Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Bitis parviocula

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4393 KB  
Article
A Comprehensive Study Monitoring the Venom Composition and the Effects of the Venom of the Rare Ethiopian Endemic Snake Species Bitis parviocula
by Vladimír Petrilla, Magdaléna Polláková, Barbora Bekešová, Zuzana Andrejčáková, Radoslava Vlčková, Dana Marcinčáková, Monika Petrillová, Eva Petrovová, Drahomíra Sopková and Jaroslav Legáth
Toxins 2021, 13(5), 299; https://doi.org/10.3390/toxins13050299 - 22 Apr 2021
Cited by 3 | Viewed by 4069
Abstract
The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related [...] Read more.
The Ethiopian endemic snake of the species Bitis parviocula, recognized for its colorful patterns, might be more interesting as we look deeper into the venom activity. We assayed the effects of venoms from the most widespread venomous African Bitis arietens and closely related species Bitis parviocula using The Hen’s Egg Test—Chorioallantoic membrane test (HET-CAM) and Chicken embryotoxicity screening test (CHEST), acetylcholinesterase (AChE) analysis, cytotoxicity assay performed on cell lines and protein analysis of selected venoms. Our results indicated that B. parviocula venom contains vasoactive compounds that have a direct effect on blood vessels. The AChE analysis showed significant ability inhibiting AChE activity in embryonic tissue. Cytotoxicity observed on A549 ATCC® CCL-185™ cells indicates the possible presence of cytotoxic agents in B. parviocula venom. We proved previously described differences in the composition of venom obtained from B. arietans and B. parviocula by using electrophoresis and total protein concentration. Based on similarities in vasoactive effects observed after administration of venoms onto a chicken chorioallantoic membrane, we suggest that venom from B. arietans and B. parviocula might share certain venom proteins responsible for haemotoxicity. The main active components of B. parviocula venom are unknown. Our results suggest that it might be worth performing proteomic analysis of B. parviocula venom as it might contain medically valuable compounds. Full article
(This article belongs to the Special Issue Venom-Induced Tissue Damage)
Show Figures

Figure 1

20 pages, 8235 KB  
Article
Venomous Landmines: Clinical Implications of Extreme Coagulotoxic Diversification and Differential Neutralization by Antivenom of Venoms within the Viperid Snake Genus Bitis
by Nicholas J. Youngman, Jordan Debono, James S. Dobson, Christina N. Zdenek, Richard J. Harris, Bianca op den Brouw, Francisco C. P. Coimbra, Arno Naude, Kristian Coster, Eric Sundman, Ralph Braun, Iwan Hendrikx and Bryan G. Fry
Toxins 2019, 11(7), 422; https://doi.org/10.3390/toxins11070422 - 19 Jul 2019
Cited by 41 | Viewed by 8217
Abstract
The genus Bitis comprises 18 species that inhabit Africa and the Arabian Peninsula. They are responsible for a significant proportion of snakebites in the region. The venoms of the two independent lineages of giant Bitis (B. arietans and again in the common ancestor [...] Read more.
The genus Bitis comprises 18 species that inhabit Africa and the Arabian Peninsula. They are responsible for a significant proportion of snakebites in the region. The venoms of the two independent lineages of giant Bitis (B. arietans and again in the common ancestor of the clade consisting of B. gabonica, B. nasicornis, B. parviocula and B. rhinoceros) induce an array of debilitating effects including anticoagulation, hemorrhagic shock and cytotoxicity, whilst the dwarf species B. atropos is known to have strong neurotoxic effects. However, the venom effects of the other species within the genus have not been explored in detail. A series of coagulation assays were implemented to assess the coagulotoxic venom effects of fourteen species within the genus. This study identified procoagulant venom as the ancestral condition, retained only by the basal dwarf species B. worthingtoni, suggesting anticoagulant venom is a derived trait within the Bitis genus and has been secondarily amplified on at least four occasions. A wide range of anticoagulant mechanisms were identified, such as pseudo-procoagulant and destructive activities upon fibrinogen in both giant and dwarf Bitis and the action of inhibiting the prothrombinase complex, which is present in a clade of dwarf Bitis. Antivenom studies revealed that while the procoagulant effects of B. worthingtoni were poorly neutralized, and thus a cause for concern, the differential mechanisms of anticoagulation in other species were all well neutralized. Thus, this study concludes there is a wide range of coagulotoxic mechanisms which have evolved within the Bitis genus and that clinical management strategies are limited for the procoagulant effects of B. worthingtoni, but that anticoagulant effects of other species are readily treated by the South African polyvalent antivenom. These results therefore have direct, real-work implications for the treatment of envenomed patients. Full article
Show Figures

Figure 1

Back to TopTop