Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,855)

Search Parameters:
Keywords = BMP-7

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 1146 KB  
Systematic Review
Types of Bone Substitutes and Their Application in Regenerative Medicine: A Systematic Review
by Nikoleta Ivanova, Stoyan Ivanov, Stefan Peev and Tsanka Dikova
J. Funct. Biomater. 2025, 16(9), 341; https://doi.org/10.3390/jfb16090341 (registering DOI) - 9 Sep 2025
Abstract
Background: The growing demand for effective methods of bone tissue regeneration highlights the relevance of studying modern bone substitutes and their applications in regenerative medicine. The aim of this work was to conduct a comprehensive analysis of the biological, mechanical, and clinical characteristics [...] Read more.
Background: The growing demand for effective methods of bone tissue regeneration highlights the relevance of studying modern bone substitutes and their applications in regenerative medicine. The aim of this work was to conduct a comprehensive analysis of the biological, mechanical, and clinical characteristics of various types of bone substitutes to determine their potential in regenerative medicine. Methods: The study was performed as a systematic literature review in accordance with PRISMA guidelines, analyzing 68 high-quality scientific sources from 2019 to May 2025, using the PubMed, Scopus, Web of Science, and Google Scholar databases. Results: It was established that autogenous grafts exhibit the highest osteogenic properties due to the presence of growth factors BMP-2, BMP-7, and concentrated growth factors; however, their use is limited by donor site morbidity in 20–30% of patients and the requirement to treat 6% of fractures complicated by non-union. Allogeneic and xenogeneic substitutes provide structural support for large defects but require intensive processing in accordance with European Directives 2004/23/EC and 2006/86/EC to minimize the risk of infection transmission. Synthetic substitutes based on calcium phosphate ceramics with pore sizes ranging from 23 to 210 micrometres demonstrate excellent biocompatibility and controlled degradation, with β-tricalcium phosphate exhibiting optimal characteristics for long-term applications compared to calcium sulphate. Conclusions: The findings of the study highlight the necessity of a personalized approach in selecting bone substitutes, considering the specific requirements of medical specialities, and support the development of hybrid biomaterials to combine structural strength with biological activity. Full article
Show Figures

Figure 1

15 pages, 1767 KB  
Review
Signaling Pathways in Human Blastocyst Development: From Molecular Mechanisms to In Vitro Optimization
by Yan Jiao, Jiapeng Liu, Congge Li, Yuexin Hu and Sanjun Zhao
J. Dev. Biol. 2025, 13(3), 33; https://doi.org/10.3390/jdb13030033 (registering DOI) - 9 Sep 2025
Abstract
In recent years, assisted reproductive technology (ART) has developed rapidly with the delay in reproductive age and the rise in infertility rates. During ART, blastocyst quality is a key factor affecting the rate of implantation and clinical pregnancy, and blastocyst formation is dependent [...] Read more.
In recent years, assisted reproductive technology (ART) has developed rapidly with the delay in reproductive age and the rise in infertility rates. During ART, blastocyst quality is a key factor affecting the rate of implantation and clinical pregnancy, and blastocyst formation is dependent on the precise regulation of multiple signaling pathways in preimplantation embryo development. In this review, we systematically analyze the molecular mechanisms of the core pathways, including Hippo, Wnt/β-catenin, FGF, Nodal, and BMP, in blastocyst lineage differentiation and morphogenesis, and assess the feasibility of optimizing in vitro culture by targeting key signaling nodes, as well as provide theoretical support for constructing research models of preimplantation embryos. Full article
(This article belongs to the Collection Hedgehog Signaling in Embryogenesis)
Show Figures

