the culture environment by about 20%. These mechanistic assays revealed the anti-LMBV properties of EUG, which could significantly enrich the research content of plant extracts in the field of aquatic antiviral, and provide important theoretical basis for the development and application of related products. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

31 pages, 23793 KB  
Article
Identification and Validation of a Macrophage Phagocytosis-Related Gene Signature for Prognostic Prediction in Colorectal Cancer (CRC)
by Xibao Zhao, Binbin Tan, Jinxu Yang and Shanshan Liu
Curr. Issues Mol. Biol. 2025, 47(10), 804; https://doi.org/10.3390/cimb47100804 - 29 Sep 2025
Abstract
Emerging evidence highlights the critical role of phagocytosis-related genes in CRC progression, underscoring the need for novel phagocytosis-based prognostic models to predict clinical outcomes. In this study, a four-gene (SPHK1, VSIG4, FCGR2B and FPR2) signature associated with CRC prognosis was developed using single-sample [...] Read more.
Emerging evidence highlights the critical role of phagocytosis-related genes in CRC progression, underscoring the need for novel phagocytosis-based prognostic models to predict clinical outcomes. In this study, a four-gene (SPHK1, VSIG4, FCGR2B and FPR2) signature associated with CRC prognosis was developed using single-sample gene set enrichment analysis (ssGSEA), least absolute shrinkage and selection operator (LASSO) regression, and univariate Cox analysis. Pathway enrichment analysis was conducted on the prognostic genes, along with evaluations of the tumor microenvironment and sensitivity to immunotherapy and chemotherapy across the high- and low-risk groups. Prognostic gene validation was performed via quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) using CRC cDNA and tissue microarrays. High-risk patients showed enhanced responsiveness to immunotherapy, while chemotherapy sensitivity varied across risk subgroups. qRT-PCR results revealed upregulation of SPHK1 and FPR2 in cancer tissues, whereas FCGR2B and VSIG4 were downregulated. IHC assays confirmed increased SPHK1 and FPR2 expression in cancer samples. Single-cell RNA sequencing analysis demonstrated a decrease in SPHK1 and FCGR2B, while VSIG4 and FPR2 progressively increased during macrophage differentiation. These findings provide a potential framework for targeted therapy. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 20431 KB  
Article
Construction of a Novel 3D Urinary Bladder Mucosa Model and Its Application in Toxicity Assessment of Arsenicals
by Runjie Guo, Min Gi, Tohru Kiyono, Arpamas Vachiraarunwong, Shugo Suzuki, Masaki Fujioka, Guiyu Qiu, Kwanchanok Praseatsook, Yurina Kawamura, Anna Kakehashi, Ikue Noura, Xiaoli Xie and Hideki Wanibuchi
Toxics 2025, 13(10), 828; https://doi.org/10.3390/toxics13100828 - 29 Sep 2025
Abstract
The urinary bladder is a primary target organ for environmental toxicants such as arsenic. The objects of this study were two-fold. First, we constructed a novel 3D urinary bladder mucosa model (3D-UBMM) composed of an overlying epithelium and a supporting subepithelial layer. Primary [...] Read more.
The urinary bladder is a primary target organ for environmental toxicants such as arsenic. The objects of this study were two-fold. First, we constructed a novel 3D urinary bladder mucosa model (3D-UBMM) composed of an overlying epithelium and a supporting subepithelial layer. Primary human bladder urothelial and fibroblast cells were immortalized by introducing the human CDK4R24C and TERT genes. The construction of the 3D-UBMM involved incorporating immortalized fibroblast cells into a collagen raft, while immortalized urothelial cells were cultured at the air-liquid interface. This 3D-UBMM closely resembles the human bladder epithelium in terms of morphology and marker protein expression, including uroplakin 1b, P63, and cytokeratin 5. Second, using the 3D-UBMM we investigated the cytotoxicity of sodium arsenite (iAsIII) and dimethylarsenic acid (DMAV). Exposure to iAsIII and DMAV resulted in increased urothelial necrosis, increased γ-H2AX-positive cells, and reduced P63-positive cells, all in a dose–response manner. These findings affirm that this novel 3D-UBMM resembles the human bladder epithelium and offers a practical in vitro model for evaluating bladder toxicants and carcinogens, identifying mechanisms of carcinogenesis, and supporting hazard identification and risk assessment. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

24 pages, 1980 KB  
Review
Natural and Synthetic Compounds Against Colorectal Cancer: An Update of Preclinical Studies in Saudi Arabia
by Mansoor-Ali Vaali-Mohammed, Adhila Nazar, Mohamad Meeramaideen and Saleha Khan
Curr. Oncol. 2025, 32(10), 546; https://doi.org/10.3390/curroncol32100546 - 29 Sep 2025
Abstract
Colorectal cancer (CRC) remains a major contributor to global cancer-related mortality, with rising incidence observed in several regions, including Saudi Arabia. This review compiles and critically analyzes recent preclinical research from Saudi-based institutions that investigates the anti-CRC potential of natural and synthetic compounds. [...] Read more.
Colorectal cancer (CRC) remains a major contributor to global cancer-related mortality, with rising incidence observed in several regions, including Saudi Arabia. This review compiles and critically analyzes recent preclinical research from Saudi-based institutions that investigates the anti-CRC potential of natural and synthetic compounds. Numerous natural products such as Nigella sativa, Moringa oleifera, Curcuma longa, and marine-derived metabolites have demonstrated cytotoxic effects through pathways involving apoptosis induction, reactive oxygen species (ROS) generation, and inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and cyclooxygenase-2 (COX-2). In parallel, synthetic and semi-synthetic agents, including C4–G4 (semi-synthetic hybrids designed from flavonoids and benzoxazole scaffolds that act as dual epidermal growth factor receptor (EGFR)/COX-2 inhibitors)), oxazole derivatives, and camptothecin-based nanocarriers, exhibit promising anti-tumor activity via molecular targeting of cyclin-dependent kinase 8 (CDK8), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and β-catenin pathways. Selected in vivo studies primarily utilizing xenograft and chemically induced rodent models have shown reductions in tumor volume and modulation of apoptotic and inflammatory biomarkers. Additionally, green-synthesized metallic nanoparticles (NPs) and polyethylene glycol (PEG)-modified carriers have been investigated to improve bioavailability and tumor targeting of lead compounds. While these findings are encouraging, the majority remain in preclinical phases. Limitations such as poor solubility, lack of pharmacokinetic data, and absence of clinical trials impede translational progress. This review highlights the need for standardized evaluation protocols, mechanistic validation, and region-specific clinical studies to assess efficacy and safety. Given Saudi Arabia’s rich biodiversity and growing research capacity under national strategies like Vision 2030, the country is well-positioned to contribute meaningfully to CRC drug discovery. By integrating bioactive natural products, rationally designed synthetics, and advanced delivery platforms, a pipeline of innovative CRC therapeutics tailored to local and global contexts may be realized. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

Back to TopTop