Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,798)

Search Parameters:
Keywords = Battery Energy Storage Systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3928 KB  
Article
Simulation of Chirped FBG and EFPI-Based EC-PCF Sensor for Multi-Parameter Monitoring in Lithium Ion Batteries
by Mohith Gaddipati, Krishnamachar Prasad and Jeff Kilby
Sensors 2025, 25(19), 6092; https://doi.org/10.3390/s25196092 - 2 Oct 2025
Abstract
The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). [...] Read more.
The growing need for efficient and safe high-energy lithium-ion batteries (LIBs) in electric vehicles and grid storage necessitates advanced internal monitoring solutions. This work presents a comprehensive simulation model of a novel integrated optical sensor based on ethylene carbonate-filled photonic crystal fiber (EC-PCF). The proposed design synergistically combines a chirped fiber Bragg grating (FBG) and an extrinsic Fabry–Pérot interferometer (EFPI) on a multiplexed platform for the multifunctional sensing of refractive index (RI), temperature, strain, and pressure (via strain coupling) within LIBs. By matching the RI of the PCF cladding to the battery electrolyte using ethylene carbonate, the design maximizes light–matter interaction for exceptional RI sensitivity, while the cascaded EFPI enhances mechanical deformation detection beyond conventional FBG arrays. The simulation framework employs the Transfer Matrix Method with Gaussian apodization to model FBG reflectivity and the Airy formula for high-fidelity EFPI spectra, incorporating critical effects like stress-induced birefringence, Transverse Electric (TE)/Transverse Magnetic (TM) polarization modes, and wavelength dispersion across the 1540–1560 nm range. Robustness against fabrication variations and environmental noise is rigorously quantified through Monte Carlo simulations with Sobol sequences, predicting temperature sensitivities of ∼12 pm/°C, strain sensitivities of ∼1.10 pm/με, and a remarkable RI sensitivity of ∼1200 nm/RIU. Validated against independent experimental data from instrumented battery cells, this model establishes a robust computational foundation for real-time battery monitoring and provides a critical design blueprint for future experimental realization and integration into advanced battery management systems. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

15 pages, 2478 KB  
Article
Research on Primary Frequency Regulation Control Strategy of the Joint Hydropower and Battery Energy Storage System Based on Refined Model
by Yifeng Gu, Fangqing Zhang, Youping Li, Youhan Deng, Xiaojun Hua, Jiang Guo and Tingji Yang
Energies 2025, 18(19), 5249; https://doi.org/10.3390/en18195249 - 2 Oct 2025
Abstract
This study aims to reduce reverse power and improve frequency regulation performance in hydropower systems. To achieve this objective, a refined hydropower plant (HPP) simulation model is developed and coupled with a battery energy storage system (BESS), implementing an Integrated Adaptive Virtual Droop [...] Read more.
This study aims to reduce reverse power and improve frequency regulation performance in hydropower systems. To achieve this objective, a refined hydropower plant (HPP) simulation model is developed and coupled with a battery energy storage system (BESS), implementing an Integrated Adaptive Virtual Droop Control (IAVDC) strategy. The refined HPP model achieves a simulation accuracy of 98.5%, representing a 26.2% improvement over conventional simplified models. With the BESS integrated under the IAVDC strategy, reverse power is completely eliminated, and frequency regulation time is substantially shortened. The results demonstrate that the joint HPP-BESS frequency regulation effectively mitigates the adverse impact of water hammer, while the proposed IAVDC strategy enhances system responsiveness and reduces frequency recovery time, thereby improving the quality of primary frequency control. Full article
(This article belongs to the Special Issue Improvements of the Electricity Power System: 3rd Edition)
Show Figures