Figure 1

20 pages, 3219 KB  
Article
Spatial Targeting and Budget-Adaptive Optimization of Best Management Practices for Cost-Effective Nitrogen Reduction
by Yunkai Fan, Huazhi Zhang, Bing Yu, Ming Cong and Zhuohang Xin
Water 2025, 17(17), 2651; https://doi.org/10.3390/w17172651 (registering DOI) - 8 Sep 2025
Abstract
This study developed a Soil and Water Assessment Tool (SWAT) model for the Fuzhou River Basin in China to quantify the spatial distribution, sources, and reduction potential of total nitrogen (TN) load. We comprehensively evaluated the effectiveness of eight Best Management Practices (BMPs) [...] Read more.
This study developed a Soil and Water Assessment Tool (SWAT) model for the Fuzhou River Basin in China to quantify the spatial distribution, sources, and reduction potential of total nitrogen (TN) load. We comprehensively evaluated the effectiveness of eight Best Management Practices (BMPs) and 186 combinations thereof in reducing TN load. Our analysis demonstrated that adding more BMPs did not yield proportionally additive benefits but instead led to reduced cost-effectiveness (CE) once the number of BMPs exceeded three. Targeting BMPs to Critical Source Areas (CSAs) increased CE by an average of 15.6% compared to watershed-wide application, although the environmental benefit (EB) was lower (22.0% versus 32.8% on average). We identified a critical budget threshold of 70 million CNY. Below this threshold, CSA-targeting optimized BMPs delivered the most cost-effective TN reductions (123.0 kg/104 CNY per year). However, with a sufficient budget exceeding this threshold, our findings support implementing BMPs throughout the entire watershed, which maximized the TN reduction rate to over 40%. Overall, our findings highlight that spatial targeting and budget-adaptive implementation of BMPs are essential for maximizing both economic efficiency and environmental benefits, providing a practical decision approach for nutrient management in river basins. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

2 pages, 1128 KB  
Correction
Correction: Su et al. Dual Delivery of BMP-2 and bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for Large-Size Mandibular Defect Regeneration. Int. J. Mol. Sci. 2013, 14, 12714–12728
by Jiansheng Su, Hongzhen Xu, Jun Sun, Xue Gong and Hang Zhao
Int. J. Mol. Sci. 2025, 26(17), 8730; https://doi.org/10.3390/ijms26178730 (registering DOI) - 8 Sep 2025
Abstract
In the original publication [...] Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 6

22 pages, 657 KB  
Systematic Review
A Systematic Review of Metal Composite Bone Grafts in Preclinical Spinal Fusion Models
by Christian Rajkovic, Mahnoor Shafi, Naboneeta Sarkar, Vaughn Hernandez, Liwen Yang and Timothy F. Witham
Biomimetics 2025, 10(9), 594; https://doi.org/10.3390/biomimetics10090594 - 5 Sep 2025
Viewed by 210
Abstract
Successful arthrodesis is a crucial factor in spinal fusion surgery, maximizing the likelihood of improved quality of life. The incorporation of metals into bone grafts has been demonstrated to enhance fusion rates through various osteoinductive and osteoconductive pathways. A systematic review was conducted [...] Read more.
Successful arthrodesis is a crucial factor in spinal fusion surgery, maximizing the likelihood of improved quality of life. The incorporation of metals into bone grafts has been demonstrated to enhance fusion rates through various osteoinductive and osteoconductive pathways. A systematic review was conducted to investigate the utility of metal composite bone grafts in promoting arthrodesis in spinal fusion preclinical studies. PubMed/MEDLINE was queried to identify studies investigating metal composite bone grafts in animal models of spinal fusion. Non-spinal fusion animal models were excluded. Risk of bias was assessed using the SYRCLE risk of bias tool. After screening a total of 1554 articles, 17 articles were included in our review. Metal composite bone grafts with bioactive agents had significantly greater fusion rates than metal composite only bone grafts (p < 0.001) and similar fusion rates compared to non-metal comparator bone grafts (p = 0.172). Bone grafts containing strontium and magnesium had the greatest fusion rates compared to other metals and had significantly greater fusion rates than those of silicon-containing bone grafts (p = 0.02 and p = 0.04, respectively). Bone quality and bone volume percentages of fusion masses formed by metal composite bone grafts were enhanced via the addition of bioactive agents such as stem cells, rhBMP-2, autograft, and poly (lactic-co-glycolic acid). The adverse event rate was 3.0% in all animal surgeries. Metal composite bone grafts show promise as osteoinductive agents to promote arthrodesis in spinal fusion, and their osteoinductive capability is enhanced with the synergistic addition of osteogenic factors such as stem cells and autograft. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

