Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Bjelovar Subdepression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9716 KiB  
Article
Comparison of Neural Network, Ordinary Kriging, and Inverse Distance Weighting Algorithms for Seismic and Well-Derived Depth Data: A Case Study in the Bjelovar Subdepression, Croatia
by Ana Brcković, Tomislav Malvić, Jasna Orešković and Josipa Kapuralić
Geosciences 2025, 15(6), 206; https://doi.org/10.3390/geosciences15060206 - 2 Jun 2025
Viewed by 635
Abstract
In subsurface geological mapping, it is more than advisable to compare different solutions obtained with neural and other algorithms. Here, for such comparison, we used the previously published and well-prepared dataset of subsurface data collected from the Bjelovar Subdepression, a 2900 km2 [...] Read more.
In subsurface geological mapping, it is more than advisable to compare different solutions obtained with neural and other algorithms. Here, for such comparison, we used the previously published and well-prepared dataset of subsurface data collected from the Bjelovar Subdepression, a 2900 km2 large regional macrounit in the Croatian part of the Pannonian Basin System. Data on depth were obtained for the youngest (the shallowest) Lonja Formation (Pliocene, Quaternary) and mapped using neural network (NN), inverse distance weighting (IDW), and ordinary kriging (OK) algorithms. The obtained maps were compared based on square error (using k-fold cross-validation) and the visual interpretation of isopaches. Two other algorithms were also tested, namely, random forest (RF) and extreme gradient boosting (XGB) algorithms, but they were rejected as inappropriate for this purpose solely based on the visuals of the obtained maps, which did not follow any interpretable geological structures. The results showed that NN is a highly adjustable method for interpolation, with adjustment for numerous hyperparameters. IDW showed its strength as one of the classical interpolators, and its results are always located close to the top if several methods are compared. OK is the relative winner, showing the flexibility of variogram analysis regarding the number of data points and possible clustering. The presented variogram model, even with a relatively high sill and occasional nugget effect, can be well fitted into OK, giving better results than other methods when applied to the presented area and datasets. This was not surprising because kriging is a well-established method used exclusively for interpolation. In contrast, NN and machine learning algorithms are used in many fields, and these algorithms, particularly the fitting of hyperparameters in NN, simply cannot be the best solution for all. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

16 pages, 19873 KiB  
Article
Geological Characterization of the 3D Seismic Record within the Gas Bearing Upper Miocene Sediments in the Northern Part of the Bjelovar Subdepression—Application of Amplitude Versus Offset Analysis and Artificial Neural Network
by Tihana Ružić and Marko Cvetković
Energies 2021, 14(14), 4161; https://doi.org/10.3390/en14144161 - 9 Jul 2021
Cited by 1 | Viewed by 3024
Abstract
As natural gas reserves are generally decreasing there is a need to successfully characterize potential research objects using geophysical data. Presented is a study of amplitude vs. offset, attribute and artificial neural network analysis on a research area of a small gas field [...] Read more.
As natural gas reserves are generally decreasing there is a need to successfully characterize potential research objects using geophysical data. Presented is a study of amplitude vs. offset, attribute and artificial neural network analysis on a research area of a small gas field with one well with commercial accumulations and two wells with only gas shows. The purpose of the research is to aid in future well planning and to distinguish the geophysical data in dry well areas with those from an economically viable well. The amplitude vs. offset analysis shows the lack of anomaly in the wells with only gas shows while the anomaly is present in the economically viable well. The artificial neural network analysis did not aid in the process of distinguishing the possible gas accumulation but it can point out the sedimentological and structural elements within the seismic volume. Full article
Show Figures

Figure 1

16 pages, 13565 KiB  
Article
Small Unconventional Hydrocarbon Gas Reservoirs as Challenging Energy Sources, Case Study from Northern Croatia
by Tomislav Malvić, Uroš Barudžija, Borivoje Pašić and Josip Ivšinović
Energies 2021, 14(12), 3503; https://doi.org/10.3390/en14123503 - 12 Jun 2021
Cited by 3 | Viewed by 3281
Abstract
Small possible hydrocarbon gas reservoirs were analysed in the Bjelovar Subdepression in Northern Croatia. This area includes the Neogene–Quaternary, mostly clastics, sequences, reaching 3000+ metres in the deepest part. The shallow south-eastern part of the Drava Depression contains a subdepression characterised with several, [...] Read more.
Small possible hydrocarbon gas reservoirs were analysed in the Bjelovar Subdepression in Northern Croatia. This area includes the Neogene–Quaternary, mostly clastics, sequences, reaching 3000+ metres in the deepest part. The shallow south-eastern part of the Drava Depression contains a subdepression characterised with several, mostly small, discovered hydrocarbon fields, where the majority are located on the northern subdepression margin. The reason is the large distance from the main depressional migration pathways and main, deep, mature source rock depocenters. However, two promising unconventional targets were discovered inside the subdepression and both were proven by drilling. The first are source rocks of Badenian, of kerogen type III in early catagenesis, where partially inefficient expulsion probably kept significant gas volumes trapped in the source rock during primary migration. Such structures are the Western Bjelovar (or Rovišće) and the Eastern Bjelovar (or Velika Ciglena) Synclines. The second promising unconventional reservoir consists of “tight” clastic lithofacies of mostly Lower Pontian located on the north-eastern margin of the subdepression. These are fine-grained sandstones with frequent alternations in siltites, silty and clayey sandstones. They are located on secondary migration pathways, but were never evaluated as regional reservoirs, although numerous drilling tests showed gas “pockets”. Full article
Show Figures

Figure 1

Back to TopTop