Figure 1

28 pages, 3149 KB  
Article
Performance Comparison of Metaheuristic and Hybrid Algorithms Used for Energy Cost Minimization in a Solar–Wind–Battery Microgrid
by Seyfettin Vadi, Merve Bildirici and Orhan Kaplan
Sustainability 2025, 17(19), 8849; https://doi.org/10.3390/su17198849 - 2 Oct 2025
Abstract
The integration of renewable energy sources has become a strategic necessity for sustainable energy management and supply security. This study evaluates the performance of eight metaheuristic optimization algorithms in scheduling a renewable-based smart grid system that integrates solar, wind, and battery storage for [...] Read more.
The integration of renewable energy sources has become a strategic necessity for sustainable energy management and supply security. This study evaluates the performance of eight metaheuristic optimization algorithms in scheduling a renewable-based smart grid system that integrates solar, wind, and battery storage for a factory in İzmir, Türkiye. The algorithms considered include classical approaches—Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), the Whale Optimization Algorithm (WOA), Krill Herd Optimization (KOA), and the Ivy Algorithm (IVY)—alongside hybrid methods, namely KOA–WOA, WOA–PSO, and Gradient-Assisted PSO (GD-PSO). The optimization objectives were minimizing operational energy cost, maximizing renewable utilization, and reducing dependence on grid power, evaluated over a 7-day dataset in MATLAB. The results showed that hybrid algorithms, particularly GD-PSO and WOA–PSO, consistently achieved the lowest average costs with strong stability, while classical methods such as ACO and IVY exhibited higher costs and variability. Statistical analyses confirmed the robustness of these findings, highlighting the effectiveness of hybridization in improving smart grid energy optimization. Full article
16 pages, 1400 KB  
Article
Research on the SOH of Lithium Batteries Based on the TCN–Transformer–BiLSTM Hybrid Model
by Shaojian Han, Zhenyang Su, Xingyuan Peng, Liyong Wang and Xiaojie Li
Coatings 2025, 15(10), 1149; https://doi.org/10.3390/coatings15101149 - 2 Oct 2025
Abstract
Lithium-ion batteries are widely used in energy storage and power systems due to their high energy density, long cycle life, and stability. Accurate prediction of the state of health (SOH) of batteries is critical to ensuring their safe and reliable operation. However, the [...] Read more.
Lithium-ion batteries are widely used in energy storage and power systems due to their high energy density, long cycle life, and stability. Accurate prediction of the state of health (SOH) of batteries is critical to ensuring their safe and reliable operation. However, the prediction task remains challenging due to various complex factors. This paper proposes a hybrid TCN–Transformer–BiLSTM prediction model for battery SOH estimation. The model is first validated using the NASA public dataset, followed by further verification with dynamic operating condition simulation experimental data. Health features correlated with SOH are identified through Pearson analysis, and comparisons are conducted with existing LSTM, GRU, and BiLSTM methods. Experimental results demonstrate that the proposed model achieves outstanding performance across multiple datasets, with root mean square error (RMSE) values consistently below 2% and even below 1% in specific cases. Furthermore, the model maintains high prediction accuracy even when trained with only 50% of the data. Full article
29 pages, 4258 KB  
Article
A Risk-Averse Data-Driven Distributionally Robust Optimization Method for Transmission Power Systems Under Uncertainty
by Mehrdad Ghahramani, Daryoush Habibi and Asma Aziz
Energies 2025, 18(19), 5245; https://doi.org/10.3390/en18195245 - 2 Oct 2025
Abstract
The increasing penetration of renewable energy sources and the consequent rise in forecast uncertainty have underscored the need for robust operational strategies in transmission power systems. This paper introduces a risk-averse, data-driven distributionally robust optimization framework that integrates unit commitment and power flow [...] Read more.
The increasing penetration of renewable energy sources and the consequent rise in forecast uncertainty have underscored the need for robust operational strategies in transmission power systems. This paper introduces a risk-averse, data-driven distributionally robust optimization framework that integrates unit commitment and power flow constraints to enhance both reliability and operational security. Leveraging advanced forecasting techniques implemented via gradient boosting and enriched with cyclical and lag-based time features, the proposed methodology forecasts renewable generation and demand profiles. Uncertainty is quantified through a quantile-based analysis of forecasting residuals, which forms the basis for constructing data-driven ambiguity sets using Wasserstein balls. The framework incorporates comprehensive network constraints, power flow equations, unit commitment dynamics, and battery storage operational constraints, thereby capturing the intricacies of modern transmission systems. A worst-case net demand and renewable generation scenario is computed to further bolster the system’s risk-averse characteristics. The proposed method demonstrates the integration of data preprocessing, forecasting model training, uncertainty quantification, and robust optimization in a unified environment. Simulation results on a representative IEEE 24-bus network reveal that the proposed method effectively balances economic efficiency with risk mitigation, ensuring reliable operation under adverse conditions. This work contributes a novel, integrated approach to enhance the reliability of transmission power systems in the face of increasing uncertainty. Full article
Show Figures

