Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = C′-compact space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9081 KiB  
Article
High-Order Time–Space Compact Difference Methods for Semi-Linear Sobolev Equations
by Bo Hou, Tianhua Wang, Guoqu Deng and Zhi Wang
Axioms 2025, 14(8), 646; https://doi.org/10.3390/axioms14080646 - 21 Aug 2025
Viewed by 137
Abstract
In this paper, high-order compact difference methods (HOCDMs) are proposed to solve the semi-linear Sobolev equations (SLSEs), which arise in various physical models, such as porous media flow and heat conduction. First, a two-level numerical method is given by applying the Crank–Nicolson (C-N) [...] Read more.
In this paper, high-order compact difference methods (HOCDMs) are proposed to solve the semi-linear Sobolev equations (SLSEs), which arise in various physical models, such as porous media flow and heat conduction. First, a two-level numerical method is given by applying the Crank–Nicolson (C-N) method in time and the fourth-order compact difference method in space. This method is shown to achieve second-order accuracy in time and fourth-order accuracy in space. Subsequently, we introduce the Richardson extrapolation technique to improve the temporal accuracy of the two-level method from second order to fourth order. Furthermore, we devise a fully fourth-order method in both time and space by applying the fourth-order difference method to discretize both temporal and spatial derivatives, and we provide a proof of its convergence. Finally, a series of numerical experiments is conducted to verify the effectiveness of the proposed methods. Full article
Show Figures

Figure 1

21 pages, 4690 KiB  
Article
High-Pressure Catalytic Ethanol Reforming for Enhanced Hydrogen Production Using Efficient and Stable Nickel-Based Catalysts
by Feysal M. Ali, Pali Rosha, Karen Delfin, Dean Hoaglan, Robert Rapier, Mohammad Yusuf and Hussameldin Ibrahim
Catalysts 2025, 15(8), 795; https://doi.org/10.3390/catal15080795 - 21 Aug 2025
Viewed by 172
Abstract
The urgent need to address the climate crisis demands a swift transition from fossil fuels to renewable energy. Clean hydrogen, produced through ethanol steam reforming (ESR), offers a viable solution. Traditional ESR operates at atmospheric pressure, requiring costly separation and compression of hydrogen. [...] Read more.
The urgent need to address the climate crisis demands a swift transition from fossil fuels to renewable energy. Clean hydrogen, produced through ethanol steam reforming (ESR), offers a viable solution. Traditional ESR operates at atmospheric pressure, requiring costly separation and compression of hydrogen. High-pressure ESR, however, improves hydrogen purification, streamlines processes like pressure swing adsorption, and reduces operational costs while enhancing energy efficiency. High-pressure ESR also enables compact reactor designs, minimizing equipment size and land use by compressing reactants into smaller volumes. This study evaluates two nickel-based commercial catalysts, AR-401 and NGPR-2, under high-pressure ESR conditions. Key parameters, including reaction temperature, steam-to-ethanol ratio, and weight hourly space velocity, were optimized. At 30 bars, 700 °C, and a steam-to-ethanol ratio of 9, both catalysts demonstrated complete ethanol conversion, with hydrogen selectivity of 65–70% and yields of 4–4.5 moles of H2 per mole of ethanol. Raising the temperature to 850 °C improved hydrogen selectivity to 74% and yielded 5.2 moles of H2 per mole. High-pressure ESR using renewable ethanol provides a scalable, efficient pathway for hydrogen production, supporting sustainable energy solutions. Full article
Show Figures