23 pages, 4939 KB  
Article
Transcriptome and Metabolome Profiles Reveal the Underlying Mechanism of Fat Deposition Changes in Three-Way Crossbred Yak for High-Quality Beef Production
by Xiukai Cao, Wenxiu Ru, Jie Cheng, Le Sun, Nan Zhang, Lawang Zhaxi, Renzeng Dunzhu, Fengbo Sun, Kai Yang, Yue’e Gao, Xixia Huang, Bizhi Huang and Hong Chen
Animals 2025, 15(17), 2599; https://doi.org/10.3390/ani15172599 - 4 Sep 2025
Viewed by 288
Abstract
Yajiangxue cattle (XF) is three-way crossbred cattle developed specifically for producing high-quality beef in the Tibetan Plateau by introducing the bloods of Tibetan yellow cattle (HF) and Angus cattle into Tibetan yak (MF). In the present study, we mainly focused on fat deposition [...] Read more.
Yajiangxue cattle (XF) is three-way crossbred cattle developed specifically for producing high-quality beef in the Tibetan Plateau by introducing the bloods of Tibetan yellow cattle (HF) and Angus cattle into Tibetan yak (MF). In the present study, we mainly focused on fat deposition and metabolism changes and used RNA-seq and LC-MS/MS-based metabolomics to partially explain the meat quality improvement in Yajiangxue cattle. Differential expression analysis revealed 1762, 2949, and 2931 different expression genes in XF vs. HF, XF vs. MF, and XF vs. cattle–yak (PF), respectively, such as BMP2, WISP2, FGF1, IL1B, IL6, and WNT5B. Immune response, oxidation–reduction processes, and fatty acid metabolism were markedly enriched. Furthermore, an initial identification revealed 319 metabolites using positive ion mode and 289 metabolites using negative ion mode in bovine adipose tissue across four breeds/populations. Of these, 143 were differential metabolites in positive ion mode, while 166 were in negative ion mode. The main pathways of metabolism affected by breed/population were unsaturated fatty acid biosynthesis, tryptophan and tyrosine biosynthesis, primary bile acid biosynthesis, cholesterol metabolism, beta-alanine metabolism, etc. Similarly, both the transcriptome and the metabolome results highlighted fatty acid metabolism. These results could help elucidate the biological mechanisms involved in fat deposition and identify valuable biomarkers for specific metabolite accumulation. Full article
Show Figures

Figure 1

30 pages, 7652 KB  
Article
Advancing Scaffold Architecture for Bone Tissue Engineering: A Comparative Study of 3D-Printed β-TCP Constructs in Dynamic Culture with pBMSC
by Yannick M. Sillmann, Ana M. P. Baggio, Pascal Eber, Benjamin R. Freedman, Cynthia Liu, Youssef Jounaidi, Alexander Schramm, Frank Wilde and Fernando P. S. Guastaldi
J. Funct. Biomater. 2025, 16(9), 327; https://doi.org/10.3390/jfb16090327 - 4 Sep 2025
Viewed by 402
Abstract
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation [...] Read more.
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation of porcine bone marrow-derived mesenchymal stem cells (pBMSCs) cultured in a rotational oxygen-permeable bioreactor system (ROBS). Three-dimensionally (3D) printed beta-tricalcium phosphate (β-TCP) scaffolds with pore sizes of 500 µm and 1000 µm were seeded with pBMSC and cultured for 7 and 14 days under dynamic perfusion conditions. Gene expression analysis revealed significantly higher levels of osteogenic markers (Runx2, BMP-2, ALP, Osx, Col1A1) in the 1000 µm group, particularly at the early time point, with the later-stage marker Osteocalcin (Ocl) rising faster and higher in the 1000 µm group, after a lower expression at 7 days. ALP activity assays corroborated these findings. Despite having lower mechanical strength, the 1000 µm scaffolds supported a homogeneous cell distribution and high viability across all regions. These results suggest that larger pore sizes enhance early osteogenic commitment by improving nutrient transport and fluid flow in dynamic culture. These findings also support the use of larger-pore scaffolds in bioreactor-based preconditioning strategies and underscore the clinical importance of promoting early osteogenic differentiation to reduce in vitro culture time, an essential consideration for the timely preparation of implantable grafts in bone tissue engineering. Full article
Show Figures