Figure 1

46 pages, 1449 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
18 pages, 1420 KB  
Review
Legislative, Social and Technical Frameworks for Supporting Electricity Grid Stability and Energy Sharing in Slovakia
by Viera Joklova, Henrich Pifko and Katarina Kristianová
Energies 2025, 18(19), 5233; https://doi.org/10.3390/en18195233 - 2 Oct 2025
Abstract
The equilibrium between electricity demand and consumption is vital to ensure the stability of the transmission and distribution systems grid (TS & DS) and to ensure the stable operation of the electrical system. The aim of this review study is to highlight the [...] Read more.
The equilibrium between electricity demand and consumption is vital to ensure the stability of the transmission and distribution systems grid (TS & DS) and to ensure the stable operation of the electrical system. The aim of this review study is to highlight the current legislative and technical situation and the possibilities for managing peak loads, decentralization, sharing, storage, and sale of electricity generated from renewable sources in Slovakia. The European Union′s (EU) goal of achieving carbon neutrality by 2050 and a minimum of 42.5% renewable energy consumption by 2030 brings with it obligations for individual member states. These are transposed into national strategies. The current share of renewable sources in Slovakia is approximately 24% and the EU target by 2030 is probably unrealistic. Water resources are practically exhausted; other possibilities for increasing the share of renewable energy sources (RES) are in photovoltaics, wind, and thermal sources. Due to long-term geographical and historical development, electricity production in Slovakia is based on large-scale solutions. The move towards decentralization requires legislative and technical support. The review article examines the possibilities of increasing the share of RES and energy sharing in Slovakia, and examines the legislative, economic, and social barriers to their wider application. At the same time as the share of renewable sources in electricity generation increases, the article examines and presents solutions capable of ensuring the stability of electricity networks across Europe. The study formulates diversified strategies at the distribution network level and the consumer and building levels, and identifies physical (various types of electricity storage, electromobility, electricity liquidators) and virtual (electricity sharing, energy communities, virtual batteries) solutions. In conclusion, it defines the necessary changes in the legislative, technical, social, and economic areas for the most optimal improvement of the situation in the area of increasing the share of RES, supporting the decentralization of the electric power industry, and sharing electricity in Slovakia, also based on experience and good examples from abroad. Full article
Show Figures