Figure 1

18 pages, 4880 KiB  
Article
Study on the Design of Broadcast Ephemeris Parameters for Low Earth Orbit Satellites
by Dongzhu Liu, Xing Su, Xin Xie, Han Zhou and Zhengjian Qu
Remote Sens. 2025, 17(16), 2894; https://doi.org/10.3390/rs17162894 - 20 Aug 2025
Viewed by 167
Abstract
The integration of low Earth orbit (LEO) satellite constellations into the Global Navigation Satellite System (GNSS) has emerged as a prominent research focus, as LEO satellites can significantly enhance the precision of GNSS positioning, navigation, and timing (PNT) services. In the design of [...] Read more.
The integration of low Earth orbit (LEO) satellite constellations into the Global Navigation Satellite System (GNSS) has emerged as a prominent research focus, as LEO satellites can significantly enhance the precision of GNSS positioning, navigation, and timing (PNT) services. In the design of LEO navigation constellations, the development of an efficient broadcast ephemeris model is critical for delivering high-accuracy navigation solutions. This study extends the conventional 16-parameter Keplerian broadcast ephemeris model by proposing enhanced 18-, 20-, 22-, and 24-parameter models, ensuring compatibility with existing GNSS ephemeris standards. The performance of these models was evaluated using precise science orbit from five satellites at varying altitudes, ranging from 320 km to 1336 km. By analyzing fitting errors, Signal-in-Space Range Error (SISRE), and Message Size Bits (MSB) across different fitting arc durations and parameter counts, the optimal model configuration was identified. The results demonstrate that the 22-parameter model, which was constructed by augmenting the standard 16-parameter ephemeris with (a˙, n˙, Crs3, Crc3, Crs1, Crc1) delivers the best balance of accuracy and efficiency. With a fitting arc length of 20 min, the SISRE for the GRACE-A (320 km), GRACE-C (475 km), Sentinel-2A (786 km), HY-2A (966 km), and Sentinel-6A (1336 km) satellites were measured at 8.88 cm, 6.21 cm, 2.87 cm, 2.11 cm, and 0.75 cm, respectively. Meanwhile, the corresponding MSB remained compact at 501, 490, 491, 487, and 476 bits. These findings confirm that the proposed 22-parameter broadcast ephemeris model meets the stringent accuracy requirements for next-generation LEO-augmented GNSSs, paving the way for enhanced global navigation services. Full article
Show Figures

Figure 1

13 pages, 294 KiB  
Article
Global Existence for the Cauchy Problem of the Parabolic–Parabolic–ODE Chemotaxis Model with Indirect Signal Production on the Plane
by Qian Liu and Dan Li
Mathematics 2025, 13(16), 2624; https://doi.org/10.3390/math13162624 - 15 Aug 2025
Viewed by 164
Abstract
This paper establishes the global existence of solutions to a chemotaxis system with indirect signal production in the whole two-dimensional space. This system exhibits a mass threshold phenomenon governed by a critical mass mc=8πδ, where δ represents [...] Read more.
This paper establishes the global existence of solutions to a chemotaxis system with indirect signal production in the whole two-dimensional space. This system exhibits a mass threshold phenomenon governed by a critical mass mc=8πδ, where δ represents the decay rate of the static individuals. When the total initial mass m=R2u0dx<mc, all solutions exist globally and remain bounded. In the critical case of m=mc, the global existence or finite-time blow-up may occur depending on the initial conditions. The critical mass obtained in the whole space coincides with that previously derived in radially symmetric bounded domains. A key novelty lies in extending the analysis to the full plane, where the absence of compactness is overcome by constructing a suitable Lyapunov functional and employing refined Trudinger–Moser-type inequalities. Full article
(This article belongs to the Section E: Applied Mathematics)
18 pages, 33450 KiB  
Article
A Parametric Study of an Indirect Evaporative Cooler Using a Spray Dryer Model
by Torsten Berning, Tianbao Gu and Chungen Yin
Energies 2025, 18(16), 4345; https://doi.org/10.3390/en18164345 - 14 Aug 2025
Viewed by 271
Abstract
Indirect evaporative coolers (IECs) are becoming a viable alternative to the more energy-intensive traditional HVAC systems for space cooling, especially in arid regions. In this work, a recently developed computational model of an IEC was used to conduct a parametric study. The model [...] Read more.
Indirect evaporative coolers (IECs) are becoming a viable alternative to the more energy-intensive traditional HVAC systems for space cooling, especially in arid regions. In this work, a recently developed computational model of an IEC was used to conduct a parametric study. The model employs a spray dryer model to track the flow path and evaporation rate of droplets. The key parameters investigated were the temperature of the droplets, a bypass effect where the amount of exhaust air and water was reduced to as low as 10%, and the length of the heat exchanger. The results suggest that the wet bulb efficiency could be increased from the previously observed 35% to 72.5% if the water temperature is decreased to 16 °C. In order to drastically increase the performance, the heat exchanger length should be increased from 50 cm to 100 cm, which could still end up in a more compact design overall as fewer plates are required. The bypass study resulted in peak performance when 40% of the secondary air flow was used as working air in conjunction with a proportional reduction in water usage. Overall, the computational model has been employed in an attempt to reduce the bulkiness, increase the efficiency and reduce the water consumption of such a system. Full article
Show Figures

