Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Bayesian cloud clearing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3261 KB  
Article
Risk Assessment of Hydrogen Fuel System Leakage in Ships Based on Noisy-OR Gate Model Bayesian Network
by Gen Li, Haidong Zhang, Shibo Li and Chunchang Zhang
J. Mar. Sci. Eng. 2025, 13(3), 523; https://doi.org/10.3390/jmse13030523 - 9 Mar 2025
Cited by 4 | Viewed by 1360
Abstract
To mitigate the risk of hydrogen leakage in ship fuel systems powered by internal combustion engines, a Bayesian network model was developed to evaluate the risk of hydrogen fuel leakage. In conjunction with the Bow-tie model, fuzzy set theory, and the Noisy-OR Gate [...] Read more.
To mitigate the risk of hydrogen leakage in ship fuel systems powered by internal combustion engines, a Bayesian network model was developed to evaluate the risk of hydrogen fuel leakage. In conjunction with the Bow-tie model, fuzzy set theory, and the Noisy-OR Gate model, an in-depth analysis was also conducted to examine both the causal factors and potential consequences of such incidents. The Bayesian network model estimates the likelihood of hydrogen leakage at approximately 4.73 × 10−4 and identifies key risk factors contributing to such events, including improper maintenance procedures, inadequate operational protocols, and insufficient operator training. The Bow-tie model is employed to visualize the causal relationships between risk factors and their potential consequences, providing a clear structure for understanding the events leading to hydrogen leakage. Fuzzy set theory is used to address the uncertainties in expert judgments regarding system parameters, enhancing the robustness of the risk analysis. To mitigate the subjectivity inherent in root node probabilities and conditional probability tables, the Noisy-OR Gate model is introduced, simplifying the determination of conditional probabilities and improving the accuracy of the evaluation. The probabilities of flash or pool fires, jet fires, and vapor cloud explosions following a leakage are calculated as 4.84 × 10−5, 5.15 × 10−5, and 4.89 × 10−7, respectively. These findings highlight the importance of strengthening operator training and enforcing stringent maintenance protocols to mitigate the risks of hydrogen leakage. The model provides a valuable framework for safety evaluation and leakage risk management in hydrogen-powered ship fuel systems. Full article
Show Figures

Figure 1

27 pages, 4362 KB  
Article
Himawari-8 Sea Surface Temperature Products from the Australian Bureau of Meteorology
by Pallavi Govekar, Christopher Griffin, Owen Embury, Jonathan Mittaz, Helen Mary Beggs and Christopher J. Merchant
Remote Sens. 2024, 16(18), 3381; https://doi.org/10.3390/rs16183381 - 11 Sep 2024
Viewed by 2098
Abstract
As a contribution to the Integrated Marine Observing System (IMOS), the Bureau of Meteorology introduces new reprocessed Himawari-8 satellite-derived Sea Surface Temperature (SST) products. The Radiative Transfer Model and a Bayesian cloud clearing method is used to retrieve SSTs every 10 min from [...] Read more.
As a contribution to the Integrated Marine Observing System (IMOS), the Bureau of Meteorology introduces new reprocessed Himawari-8 satellite-derived Sea Surface Temperature (SST) products. The Radiative Transfer Model and a Bayesian cloud clearing method is used to retrieve SSTs every 10 min from the geostationary satellite Himawari-8. An empirical Sensor Specific Error Statistics (SSES) model, introduced herein, is applied to calculate bias and standard deviation for the retrieved SSTs. The SST retrieval and compositing method, along with validation results, are discussed. The monthly statistics for comparisons of Himawari-8 Level 2 Product (L2P) skin SST against in situ SST quality monitoring (iQuam) in situ SST datasets, adjusted for thermal stratification, showed a mean bias of −0.2/−0.1 K and a standard deviation of 0.4–0.7 K for daytime/night-time after bias correction, where satellite zenith angles were less than 60° and the quality level was greater than 2. For ease of use, these native resolution SST data have been composited using a method introduced herein that retains retrieved measurements, to hourly, 4-hourly and daily SST products, and projected onto the rectangular IMOS 0.02 degree grid. On average, 4-hourly products cover ≈10% more of the IMOS domain, while one-night composites cover ≈25% more of the IMOS domain than a typical 1 h composite. All available Himawari-8 data have been reprocessed for the September 2015–December 2022 period. The 10 min temporal resolution of the newly developed Himawari-8 SST data enables a daily composite with enhanced spatial coverage, effectively filling in SST gaps caused by transient clouds occlusion. Anticipated benefits of the new Himawari-8 products include enhanced data quality for applications like IMOS OceanCurrent and investigations into marine thermal stress, marine heatwaves, and ocean upwelling in near-coastal regions. Full article
Show Figures