Figure 1

44 pages, 9238 KB  
Article
SZOA: An Improved Synergistic Zebra Optimization Algorithm for Microgrid Scheduling and Management
by Lihong Cao and Qi Wei
Biomimetics 2025, 10(10), 664; https://doi.org/10.3390/biomimetics10100664 - 1 Oct 2025
Abstract
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with [...] Read more.
To address the challenge of coordinating economic cost control and low-carbon objectives in microgrid scheduling, while overcoming the performance limitations of the traditional Zebra Optimization Algorithm (ZOA) in complex problems, this paper proposes a Synergistic Zebra Optimization Algorithm (SZOA) and integrates it with innovative management concepts to enhance the microgrid scheduling process. The SZOA incorporates three core strategies: a multi-population cooperative search mechanism to strengthen global exploration, a vertical crossover–mutation strategy to meet high-dimensional scheduling requirements, and a leader-guided boundary control strategy to ensure variable feasibility. These strategies not only improve algorithmic performance but also provide technical support for innovative management in microgrid scheduling. Extensive experiments on the CEC2017 (d = 30) and CEC2022 (d = 10, 20) benchmark sets demonstrate that the SZOA achieves higher optimization accuracy and stability compared with those of nine state-of-the-art algorithms, including IAGWO and EWOA. Friedman tests further confirm its superiority, with the best average rankings of 1.20 for CEC2017 and 1.08/1.25 for CEC2022 (d = 10, 20). To validate practical applicability, the SZOA is applied to grid-connected microgrid scheduling, where the system model integrates renewable energy sources such as photovoltaic (PV) generation and wind turbines (WT); controllable sources including fuel cells (FC), microturbines (MT), and gas engines (GS); a battery (BT) storage unit; and the main grid. The optimization problem is formulated as a bi-objective model minimizing both economic costs—including fuel, operation, pollutant treatment, main-grid interactions, and imbalance penalties—and carbon emissions, subject to constraints on generation limits and storage state-of-charge safety ranges. Simulation results based on typical daily data from Guangdong, China, show that the optimized microgrid achieves a minimum operating cost of USD 5165.96, an average cost of USD 6853.07, and a standard deviation of only USD 448.53, consistently outperforming all comparison algorithms across economic indicators. Meanwhile, the SZOA dynamically coordinates power outputs: during the daytime, it maximizes PV utilization (with peak output near 35 kW) and WT contribution (30–40 kW), while reducing reliance on fossil-based units such as FC and MT; at night, BT discharges (−20 to −30 kW) to cover load deficits, thereby lowering fossil fuel consumption and pollutant emissions. Overall, the SZOA effectively realizes the synergy of “economic efficiency and low-carbon operation”, offering a reliable and practical technical solution for innovative management and sustainable operation of microgrid scheduling. Full article
Show Figures

Figure 1

25 pages, 6901 KB  
Article
Improving Active Support Capability: Optimization and Scheduling of Village-Level Microgrid with Hybrid Energy Storage System Containing Supercapacitors
by Yu-Rong Hu, Jian-Wei Ma, Ling Miao, Jian Zhao, Xiao-Zhao Wei and Jing-Yuan Yin
Eng 2025, 6(10), 253; https://doi.org/10.3390/eng6100253 - 1 Oct 2025
Abstract
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in [...] Read more.
With the rapid development of renewable energy and the continuous pursuit of efficient energy utilization, distributed photovoltaic power generation has been widely used in village-level microgrids. As a key platform connecting distributed photovoltaics with users, energy storage systems play an important role in alleviating the imbalance between supply and demand in VMG. However, current energy storage systems rely heavily on lithium batteries, and their frequent charging and discharging processes lead to rapid lifespan decay. To solve this problem, this study proposes a hybrid energy storage system combining supercapacitors and lithium batteries for VMG, and designs a hybrid energy storage scheduling strategy to coordinate the “source–load–storage” resources in the microgrid, effectively cope with power supply fluctuations and slow down the life degradation of lithium batteries. In order to give full play to the active support ability of supercapacitors in suppressing grid voltage and frequency fluctuations, the scheduling optimization goal is set to maximize the sum of the virtual inertia time constants of the supercapacitor. In addition, in order to efficiently solve the high-complexity model, the reason for choosing the snow goose algorithm is that compared with the traditional mathematical programming methods, which are difficult to deal with large-scale uncertain systems, particle swarm optimization, and other meta-heuristic algorithms have insufficient convergence stability in complex nonlinear problems, SGA can balance global exploration and local development capabilities by simulating the migration behavior of snow geese. By improving the convergence effect of SGA and constructing a multi-objective SGA, the effectiveness of the new algorithm, strategy and model is finally verified through three cases, and the loss is reduced by 58.09%, VMG carbon emissions are reduced by 45.56%, and the loss of lithium battery is reduced by 40.49% after active support optimization, and the virtual energy inertia obtained by VMG from supercapacitors during the scheduling cycle reaches a total of 0.1931 s. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