Figure 1

12 pages, 1470 KiB  
Review
Characterization, Conservation, and Breeding of Winter Squash (Cucurbita moschata Duchesne): Case Study of the Collection Maintained at the Federal University of Viçosa Vegetable Germplasm Bank
by Derly José Henriques da Silva, Ronaldo Silva Gomes, Ronaldo Machado Júnior, Cleverson Freitas de Almeida, Rebeca Lourenço de Oliveira, Dalcirlei Pinheiro Albuquerque and Santina Rodrigues Santana
Plants 2025, 14(15), 2317; https://doi.org/10.3390/plants14152317 - 27 Jul 2025
Viewed by 448
Abstract
Winter squash (Cucurbita moschata Duchesne.) is a vegetable of high socioeconomic importance owing to the nutritional quality of its fruits, seeds, and seed oil. This study aims to review the main aspects related to the characterization, conservation, and breeding of C. moschata [...] Read more.
Winter squash (Cucurbita moschata Duchesne.) is a vegetable of high socioeconomic importance owing to the nutritional quality of its fruits, seeds, and seed oil. This study aims to review the main aspects related to the characterization, conservation, and breeding of C. moschata, emphasizing the studies with C. moschata accessions maintained by the Vegetable Germplasm Bank of the Federal University of Viçosa (BGH-UFV). Studies on C. moschata germplasm have reported high variability, particularly in Brazil. Currently, Brazil maintains six Cucurbita germplasm collections, kept in research and teaching institutions. The BGH-UFV collection, one of the largest in the country, contains approximately 350 accessions of C. moschata, mostly landraces collected from all over Brazil. Studies characterizing this germplasm have identified promising genotypes as sources of alleles for increasing the carotenoid content in the fruit pulp and oleic acid content in the seed oil. As part of a breeding program to increase seed oil productivity and improve the oil profile, studies with the BGH-UFV germplasm have identified C. moschata genotypes with seed oil productivity of up to 0.27 t ha−1 and accessions producing oil with high oleic acid content (21 to 28%). The genetic breeding program of C. moschata conducted at the UFV has prioritized the development of compact growth habit genotypes to reduce plant spacing and increase seed and oil productivity. The works involving the collection of C. moschata maintained by the BGH-UFV corroborates the importance of this germplasm as a source of alleles for improving seed oil productivity and the oil profile. Full article
(This article belongs to the Special Issue Characterization and Conservation of Vegetable Genetic Resources)
Show Figures

Figure 1

16 pages, 304 KiB  
Article
On the Characterizations of Some Strongly Bounded Operators on C(K, X) Spaces
by Ioana Ghenciu
Axioms 2025, 14(8), 558; https://doi.org/10.3390/axioms14080558 - 23 Jul 2025
Viewed by 155
Abstract
Suppose X and Y are Banach spaces, K is a compact Hausdorff space, and C(K, X) is the Banach space of all continuous X-valued functions (with the supremum norm). We will study some strongly bounded operators [...] Read more.
Suppose X and Y are Banach spaces, K is a compact Hausdorff space, and C(K, X) is the Banach space of all continuous X-valued functions (with the supremum norm). We will study some strongly bounded operators T:C(K, X)Y with representing measures m:ΣL(X,Y), where L(X,Y) is the Banach space of all operators T:XY and Σ is the σ-algebra of Borel subsets of K. The classes of operators that we will discuss are the Grothendieck, p-limited, p-compact, limited, operators with completely continuous, unconditionally converging, and p-converging adjoints, compact, and absolutely summing. We give a characterization of the limited operators (resp. operators with completely continuous, unconditionally converging, p-convergent adjoints) in terms of their representing measures. Full article
23 pages, 5565 KiB  
Article
Advanced Numerical Analysis of Heat Transfer in Medium and Large-Scale Heat Sinks Using Cascaded Lattice Boltzmann Method
by Fatima Zahra Laktaoui Amine, Mustapha El Alami, Elalami Semma, Hamza Faraji, Ayoub Gounni and Amina Mourid
Appl. Sci. 2025, 15(13), 7205; https://doi.org/10.3390/app15137205 - 26 Jun 2025
Viewed by 372
Abstract
Medium- and large-scale heat sinks are critical for thermal load management in high-performance systems. However, their high heat flux densities and limited space complicate cooling, leading to risks of overheating, performance degradation, or failure. This study employs the Cascaded Lattice Boltzmann Method (CLBM) [...] Read more.
Medium- and large-scale heat sinks are critical for thermal load management in high-performance systems. However, their high heat flux densities and limited space complicate cooling, leading to risks of overheating, performance degradation, or failure. This study employs the Cascaded Lattice Boltzmann Method (CLBM) to enhance their thermal performance. This numerical approach is known for being stable, accurate when dealing with complex boundaries, and efficient when computing in parallel. The numerical code was validated against a benchmark configuration and an experimental setup to ensure its reliability and accuracy. While previous studies have explored mixed convection in cavities or heat sinks, few have addressed configurations involving side air injection and boundary conditions periodicity in the transition-to-turbulent regime. This gap limits the understanding of realistic cooling strategies for compact systems. Focusing on mixed convection in the transition-to-turbulent regime, where buoyancy and forced convection interact, the study investigates the impact of Rayleigh number values (5×107 to 5×108) and Reynolds number values (103 to 3×103) on heat transfer. Simulations were conducted in a rectangular cavity with periodic boundary conditions on the vertical walls. Two heat sources are located on the bottom wall (Th = 50 °C). Two openings, one on each side of the two hot sources, force a jet of fresh air in from below. An opening at the level of the cavity ceiling’s axis of symmetry evacuates the hot air. Mixed convection drives the flow, exhibiting complex multicellular structures influenced by the control parameters. Calculating the average Nusselt number (Nu) across the surfaces of the heat sink reveals significant dependencies on the Reynolds number. The proposed correlation between Nu and Re, developed specifically for this configuration, fills the current gap and provides valuable insights for optimizing heat transfer efficiency in engineering applications. Full article
(This article belongs to the Special Issue Recent Research on Heat and Mass Transfer)
Show Figures