Figure 1

18 pages, 1338 KB  
Article
Risk Prediction Method for Renewable Energy Investments Abroad Based on Cloud-DBN
by Wenjiao Zai, Yuying He and Huazhang Wang
Sustainability 2023, 15(14), 11297; https://doi.org/10.3390/su151411297 - 20 Jul 2023
Viewed by 1944
Abstract
There are many specific risks in renewable energy (RE) investment projects, and the incidences of these risk factors are fuzzy and uncertain. In different stages of a project’s life cycle, the main risk factors frequently change. Therefore, this paper constructed a cloud dynamic [...] Read more.
There are many specific risks in renewable energy (RE) investment projects, and the incidences of these risk factors are fuzzy and uncertain. In different stages of a project’s life cycle, the main risk factors frequently change. Therefore, this paper constructed a cloud dynamic Bayesian network model (Cloud-DBN) for RE operation processes; it uses the DBN graph theory to show the generation mechanism and evolution process of RE outbound investment risks, to make the risk prediction structure clear. Based on the statistical data of observation nodes, the probability of risk occurrence is deduced to ensure the scientific nature of the reasoning process. The probability of risk being low, medium, or high is given, which is highly consistent with the uncertainty and randomness of risk. An improved formula for quantitative data normalization is proposed, and an improved calculation method for joint conditional probability based on weight and contribution probability is proposed, which reduces the workload of determining numerous joint conditional probabilities and improves the practicability of the BN network with multiple parent nodes. According to the 20-year historical statistical data of observation nodes, the GM(1,1) algorithm was used to extract the transfer characteristics of observation nodes, construct the DBN network, and deduce the annual risk probability of each risk node during the operation period of the RE project. The method was applied to the wind power project invested by China in Pakistan, and the effectiveness of the method was tested. The method in this paper provides a basis for investment decisions in the RE project planning period and provides targeted risk reduction measures for the project’s operation period. Full article
Show Figures

Figure 1

32 pages, 8164 KB  
Article
Probabilistic Cloud Masking for the Generation of CM SAF Cloud Climate Data Records from AVHRR and SEVIRI Sensors
by Karl-Göran Karlsson, Erik Johansson, Nina Håkansson, Joseph Sedlar and Salomon Eliasson
Remote Sens. 2020, 12(4), 713; https://doi.org/10.3390/rs12040713 - 21 Feb 2020
Cited by 11 | Viewed by 3932
Abstract
Cloud screening in satellite imagery is essential for enabling retrievals of atmospheric and surface properties. For climate data record (CDR) generation, cloud screening must be balanced, so both false cloud-free and false cloudy retrievals are minimized. Many methods used in recent CDRs show [...] Read more.
Cloud screening in satellite imagery is essential for enabling retrievals of atmospheric and surface properties. For climate data record (CDR) generation, cloud screening must be balanced, so both false cloud-free and false cloudy retrievals are minimized. Many methods used in recent CDRs show signs of clear-conservative cloud screening leading to overestimated cloudiness. This study presents a new cloud screening approach for Advanced Very-High-Resolution Radiometer (AVHRR) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) imagery based on the Bayesian discrimination theory. The method is trained on high-quality cloud observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The method delivers results designed for optimally balanced cloud screening expressed as cloud probabilities together with information on for which clouds (minimum cloud optical thickness) the probabilities are valid. Cloud screening characteristics over 28 different Earth surface categories were estimated. Using independent CALIOP observations (including all observed clouds) in 2010 for validation, the total global hit rates for AVHRR data and the SEVIRI full disk were 82% and 85%, respectively. High-latitude oceans had the best performance, with a hit rate of approximately 93%. The results were compared to the CM SAF cLoud, Albedo, and surface RAdiation dataset from AVHRR data–second edition (CLARA-A2) CDR and showed general improvements over most global regions. Notably, the Kuipers’ Skill Score improved, verifying a more balanced cloud screening. The new method will be used to prepare the new CLARA-A3 and CLAAS-3 (CLoud property dAtAset using SEVIRI, Edition 3) CDRs in the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) project. Full article
Show Figures