27 pages, 5701 KB  
Article
An Enhanced Method to Estimate State of Health of Li-Ion Batteries Using Feature Accretion Method (FAM)
by Leila Amani, Amir Sheikhahmadi and Yavar Vafaee
Energies 2025, 18(19), 5171; https://doi.org/10.3390/en18195171 - 29 Sep 2025
Abstract
Accurate estimation of State of Health (SOH) is pivotal for managing the lifecycle of lithium-ion batteries (LIBs) and ensuring safe and reliable operation in electric vehicles (EVs) and energy storage systems. While feature fusion methods show promise for battery health assessment, they often [...] Read more.
Accurate estimation of State of Health (SOH) is pivotal for managing the lifecycle of lithium-ion batteries (LIBs) and ensuring safe and reliable operation in electric vehicles (EVs) and energy storage systems. While feature fusion methods show promise for battery health assessment, they often suffer from suboptimal integration strategies and limited utilization of complementary health indicators (HIs). In this study, we propose a Feature Accretion Method (FAM) that systematically integrates four carefully selected health indicators–voltage profiles, incremental capacity (IC), and polynomial coefficients derived from IC–voltage and capacity–voltage curves—via a progressive three-phase pipeline. Unlike single-indicator baselines or naïve feature concatenation methods, FAM couples’ progressive accretion with tuned ensemble learners to maximize predictive fidelity. Comprehensive validation using Gaussian Process Regression (GPR) and Random Forest (RF) on the CALCE and Oxford datasets yields state-of-the-art accuracy: on CALCE, RMSE = 0.09%, MAE = 0.07%, and R2 = 0.9999; on Oxford, RMSE = 0.33%, MAE = 0.24%, and R2 = 0.9962. These results represent significant improvements over existing feature fusion approaches, with up to 87% reduction in RMSE compared to state-of-the-art methods. These results indicate a practical pathway to deployable SOH estimation in battery management systems (BMS) for EV and energy storage applications. Full article
Show Figures

Figure 1

36 pages, 6811 KB  
Article
A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation
by Salima Meziane, Toufouti Ryad, Yasser O. Assolami and Tawfiq M. Aljohani
Sustainability 2025, 17(19), 8729; https://doi.org/10.3390/su17198729 - 28 Sep 2025
Abstract
This study proposes a hierarchical two-layer control framework aimed at advancing the sustainability of renewable-integrated microgrids. The framework combines droop-based primary control, PI-based voltage and current regulation, and a supervisory Model Predictive Control (MPC) layer to enhance dynamic power sharing and system stability [...] Read more.
This study proposes a hierarchical two-layer control framework aimed at advancing the sustainability of renewable-integrated microgrids. The framework combines droop-based primary control, PI-based voltage and current regulation, and a supervisory Model Predictive Control (MPC) layer to enhance dynamic power sharing and system stability in renewable-integrated microgrids. The proposed method addresses the limitations of conventional control techniques by coordinating real and reactive power flow through an adaptive droop formulation and refining voltage/current regulation with inner-loop PI controllers. A discrete-time MPC algorithm is introduced to optimize power setpoints under future disturbance forecasts, accounting for state-of-charge limits, DC-link voltage constraints, and renewable generation variability. The effectiveness of the proposed strategy is demonstrated on a small hybrid microgrid system that serve a small community of buildings with a solar PV, wind generation, and a battery storage system under variable load and environmental profiles. Initial uncontrolled scenarios reveal significant imbalances in resource coordination and voltage deviation. Upon applying the proposed control, active and reactive power are equitably shared among DG units, while voltage and frequency remain tightly regulated, even during abrupt load transitions. The proposed control approach enhances renewable energy integration, leading to reduced reliance on fossil-fuel-based resources. This contributes to environmental sustainability by lowering greenhouse gas emissions and supporting the transition to a cleaner energy future. Simulation results confirm the superiority of the proposed control strategy in maintaining grid stability, minimizing overcharging/overdischarging of batteries, and ensuring waveform quality. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