Figure 1

48 pages, 944 KiB  
Article
Spaces of Polynomials as Grassmanians for Immersions and Embeddings
by Gabriel Katz
Int. J. Topol. 2025, 2(3), 9; https://doi.org/10.3390/ijt2030009 - 24 Jun 2025
Viewed by 207
Abstract
Let Y be a smooth compact n-manifold. We studied smooth embeddings and immersions β:MR×Y of compact n-manifolds M such that β(M) avoids some priory chosen closed poset Θ of tangent patterns to [...] Read more.
Let Y be a smooth compact n-manifold. We studied smooth embeddings and immersions β:MR×Y of compact n-manifolds M such that β(M) avoids some priory chosen closed poset Θ of tangent patterns to the fibers of the obvious projection π:R×YY. Then, for a fixed Y, we introduced an equivalence relation between such β’s; creating a crossover between pseudo-isotopies and bordisms. We called this relation quasitopy. In the presented study of quasitopies, the spaces PdcΘ of real univariate polynomials of degree d with real divisors, whose combinatorial patterns avoid a given closed poset Θ, play the classical role of Grassmanians. We computed the quasitopy classes Qdemb(Y,cΘ) of Θ-constrained embeddings β in terms of homotopy/homology theory of spaces Y and PdcΘ. We proved also that the quasitopies of embeddings stabilize, as d. Full article
Show Figures

Figure 1

14 pages, 3195 KiB  
Communication
Switchable Filter with Four Operating Modes Implemented on a 50-Ohm Microstrip Line
by Youngjin Cho, Youngje Sung and Jihoon Kim
Electronics 2025, 14(12), 2396; https://doi.org/10.3390/electronics14122396 - 12 Jun 2025
Viewed by 494
Abstract
In this paper, we implement a compact switchable bandpass filter on a 50 Ω microstrip line. The proposed structure consists of an input/output stage with one end terminated at 50 Ω, a C-shaped-open loop resonator, and two L-shaped-open loop resonators. The proposed filter [...] Read more.
In this paper, we implement a compact switchable bandpass filter on a 50 Ω microstrip line. The proposed structure consists of an input/output stage with one end terminated at 50 Ω, a C-shaped-open loop resonator, and two L-shaped-open loop resonators. The proposed filter operates in four different modes depending on the on/off combination of the five PIN diodes. Each mode includes a dual-band pass filter (DB-BPF) designed for the 1.4 GHz and 5.1 GHz bands, another DB-BPF covering the 2.4 GHz and 4.2 GHz bands, a wideband BPF with a bandwidth ranging from 2 to 4.5 GHz, and an all-pass filter (APF) that allows all frequencies to pass through. The proposed structure is extremely compact because it is implemented on a 50 Ω line without any additional space. Full article
Show Figures