Figure 1

18 pages, 2950 KB  
Article
Formation of 3D Human Osteoblast Spheroids Incorporating Extracellular Matrix-Mimetic Phage Peptides as a Surrogate Bone Tissue Model
by Maria Giovanna Rizzo, Dario Morganti, Antonella Smeriglio, Emanuele Luigi Sciuto, Massimo Orazio Spata, Domenico Trombetta, Barbara Fazio, Salvatore Pietro Paolo Guglielmino and Sabrina Conoci
Int. J. Mol. Sci. 2025, 26(17), 8482; https://doi.org/10.3390/ijms26178482 - 1 Sep 2025
Viewed by 309
Abstract
Cell–cell communication and extracellular matrix (ECM) organization in a bone microenvironment are essential to replicate the bone microenvironment accurately. In this study, the extracellular matrix (ECM) was emulated by incorporating M13 phages, selected through phage display for displaying engineered peptides that mimic bone [...] Read more.
Cell–cell communication and extracellular matrix (ECM) organization in a bone microenvironment are essential to replicate the bone microenvironment accurately. In this study, the extracellular matrix (ECM) was emulated by incorporating M13 phages, selected through phage display for displaying engineered peptides that mimic bone matrix proteins, into human osteoblast cultures to develop a three-dimensional bone model (3D BMP-Phage). Comprehensive analysis was performed to investigate: (i) the morphological development of spheroids, assessed by optical microscopy and quantified via fractal dimension analysis using box-counting algorithms; (ii) the biochemical composition of the extracellular matrix, evaluated by Raman spectroscopy; (iii) ECM protein deposition, analyzed through immunofluorescence staining; (iv) matrix mineralization, assessed by Alizarin Red staining and alkaline phosphatase (ALP) activity assay; and (v) osteogenic gene expression, measured by quantitative RT-PCR. The findings demonstrate that the 3D BMP-Phage model, facilitated by a cocktail of bone-mimicking peptides, enhances structural integrity, ECM complexity, mineralization, and osteogenic pathways compared to the control. This novel approach replicates key aspects of the bone microenvironment, providing a valuable platform for advanced physiological and regenerative medicine research under controlled conditions. Full article
(This article belongs to the Special Issue Stem Cell Biology & Regenerative Medicine—2nd Edition)
Show Figures

Figure 1

16 pages, 433 KB  
Article
Anaerobic Co-Digestion of Brewers’ Spent Grain from Craft Beer and Cattle Manure for Biogas Production
by Héctor Alfredo López-Aguilar, Antonino Pérez-Hernández, Humberto Alejandro Monreal-Romero, Claudia López Meléndez, María del Rosario Peralta-Pérez and Francisco Javier Zavala-Díaz de la Serna
World 2025, 6(3), 118; https://doi.org/10.3390/world6030118 - 1 Sep 2025
Viewed by 504
Abstract
The brewing industry generates significant organic waste, much of which remains underutilized despite its potential for energy recovery. This study assesses the feasibility of anaerobic co-digestion (AcoD) using brewers’ spent grain (BSG) from the craft beer production process and cattle manure from feedlots. [...] Read more.
The brewing industry generates significant organic waste, much of which remains underutilized despite its potential for energy recovery. This study assesses the feasibility of anaerobic co-digestion (AcoD) using brewers’ spent grain (BSG) from the craft beer production process and cattle manure from feedlots. Thermogravimetric analysis confirmed similar volatile solids content in both substrates, validating BSG as a viable feedstock. AcoD trials were conducted in 20 L biodigesters under dry and ambient conditions over 40 days. Methane yields reached 25 mL CH4 gVS−1 at a 1:1 inoculum–substrate ratio fresh matter basis and 67.33 mL CH4 gVS−1 at 2.5:1, indicating that higher inoculum levels enhance methane production. Kinetic modeling using Modified Gompertz, Logistic, and other microbial growth-based models showed that the Logistic model best represented the methane production trends. The detection of hydrogen sulfide in the biogas emphasizes the need for effective filtration. Overall, this work highlights AcoD as a promising approach for organic waste valorization and renewable energy generation in the craft brewing sector, supporting circular economy practices and contributing to environmental and economic sustainability. Full article
Show Figures