20 pages, 2989 KB  
Review
Polymer-Based Electrolytes for Organic Batteries
by Chetna Tewari, Kundan Singh Rawat, Somi Yoon and Yong Chae Jung
Energies 2025, 18(19), 5168; https://doi.org/10.3390/en18195168 - 28 Sep 2025
Abstract
The pursuit of sustainable and environmentally benign energy storage solutions has propelled significant interest in organic batteries, which utilize redox-active organic compounds as electrode materials. A pivotal component in determining their electrochemical performance, safety, and long-term stability is the electrolyte. Polymer-based electrolytes (PBEs) [...] Read more.
The pursuit of sustainable and environmentally benign energy storage solutions has propelled significant interest in organic batteries, which utilize redox-active organic compounds as electrode materials. A pivotal component in determining their electrochemical performance, safety, and long-term stability is the electrolyte. Polymer-based electrolytes (PBEs) have emerged as promising candidates owing to their intrinsic advantages, such as enhanced thermal stability, mechanical integrity, and the mitigation of leakage and flammability risks associated with conventional liquid electrolytes. Unlike previous reviews that broadly cover solid electrolytes, this review specifically focuses on the unique developments of polymer-based electrolytes tailored for organic batteries over the past few years. This review presents a comprehensive overview of the recent progress in PBEs specifically designed for organic battery systems. It systematically examines various categories, including solid polymer electrolytes (SPEs), valued for their structural simplicity and stability; gel polymer electrolytes (GPEs), noted for their high ionic conductivity and processability; and polymer-inorganic composite electrolytes, which synergistically integrate the mechanical flexibility of polymers with the ionic conductivity of inorganic fillers. Additionally, the review delves into the latest advancements in ionogels and poly(ionic liquid) electrolytes, highlighting their potential to overcome existing limitations and enable next-generation battery performance. The article concludes with a critical discussion on prevailing challenges and prospective research directions, emphasizing the importance of advanced material design, interfacial engineering, and sustainable synthesis approaches to facilitate the practical realization of high-performance organic batteries. Full article
Show Figures

Figure 1

20 pages, 2506 KB  
Article
Design of an RRAM-Based Joint Model for Embedded Cellular Smartphone Self-Charging Device
by Abhinav Vishwakarma, Anubhav Vishwakarma, Matej Komelj, Santosh Kumar Vishvakarma and Michael Hübner
Micromachines 2025, 16(10), 1101; https://doi.org/10.3390/mi16101101 - 28 Sep 2025
Abstract
With the development of embedded electronic devices, energy consumption has become a significant design issue in modern systems-on-a-chip. Conventional SRAMs cannot maintain data after powering turned off, limiting their use in applications such as battery-powered smartphone devices that require non-volatility and no leakage [...] Read more.
With the development of embedded electronic devices, energy consumption has become a significant design issue in modern systems-on-a-chip. Conventional SRAMs cannot maintain data after powering turned off, limiting their use in applications such as battery-powered smartphone devices that require non-volatility and no leakage current. RRAM devices are recently used extensively in applications such as self-charging wireless sensor networks and storage elements, owing to their intrinsic non-volatility and multi-bit capabilities, making them a potential candidate for mitigating the von Neumann bottleneck. We propose a new RRAM-based hybrid memristor model incorporated with a permanent magnet. The proposed design (1T2R) was simulated in Cadence Virtuoso with a 1.5 V power supply, and the finite-element approach was adopted to simulate magnetization. This model can retain the data after the power is off and provides fast power on/off transitions. It is possible to charge a smartphone battery without an external power source by utilizing a portable charger that uses magnetic induction to convert mechanical energy into electrical energy. In an embedded smartphone self-charging device this addresses eco-friendly concerns and lowers environmental effects. It would lead to the development of magnetic field-assisted embedded portable electronic devices and open the door to new types of energy harvesting for RRAM devices. Our proposed design and simulation results reveal that, under usual conditions, the magnet-based device provide a high voltage to charge a smartphone battery. Full article
(This article belongs to the Special Issue Self-Tuning and Self-Powered Energy Harvesting Devices)
Show Figures