Figure 1

25 pages, 371 KiB  
Article
Involutions of the Moduli Space of Principal E6-Bundles over a Compact Riemann Surface
by Álvaro Antón-Sancho
Axioms 2025, 14(6), 423; https://doi.org/10.3390/axioms14060423 - 29 May 2025
Viewed by 394
Abstract
In this paper, the fixed points of involutions on the moduli space of principal E6-bundles over a compact Riemann surface X are investigated. In particular, it is proved that the combined action of a representative σ of the outer involution of [...] Read more.
In this paper, the fixed points of involutions on the moduli space of principal E6-bundles over a compact Riemann surface X are investigated. In particular, it is proved that the combined action of a representative σ of the outer involution of E6 with the pull-back action of a surface involution τ admits fixed points if and only if a specific topological obstruction in H2X/τ,π0E6σ vanishes. For an involution τ with 2k fixed points, it is proved that the fixed point set is isomorphic to the moduli space of principal H-bundles over the quotient curve X/τ, where H is either F4 or PSp(8,C) and it consists of 2gk+1 components. The complex dimensions of these components are computed, and their singular loci are determined as corresponding to H-bundles admitting non-trivial automorphisms. Furthermore, it is checked that the stability of fixed E6-bundles implies the stability of their corresponding H-bundles over X/τ, and the behavior of characteristic classes is discussed under this correspondence. Finally, as an application of the above results, it is proved that the fixed points correspond to octonionic structures on X/τ, and an explicit construction of these octonionic structures is provided. Full article
(This article belongs to the Special Issue Trends in Differential Geometry and Algebraic Topology)
Show Figures

Figure 1

28 pages, 27387 KiB  
Article
Integrated Strategies for Air Quality and Thermal Comfort Improvement: The Case Study of the University Campus of Catania
by Salvatore Leonardi, Maurizio Detommaso, Nilda Georgina Liotta, Natalia Distefano, Francesco Nocera and Vincenzo Costanzo
Appl. Sci. 2025, 15(10), 5661; https://doi.org/10.3390/app15105661 - 19 May 2025
Viewed by 773
Abstract
Urban campuses face critical environmental challenges due to high pedestrian density, traffic-induced air pollution, and thermal stress, especially in compact Mediterranean settings. These conditions can compromise the usability and livability of outdoor spaces. This study investigates whether greening and material-based interventions can offset [...] Read more.
Urban campuses face critical environmental challenges due to high pedestrian density, traffic-induced air pollution, and thermal stress, especially in compact Mediterranean settings. These conditions can compromise the usability and livability of outdoor spaces. This study investigates whether greening and material-based interventions can offset a lower degree of traffic reduction in improving air quality and thermal comfort. The University Campus of Catania (Southern Italy) served as the case study. An integrated microscale simulation framework using ENVI-met was developed, calibrated, and validated with local traffic, meteorological data, and field measurements of PM10 and PM2.5. Three scenarios were tested: a baseline, Scenario 1 (50% traffic reduction with moderate greening), and Scenario 2 (30% traffic reduction with more extensive greening and material interventions). Results showed that Scenario 1 consistently outperformed Scenario 2 in all pedestrian hotspots. The highest reductions recorded in Scenario 1 were −0.150 μg/m3 for PM2.5 (−11.5%), −0.069 μg/m3 for PM10 (−5.9%), −2.16 °C for UTCI (−7.6%), and −2.52 °C for MRT (−4.5%). These findings confirm that traffic reduction is the dominant factor in achieving environmental improvements, although greening and innovative materials play a valuable complementary role. The study supports integrated planning strategies for climate-responsive and healthier university environments. Full article
(This article belongs to the Special Issue Green Transportation and Pollution Control)
Show Figures

Figure 1

11 pages, 3786 KiB  
Article
AlF3-Modified Carbon Anodes for Aluminum Electrolysis: Oxidation Resistance and Microstructural Evolution
by Guifang Xu, Yonggang Ding, Fan Bai, Youming Zhang, Jianhua Yin and Caifeng Chen
Inorganics 2025, 13(5), 165; https://doi.org/10.3390/inorganics13050165 - 15 May 2025
Cited by 1 | Viewed by 693
Abstract
The aluminum electrolysis industry faces significant challenges due to the high consumption and environmental impact of carbon anodes, which are prone to oxidation in high-temperature and strongly oxidizing environments. This study innovatively introduces aluminum fluoride (AlF3) as an additive to enhance [...] Read more.
The aluminum electrolysis industry faces significant challenges due to the high consumption and environmental impact of carbon anodes, which are prone to oxidation in high-temperature and strongly oxidizing environments. This study innovatively introduces aluminum fluoride (AlF3) as an additive to enhance the oxidation resistance of carbon anodes for aluminum electrolysis. By systematically exploring microstructural evolution through SEM, XRD, Raman spectroscopy, and permeability analyses, it reveals that AlF3 inserts fluorine atoms into carbon interlayers, forming F-C bonds that reduce interlayer spacing while promoting graphitization. Simultaneously, AlF3-derived α-Al2O3 particles densify the anode and make it more compact, reaching the optimum when 7 wt.% AlF3 is doped. The bulk density of the carbon anode increased to 2.08 g/cm3, porosity decreased to 0.315, and air permeability reached a minimum of 2.3 nPm. In addition, the fluorine intercalation reduces the electrical resistance to 2.12 Ω via conductive F-C clusters. The demonstrated efficacy of AlF3 additives in enhancing the oxidation resistance and conductivity of carbon anodes suggests strong potential for industrial adoption, particularly in optimizing anode composition to reduce energy consumption. Full article
Show Figures