Graphical abstract

13 pages, 432 KB  
Review
The Combined Potential of PRP and Osteoinductive Carrier Matrices for Bone Regeneration
by Anastasiia Yurevna Meglei, Irina Alekseevna Nedorubova, Viktoriia Pavlovna Basina, Viktoria Olegovna Chernomyrdina, Dmitry Vadimovich Goldshtein and Tatiana Borisovna Bukharova
Int. J. Mol. Sci. 2025, 26(17), 8457; https://doi.org/10.3390/ijms26178457 - 30 Aug 2025
Viewed by 284
Abstract
In regenerative medicine, orthobiologics, particularly platelet-rich plasma (PRP), are widely used due to their ability to enhance natural tissue repair mechanisms. PRP contains a concentrated pool of growth factors and cytokines that enhance regeneration while also acting as a biomimetic scaffold, thereby optimizing [...] Read more.
In regenerative medicine, orthobiologics, particularly platelet-rich plasma (PRP), are widely used due to their ability to enhance natural tissue repair mechanisms. PRP contains a concentrated pool of growth factors and cytokines that enhance regeneration while also acting as a biomimetic scaffold, thereby optimizing the microenvironment for tissue healing. In bone tissue engineering, PRP is commonly combined with synthetic or natural biomaterials, as its fibrin matrix alone lacks sufficient mechanical stability. However, even such composite systems frequently exhibit limited osteoinductive capacity, necessitating further supplementation with bioactive components. This review evaluates the regenerative potential of PRP in bone defect healing when combined with osteoinductive agents in preclinical in vivo models. We present compelling experimental evidence supporting the efficacy of this combined therapeutic approach. Full article
(This article belongs to the Special Issue Novel Insights into Regenerative Medicine)
Show Figures

Graphical abstract

12 pages, 4901 KB  
Article
Gelatin–Sodium Alginate Composite Hydrogel for Sustained Release of Simvastatin Enabled Osteogenic Differentiation
by Xinyue Zhang, Ning Guan, Qin Chen, Kai Chen, Cunao Feng and Dekun Zhang
Coatings 2025, 15(9), 1004; https://doi.org/10.3390/coatings15091004 - 30 Aug 2025
Viewed by 532
Abstract
Sim, a potent HMG-CoA reductase inhibitor, exhibits notable anabolic effects on bone and can upregulate osteogenic genes such as BMP-2, thereby promoting bone formation. An ideal drug delivery system for Sim involves its controlled and sustained release at the defect site to minimize [...] Read more.
Sim, a potent HMG-CoA reductase inhibitor, exhibits notable anabolic effects on bone and can upregulate osteogenic genes such as BMP-2, thereby promoting bone formation. An ideal drug delivery system for Sim involves its controlled and sustained release at the defect site to minimize adverse side effects. In this study, Sim was first modified via HP-γ-CD to form a hydrophilic Sim/HP-γ-CD inclusion complex, thereby improving drug solubility and dispersion in aqueous systems. A gelatin–sodium alginate (Gel/SA) hydrogel was then employed as the drug delivery matrix to construct a Gel-SA-Sim/HP-γ-CD hydrogel sustained release system. This hydrogel system exhibited a high water content (82%), along with enhanced mechanical properties, including a compressive strength of 0.284 MPa and a compressive modulus of 0.277 MPa, suggesting strong load-bearing capacity and favorable stiffness. Importantly, Sim was released in a controlled and sustained manner over 7 days, without exhibiting burst release behavior. In vitro osteogenic differentiation assays demonstrated that optimal concentrations of Sim effectively enhanced cellular bioactivity and osteoinductive performance, offering a promising approach to enhance the bioactivity, osteogenesis, and osseointegration of orthopedic implants. Full article
Show Figures