Figure 1

23 pages, 13737 KB  
Article
Reconstructing One Kilometre Resolution Daily Clear-Sky LST for China’s Landmass Using the BME Method
by Yunfei Zhang, Yunhao Chen, Yang Li, Haiping Xia and Jing Li
Remote Sens. 2019, 11(22), 2610; https://doi.org/10.3390/rs11222610 - 7 Nov 2019
Cited by 9 | Viewed by 3230
Abstract
The land surface temperature (LST) is a key parameter used to characterize the interaction between land and the atmosphere. Therefore, obtaining highly accurate, spatially consistent and temporally continuous LSTs in large areas is the basis of many studies. The Moderate Resolution Imaging Spectroradiometer [...] Read more.
The land surface temperature (LST) is a key parameter used to characterize the interaction between land and the atmosphere. Therefore, obtaining highly accurate, spatially consistent and temporally continuous LSTs in large areas is the basis of many studies. The Moderate Resolution Imaging Spectroradiometer (MODIS) LST product is commonly used to achieve this. However, it has many missing values caused by clouds and other factors. The current gap-filling methods need to be improved when applied to large areas. In this study, we used the Bayesian maximum entropy (BME) method, which considers spatial and temporal correlation, and takes multiple regression results of the Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM), longitude and latitude as soft data to reconstruct space-complete daily clear-sky LSTs with a 1 km resolution for China’s landmass in 2015. The average Root Mean Square Error (RMSE) of this method was 1.6 K for the daytime and 1.2 K for the nighttime when we simultaneously covered more than 10,000 verification points, including blocks that were continuous in space, and the average RMSE of a single discrete verification point for 365 days was 0.4 K for the daytime and 0.3 K for the nighttime when we covered four discrete points. Urban and snow land cover types have a higher accuracy than forests and grasslands, and the accuracy is higher in winter than in summer. The high accuracy and great ability of this method to capture extreme values in urban areas can help improve urban heat island research. This method can also be extended to other study areas, other time periods, and the estimation of other geographical attribute values. How to effectively convert clear-sky LST into real LST requires further research. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring of Land Surface Temperature (LST))
Show Figures

Graphical abstract

21 pages, 1021 KB  
Article
Cloud Detection with Historical Geostationary Satellite Sensors for Climate Applications
by Reto Stöckli, Jędrzej S. Bojanowski, Viju O. John, Anke Duguay-Tetzlaff, Quentin Bourgeois, Jörg Schulz and Rainer Hollmann
Remote Sens. 2019, 11(9), 1052; https://doi.org/10.3390/rs11091052 - 3 May 2019
Cited by 23 | Viewed by 6704
Abstract
Can we build stable Climate Data Records (CDRs) spanning several satellite generations? This study outlines how the ClOud Fractional Cover dataset from METeosat First and Second Generation (COMET) of the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) was created for the [...] Read more.
Can we build stable Climate Data Records (CDRs) spanning several satellite generations? This study outlines how the ClOud Fractional Cover dataset from METeosat First and Second Generation (COMET) of the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) was created for the 25-year period 1991–2015. Modern multi-spectral cloud detection algorithms cannot be used for historical Geostationary (GEO) sensors due to their limited spectral resolution. We document the innovation needed to create a retrieval algorithm from scratch to provide the required accuracy and stability over several decades. It builds on inter-calibrated radiances now available for historical GEO sensors. It uses spatio-temporal information and a robust clear-sky retrieval. The real strength of GEO observations—the diurnal cycle of reflectance and brightness temperature—is fully exploited instead of just accounting for single “imagery”. The commonly-used naive Bayesian classifier is extended with covariance information of cloud state and variability. The resulting cloud fractional cover CDR has a bias of 1% Mean Bias Error (MBE), a precision of 7% bias-corrected Root-Mean-Squared-Error (bcRMSE) for monthly means, and a decadal stability of 1%. Our experience can serve as motivation for CDR developers to explore novel concepts to exploit historical sensor data. Full article
(This article belongs to the Special Issue Assessment of Quality and Usability of Climate Data Records)
Show Figures