Graphical abstract

24 pages, 14197 KiB  
Article
A Compact High-Precision Cascade PID-Control Laser Driver for Airborne Coherent LiDAR Applications
by Zixuan Ming, Xianzhuo Li, Yanyi Wang, Yuanzhe Qu, Zhiyong Lu, Honghui Jia, Haoming Yuan, Qianwu Zhang, Junjie Zhang and Yingxiong Song
Sensors 2025, 25(9), 2851; https://doi.org/10.3390/s25092851 - 30 Apr 2025
Viewed by 796
Abstract
This paper solves the challenge of precise dual-frequency laser control in Airborne Coherent Doppler LiDAR systems by implementing an innovative laser driver architecture, which integrates compact hardware design with cascade Proportional-Integral-Derivative (PID) control and a frequency–temperature compensation mechanism. The experimental results demonstrate eminent [...] Read more.
This paper solves the challenge of precise dual-frequency laser control in Airborne Coherent Doppler LiDAR systems by implementing an innovative laser driver architecture, which integrates compact hardware design with cascade Proportional-Integral-Derivative (PID) control and a frequency–temperature compensation mechanism. The experimental results demonstrate eminent performance with long-term temperature fluctuation below 0.007 °C, temperature stabilizing time under 4 s and long-term power fluctuation of the linear constant current source being <1%. The system enables wide-range temperature–frequency adjustment for individual lasers and dynamically adjusts the dual-laser beat frequencies between −1 GHz and +2 GHz, achieving the frequency difference fluctuation within 3 MHz. These achievements greatly enhance LiDAR performance and create possibilities for broader applications in dynamic environmental sensing, atmospheric monitoring, deep-space exploration, and autonomous systems. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

13 pages, 3021 KiB  
Article
An Ultrathin Wideband Angularly Stable Frequency Selective Surface Bandpass Filter for S-C Band Coverage
by Francesca Pascarella, Danilo Brizi and Agostino Monorchio
Appl. Sci. 2025, 15(9), 4887; https://doi.org/10.3390/app15094887 - 28 Apr 2025
Viewed by 631
Abstract
This paper presents a novel ultrathin frequency selective surface (FSS) bandpass filter with an extraordinary wideband tailored for operating within the S-C bands. The filter structure entails a double-layer FSS structure with mutually perpendicular unit cells etched on the top and bottom sides [...] Read more.
This paper presents a novel ultrathin frequency selective surface (FSS) bandpass filter with an extraordinary wideband tailored for operating within the S-C bands. The filter structure entails a double-layer FSS structure with mutually perpendicular unit cells etched on the top and bottom sides of a 0.003λL thick FR4 dielectric substrate, where λL is the free space wavelength at the lowest operating frequency. Thus, both TE and TM polarizations can be covered, ensuring the polarization insensitivity of the structure. The two FSS layers are loaded with resistors to implement the harmonic suppression principle. The overall periodicity is extremely compact, measuring 0.16λL × 0.16λL. An equivalent circuit analysis was conducted to comprehensively evaluate the structure and provide design guidelines. Numerical simulations and experimental measurements demonstrated that the proposed filter achieved a −3 dB transmission band spanning from 2 to 6.76 GHz (fractional bandwidth equal to 108.7%) under normal incidence. Moreover, aside from excellent wideband performance, the filter showcased a flat bandpass and stable responses up to 40° of incidence angle. These remarkable capabilities position the proposed filter as a valuable asset in advancing the development of radomes and applications relevant to electromagnetic interference (EMI) shielding, promising significant contributions to the field. Full article
Show Figures

Figure 1

Back to TopTop