Figure 1

20 pages, 3174 KB  
Article
Techno-Economic Optimization of a Grid-Connected Hybrid-Storage-Based Photovoltaic System for Distributed Buildings
by Tao Ma, Bo Wang, Cangbin Dai, Muhammad Shahzad Javed and Tao Zhang
Electronics 2025, 14(19), 3843; https://doi.org/10.3390/electronics14193843 - 28 Sep 2025
Abstract
With growing urban populations and rapid technological advancement, major cities worldwide are facing pressing challenges from surging energy demands. Interestingly, substantial unused space within residential buildings offers potential for installing renewable energy systems coupled with energy storage. This study innovatively proposes a grid-connected [...] Read more.
With growing urban populations and rapid technological advancement, major cities worldwide are facing pressing challenges from surging energy demands. Interestingly, substantial unused space within residential buildings offers potential for installing renewable energy systems coupled with energy storage. This study innovatively proposes a grid-connected photovoltaic (PV) system integrated with pumped hydro storage (PHS) and battery storage for residential applications. A novel optimization algorithm is employed to achieve techno-economic optimization of the hybrid system. The results indicate a remarkably short payback period of about 5 years, significantly outperforming previous studies. Additionally, a threshold is introduced to activate pumping and water storage during off-peak nighttime electricity hours, strategically directing surplus power to either the pump or battery according to system operation principles. This nighttime water storage strategy not only promises considerable cost savings for residents, but also helps to mitigate grid stress under time-of-use pricing schemes. Overall, this study demonstrates that, through optimized system sizing, costs can be substantially reduced. Importantly, with the nighttime storage strategy, the payback period can be shortened even further, underscoring the novelty and practical relevance of this research. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

26 pages, 7761 KB  
Article
Artificial Intelligence-Based Optimized Nonlinear Control for Multi-Source Direct Current Converters in Hybrid Electric Vehicle Energy Systems
by Atif Rehman, Rimsha Ghias and Hammad Iqbal Sherazi
Energies 2025, 18(19), 5152; https://doi.org/10.3390/en18195152 - 28 Sep 2025
Abstract
The integration of multiple renewable and storage units in electric vehicle (EV) hybrid energy systems presents significant challenges in stability, dynamic response, and disturbance rejection, limitations often encountered with conventional sliding mode control (SMC) and super-twisting SMC (STSMC) schemes. This paper proposes a [...] Read more.
The integration of multiple renewable and storage units in electric vehicle (EV) hybrid energy systems presents significant challenges in stability, dynamic response, and disturbance rejection, limitations often encountered with conventional sliding mode control (SMC) and super-twisting SMC (STSMC) schemes. This paper proposes a condition-based integral terminal super-twisting sliding mode control (CBITSTSMC) strategy, with gains optimally tuned using an improved gray wolf optimization (I-GWO) algorithm, for coordinated control of a multi-source DC–DC converter system comprising photovoltaic (PV) arrays, fuel cells (FCs), lithium-ion batteries, and supercapacitors. The CBITSTSMC ensures finite-time convergence, reduces chattering, and dynamically adapts to operating conditions, thereby achieving superior performance. Compared to SMC and STSMC, the proposed controller delivers substantial reductions in steady-state error, overshoot, and undershoot, while improving rise time and settling time by up to 50%. Transient stability and disturbance rejection are significantly enhanced across all subsystems. Controller-in-the-loop (CIL) validation on a Delfino C2000 platform confirms the real-time feasibility and robustness of the approach. These results establish the CBITSTSMC as a highly effective solution for next-generation EV hybrid energy management systems, enabling precise power-sharing, improved stability, and enhanced renewable energy utilization. Full article
Show Figures

Figure 1

Back to TopTop