Graphical abstract

23 pages, 2350 KB  
Article
Performance Assessment of the COMET Cloud Fractional Cover Climatology across Meteosat Generations
by Jędrzej S. Bojanowski, Reto Stöckli, Anke Duguay-Tetzlaff, Stephan Finkensieper and Rainer Hollmann
Remote Sens. 2018, 10(5), 804; https://doi.org/10.3390/rs10050804 - 22 May 2018
Cited by 13 | Viewed by 6286
Abstract
The CM SAF Cloud Fractional Cover dataset from Meteosat First and Second Generation (COMET, https://doi.org/10.5676/EUM_SAF_CM/CFC_METEOSAT/V001) covering 1991–2015 has been recently released by the EUMETSAT Satellite Application Facility for Climate Monitoring (CM SAF). COMET is derived from the MVIRI and SEVIRI imagers aboard geostationary [...] Read more.
The CM SAF Cloud Fractional Cover dataset from Meteosat First and Second Generation (COMET, https://doi.org/10.5676/EUM_SAF_CM/CFC_METEOSAT/V001) covering 1991–2015 has been recently released by the EUMETSAT Satellite Application Facility for Climate Monitoring (CM SAF). COMET is derived from the MVIRI and SEVIRI imagers aboard geostationary Meteosat satellites and features a Cloud Fractional Cover (CFC) climatology in high temporal (1 h) and spatial (0.05° × 0.05°) resolution. The CM SAF long-term cloud fraction climatology is a unique long-term dataset that resolves the diurnal cycle of cloudiness. The cloud detection algorithm optimally exploits the limited information from only two channels (broad band visible and thermal infrared) acquired by older geostationary sensors. The underlying algorithm employs a cyclic generation of clear sky background fields, uses continuous cloud scores and runs a naïve Bayesian cloud fraction estimation using concurrent information on cloud state and variability. The algorithm depends on well-characterized infrared radiances (IR) and visible reflectances (VIS) from the Meteosat Fundamental Climate Data Record (FCDR) provided by EUMETSAT. The evaluation of both Level-2 (instantaneous) and Level-3 (daily and monthly means) cloud fractional cover (CFC) has been performed using two reference datasets: ground-based cloud observations (SYNOP) and retrievals from an active satellite instrument (CALIPSO/CALIOP). Intercomparisons have employed concurrent state-of-the-art satellite-based datasets derived from geostationary and polar orbiting passive visible and infrared imaging sensors (MODIS, CLARA-A2, CLAAS-2, PATMOS-x and CC4CL-AVHRR). Averaged over all reference SYNOP sites on the monthly time scale, COMET CFC reveals (for 0–100% CFC) a mean bias of −0.14%, a root mean square error of 7.04% and a trend in bias of −0.94% per decade. The COMET shortcomings include larger negative bias during the Northern Hemispheric winter, lower precision for high sun zenith angles and high viewing angles, as well as an inhomogeneity around 1995/1996. Yet, we conclude that the COMET CFC corresponds well to the corresponding SYNOP measurements, and it is thus useful to extend in both space and time century-long ground-based climate observations. Full article
(This article belongs to the Special Issue Assessment of Quality and Usability of Climate Data Records)
Show Figures

Graphical abstract

21 pages, 1996 KB  
Article
Bayesian Cloud Detection for 37 Years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Data
by Claire E. Bulgin, Jonathan P. D. Mittaz, Owen Embury, Steinar Eastwood and Christopher J. Merchant
Remote Sens. 2018, 10(1), 97; https://doi.org/10.3390/rs10010097 - 12 Jan 2018
Cited by 24 | Viewed by 6810
Abstract
Cloud detection is a source of significant errors in retrieval of sea surface temperature (SST). We apply a Bayesian cloud detection scheme to 37 years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) data, which is an important source of [...] Read more.
Cloud detection is a source of significant errors in retrieval of sea surface temperature (SST). We apply a Bayesian cloud detection scheme to 37 years of Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) data, which is an important source of multi-decadal global SST information. The Bayesian scheme calculates a probability of clear-sky for each image pixel, conditional on the satellite observations and prior probability. We compare the cloud detection performance to the operational Clouds from AVHRR Extended algorithm (CLAVR-x), as a measure of improvement from reduced cloud-related errors. To do this we use sea surface temperature differences between satellite retrievals and in situ observations from drifting buoys and the Global Tropical Moored Buoy Array (GTMBA). The Bayesian scheme reduces the absolute difference between the mean and median SST biases and reduces the standard deviation of the SST differences by ~10% for both daytime and nighttime retrievals. These reductions are indicative of removing cloud contaminated outliers in the distribution, as these fall only on one side of the distribution forming a cold tail. At a probability threshold of 0.9 typically used to determine a binary cloud mask for SST retrieval, the Bayesian mask also reduces the robust standard deviation by ~5–10% during the day, in comparison with the operational cloud mask. This shows an improvement in the central distribution of SST differences for daytime retrievals. Full article
(This article belongs to the Special Issue Sea Surface Temperature Retrievals from Remote Sensing)
Show Figures