Figure 1

27 pages, 1273 KB  
Review
A Critical Review of Commercial Collagen-Based Scaffolds in Bone Regeneration: Functional Properties and Clinical Evidence from Infuse® Bone Graft
by Niki Karipidou, John Paul Muller Gorley, Chrysoula Katrilaka, Chris Manglaris, Anastasios Nektarios Tzavellas, Maria Pitou, Angeliki Cheva, Nikolaos Michailidis, Eleftherios E. Tsiridis, Theodora Choli-Papadopoulou and Amalia Aggeli
J. Funct. Biomater. 2025, 16(9), 313; https://doi.org/10.3390/jfb16090313 - 29 Aug 2025
Viewed by 735
Abstract
This review article provides a comprehensive evaluation of Infuse® and InductOs®, two ground-breaking recombinant human Bone Morphogenetic Protein-2 (rhBMP-2)-based bone graft products, focusing on their tissue-level regenerative responses, clinical applications, and associated costs. Preclinical and clinical studies demonstrate that rhBMP-2 [...] Read more.
This review article provides a comprehensive evaluation of Infuse® and InductOs®, two ground-breaking recombinant human Bone Morphogenetic Protein-2 (rhBMP-2)-based bone graft products, focusing on their tissue-level regenerative responses, clinical applications, and associated costs. Preclinical and clinical studies demonstrate that rhBMP-2 induces strong osteoinductive activity, effectively promoting mesenchymal stem cell differentiation and vascularized bone remodeling. While generally well-tolerated, these osteoinductive effects are dose-dependent, and excessive dosing or off-label use may result in adverse outcomes, such as ectopic bone formation or soft tissue inflammation. Histological and imaging analyses in craniofacial, orthopedic, and spinal fusion models confirm significant bone regeneration, positioning rhBMP-2 as a viable alternative to autologous grafts. Notably, advances in delivery systems and scaffold design have enhanced the stability, bioavailability, and targeted release of rhBMP-2, leading to improved fusion rates and reduced healing times in selected patient populations. These innovations, alongside its proven regenerative efficacy, underscore its potential to expand treatment options in cases where autografts are limited or unsuitable. However, the high initial cost, primarily driven by rhBMP-2, remains a critical limitation. Although some studies suggest overall treatment costs might be comparable to autografts when factoring in reduced complications and operative time, autografts often remain more cost-effective. Infuse® has not substantially reduced the cost of bone regeneration and presents additional safety concerns due to the rapid (burst) release of growth factors and limited mechanical scaffold support. Despite representing a significant advancement in synthetic bone grafting, further innovation is essential to overcome limitations related to cost, mechanical properties, and controlled growth factor delivery. Full article
(This article belongs to the Special Issue Biomaterials for Bone Implant and Regeneration)
Show Figures

Figure 1

16 pages, 3387 KB  
Article
Decreasing Bone Resorption by Inducing Anti-Osteoclastogenic IFN-γ and IL-10 Expression in the Spleen Through an Electromagnetic Field on LPS-Induced Osteoporosis Mice
by Myeong-Hyun Nam, Hee-Jung Park, Tae-Woo Kim, In-Ho Lee, Hee-Deok Yun, Zuyu Chen and Young-Kwon Seo
Bioengineering 2025, 12(9), 923; https://doi.org/10.3390/bioengineering12090923 - 27 Aug 2025
Viewed by 373
Abstract
This study sought to evaluate the inhibitory effect of pulsed electromagnetic field (PEMF) therapy on bone resorption in a mouse model of lipopolysaccharide (LPS)-induced osteoporosis. A total of 40 mice were divided into four groups: control, LPS, LPS + alendronate, and LPS + [...] Read more.
This study sought to evaluate the inhibitory effect of pulsed electromagnetic field (PEMF) therapy on bone resorption in a mouse model of lipopolysaccharide (LPS)-induced osteoporosis. A total of 40 mice were divided into four groups: control, LPS, LPS + alendronate, and LPS + PEMF. Blood and spleen samples were analyzed using RT-PCR and ELISA, while calvaria and femurs were assessed by micro-computed tomography (CT) and histological analysis. Serum analysis revealed that, compared with the control group, calcium levels in the PEMF group showed no significant difference, but alkaline phosphatase (ALP) levels were significantly increased, whereas tartrate-resistant acid phosphatase (TRAP) levels were significantly decreased. Moreover, blood cytokine analysis showed reduced expression of TNF-α and IL-1β and increased expression of BMP-2 in the PEMF group. Spleen tissue analysis further demonstrated significant upregulation of IFN-γ and IL-10 expression in the PEMF group. Micro-CT confirmed that PEMF inhibited femoral bone loss and promoted bone regeneration in calvarial defects. Histological evaluation with hematoxylin and eosin and Masson–Goldner trichrome staining confirmed enhanced bone formation in both the femur and calvaria. In conclusion, PEMF effectively alleviates bone loss and promotes bone regeneration in LPS-induced osteoporosis. Furthermore, PEMF exhibits anti-osteoclastogenic activity by reducing inflammatory cytokines and enhancing IFN-γ and IL-10 expression in the spleen. Full article
Show Figures

Figure 1

23 pages, 4627 KB  
Article
Dynamic SLAM Dense Point Cloud Map by Fusion of Semantic Information and Bayesian Moving Probability
by Qing An, Shao Li, Yanglu Wan, Wei Xuan, Chao Chen, Bufan Zhao and Xijiang Chen
Sensors 2025, 25(17), 5304; https://doi.org/10.3390/s25175304 - 26 Aug 2025
Viewed by 586
Abstract
Most existing Simultaneous Localization and Mapping (SLAM) systems rely on the assumption of static environments to achieve reliable and efficient mapping. However, such methods often suffer from degraded localization accuracy and mapping consistency in dynamic settings, as they lack explicit mechanisms to distinguish [...] Read more.
Most existing Simultaneous Localization and Mapping (SLAM) systems rely on the assumption of static environments to achieve reliable and efficient mapping. However, such methods often suffer from degraded localization accuracy and mapping consistency in dynamic settings, as they lack explicit mechanisms to distinguish between static and dynamic elements. To overcome this limitation, we present BMP-SLAM, a vision-based SLAM approach that integrates semantic segmentation and Bayesian motion estimation to robustly handle dynamic indoor scenes. To enable real-time dynamic object detection, we integrate YOLOv5, a semantic segmentation network that identifies and localizes dynamic regions within the environment, into a dedicated dynamic target detection thread. Simultaneously, the data association Bayesian mobile probability proposed in this paper effectively eliminates dynamic feature points and successfully reduces the impact of dynamic targets in the environment on the SLAM system. To enhance complex indoor robotic navigation, the proposed system integrates semantic keyframe information with dynamic object detection outputs to reconstruct high-fidelity 3D point cloud maps of indoor environments. The evaluation conducted on the TUM RGB-D dataset indicates that the performance of BMP-SLAM is superior to that of ORB-SLAM3, with the trajectory tracking accuracy improved by 96.35%. Comparative evaluations demonstrate that the proposed system achieves superior performance in dynamic environments, exhibiting both lower trajectory drift and enhanced positioning precision relative to state-of-the-art dynamic SLAM methods. Full article
(This article belongs to the Special Issue Indoor Localization Technologies and Applications)
Show Figures

Figure 1

13 pages, 628 KB  
Review
Research Progress on the Molecular Mechanism of Poultry Feather Follicle Development
by Jiangxian Wang, Shiliang Zhu, Xia Xiong, Mohan Qiu, Zengrong Zhang, Chenming Hu, Li Yang, Han Peng, Xiaoyan Song, Jialei Chen, Bo Xia, Zhuxiang Xiong, Longhuan Du, Chunlin Yu and Chaowu Yang
Curr. Issues Mol. Biol. 2025, 47(9), 684; https://doi.org/10.3390/cimb47090684 - 25 Aug 2025
Viewed by 387
Abstract
The evolution of the chilled processing technology has precipitated the emergence of ice-fresh poultry meat as a significant sales channel. The aesthetic appearance of chicken carcasses has become increasingly important in the context of poultry ice-fresh sales, in conjunction with the comprehensive implementation [...] Read more.
The evolution of the chilled processing technology has precipitated the emergence of ice-fresh poultry meat as a significant sales channel. The aesthetic appearance of chicken carcasses has become increasingly important in the context of poultry ice-fresh sales, in conjunction with the comprehensive implementation of China’s policies for poultry. Feather follicle development is a significant factor in determining the aesthetic appearance of the carcass. Recent studies have focused on the molecular mechanisms associated with feather follicle development. The WNT, EGF, FGF, SHH, and BMP signalling pathways have been identified as the regulatory mechanisms involved in the development of feather follicles in various segments of poultry skin. However, the BMP signalling pathway, acting as an inhibitor, has been demonstrated to impede the regulatory processes governing feather follicle development via these signalling pathways. This review summarises the structure and overview of feathers and feather follicles, the research progress of signalling pathways that affect the development of poultry feather follicles, the research progress of poultry follicle traits, and the research progress of feather follicle development biotechnology. The present review focuses on summarising the molecular mechanisms that affect feather follicle development, and on providing a summary of the application of biotechnology in this field. It also offers ideas and theoretical references for the molecular mechanism of poultry feather follicle development. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

Back to TopTop