Graphical abstract

18 pages, 4410 KB  
Article
Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow, Water and Clear Sky Pixels in Sentinel-2 MSI Images
by André Hollstein, Karl Segl, Luis Guanter, Maximilian Brell and Marta Enesco
Remote Sens. 2016, 8(8), 666; https://doi.org/10.3390/rs8080666 - 18 Aug 2016
Cited by 179 | Viewed by 28536
Abstract
Classification of clouds, cirrus, snow, shadows and clear sky areas is a crucial step in the pre-processing of optical remote sensing images and is a valuable input for their atmospheric correction. The Multi-Spectral Imager on board the Sentinel-2’s of the Copernicus program offers [...] Read more.
Classification of clouds, cirrus, snow, shadows and clear sky areas is a crucial step in the pre-processing of optical remote sensing images and is a valuable input for their atmospheric correction. The Multi-Spectral Imager on board the Sentinel-2’s of the Copernicus program offers optimized bands for this task and delivers unprecedented amounts of data regarding spatial sampling, global coverage, spectral coverage, and repetition rate. Efficient algorithms are needed to process, or possibly reprocess, those big amounts of data. Techniques based on top-of-atmosphere reflectance spectra for single-pixels without exploitation of external data or spatial context offer the largest potential for parallel data processing and highly optimized processing throughput. Such algorithms can be seen as a baseline for possible trade-offs in processing performance when the application of more sophisticated methods is discussed. We present several ready-to-use classification algorithms which are all based on a publicly available database of manually classified Sentinel-2A images. These algorithms are based on commonly used and newly developed machine learning techniques which drastically reduce the amount of time needed to update the algorithms when new images are added to the database. Several ready-to-use decision trees are presented which allow to correctly label about 91 % of the spectra within a validation dataset. While decision trees are simple to implement and easy to understand, they offer only limited classification skill. It improves to 98 % when the presented algorithm based on the classical Bayesian method is applied. This method has only recently been used for this task and shows excellent performance concerning classification skill and processing performance. A comparison of the presented algorithms with other commonly used techniques such as random forests, stochastic gradient descent, or support vector machines is also given. Especially random forests and support vector machines show similar classification skill as the classical Bayesian method. Full article
Show Figures

Graphical abstract

15 pages, 334 KB  
Article
A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control
by Antonio Bracale, Pierluigi Caramia, Guido Carpinelli, Anna Rita Di Fazio and Gabriella Ferruzzi
Energies 2013, 6(2), 733-747; https://doi.org/10.3390/en6020733 - 6 Feb 2013
Cited by 125 | Viewed by 10236
Abstract
A new short-term probabilistic forecasting method is proposed to predict the probability density function of the hourly active power generated by a photovoltaic system. Firstly, the probability density function of the hourly clearness index is forecasted making use of a Bayesian auto regressive [...] Read more.
A new short-term probabilistic forecasting method is proposed to predict the probability density function of the hourly active power generated by a photovoltaic system. Firstly, the probability density function of the hourly clearness index is forecasted making use of a Bayesian auto regressive time series model; the model takes into account the dependence of the solar radiation on some meteorological variables, such as the cloud cover and humidity. Then, a Monte Carlo simulation procedure is used to evaluate the predictive probability density function of the hourly active power by applying the photovoltaic system model to the random sampling of the clearness index distribution. A numerical application demonstrates the effectiveness and advantages of the proposed forecasting method. Full article
(This article belongs to the Special Issue Hybrid Advanced Techniques for Forecasting in Energy Sector)
Show Figures

Figure 1

Back to TopTop