Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = C. ichangensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9875 KB  
Article
Genome Identification and Characterization of WRKY Transcription Factor Gene Family in Mandarin (Citrus reticulata)
by Nimra Maheen, Muhammad Shafiq, Saleha Sadiq, Muhammad Farooq, Qurban Ali, Umer Habib, Muhammad Adnan Shahid, Asjad Ali and Fawad Ali
Agriculture 2023, 13(6), 1182; https://doi.org/10.3390/agriculture13061182 - 1 Jun 2023
Cited by 7 | Viewed by 2899
Abstract
WRKY proteins are an important group of transcription factors (TFs) gene family and were identified primarily in plants. WRKY TFs play vital roles in modulating gene expression when plants face detrimental effects due to the environment. In the current study, we focused on [...] Read more.
WRKY proteins are an important group of transcription factors (TFs) gene family and were identified primarily in plants. WRKY TFs play vital roles in modulating gene expression when plants face detrimental effects due to the environment. In the current study, we focused on using the mandarin citrus (Citrus reticulata) genome to understand the impact of the WRKY gene family on the extraction of alleles mining in mandarins. The mining of the C. reticulata genome identified 46 CrWRKY genes that were classified into three main groups (G1, G2, and G3) further with five subclasses (IIa, IIb, IIc, Iid, and IIe) in the G2 group, and all were presented on 29 scaffolds representing numerous segmental duplications of 100% events established. Multiple sequence analysis predicted the presence of the “WRKYGQK” domain and metal-chelating zinc-finger motif C2H2 in 45 genes, while the “WRKYGQK” domain was replaced with “WRKYGKK” only in CrWRKY20. The comparative relationship of CrWRKY with other plant species using dual synteny analysis revealed that the divergence between C. reticulata and C. grandis occurred after the evolutionary divergence of C. clementine, C. sinensis, C. medica, and C. ichangensis. The possible functions of the CrWRKY genes in mitigating environmental effects were predicted using cis-regulatory elements analysis and in silico RNAseq analysis, for the development of plants. These results provide a robust platform and absence of knowledge for the functional identification from key genes of CrWRKY genes in the mandarin for the possible use to improve key desirable agronomic and consumer-driven fruit quality traits in mandarins and related species. Full article
Show Figures

Figure 1

19 pages, 13629 KB  
Article
Phylogeny and Historical Biogeography of the East Asian Clematis Group, Sect. Tubulosae, Inferred from Phylogenomic Data
by Rudan Lyu, Jiamin Xiao, Mingyang Li, Yike Luo, Jian He, Jin Cheng and Lei Xie
Int. J. Mol. Sci. 2023, 24(3), 3056; https://doi.org/10.3390/ijms24033056 - 3 Feb 2023
Cited by 3 | Viewed by 3424
Abstract
The evolutionary history of Clematis section Tubulosae, an East Asian endemic lineage, has not been comprehensively studied. In this study, we reconstruct the phylogeny of this section with a complete sampling using a phylogenomic approach. The genome skimming method was applied to [...] Read more.
The evolutionary history of Clematis section Tubulosae, an East Asian endemic lineage, has not been comprehensively studied. In this study, we reconstruct the phylogeny of this section with a complete sampling using a phylogenomic approach. The genome skimming method was applied to obtain the complete plastome sequence, the nuclear ribosomal DNA (nrDNA), and the nuclear SNPs data for phylogenetic reconstruction. Using a Bayesian molecular clock approach and ancestral range reconstruction, we reconstruct biogeographical history and discuss the biotic and abiotic factors that may have shaped the distribution patterns of the section. Both nuclear datasets better resolved the phylogeny of the sect. Tubulosae than the plastome sequence. Sect. Tubulosae was resolved as a monophyletic group sister to a clade mainly containing species from the sect. Clematis and sect. Aspidanthera. Within sect. Tubulosae, two major clades were resolved by both nuclear datasets. Two continental taxa, C. heracleifolia and C. tubulosa var. ichangensis, formed one clade. One continental taxon, C. tubulosa, and all the other species from Taiwan island, the Korean peninsula, and the Japanese archipelago formed the other clade. Molecular dating results showed that sect. Tubulosae diverged from its sister clade in the Pliocene, and all the current species diversified during the Pleistocene. Our biogeographical reconstruction suggested that sect. Tubulosae evolved and began species diversification, most likely in mainland China, then dispersed to the Korean peninsula, and then expanded its range through the Japanese archipelago to Taiwan island. Island species diversity may arise through allopatric speciation by vicariance events following the range fragmentation triggered by the climatic oscillation and sea level change during the Pleistocene epoch. Our results highlight the importance of climatic oscillation during the Pleistocene to the spatial-temporal diversification patterns of the sect. Tubulosae. Full article
(This article belongs to the Special Issue Plant Phylogenomics and Genetic Diversity)
Show Figures

Figure 1

15 pages, 984 KB  
Article
Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Few Relatives
by Clémentine Baccati, Marc Gibernau, Mathieu Paoli, Patrick Ollitrault, Félix Tomi and François Luro
Plants 2021, 10(6), 1117; https://doi.org/10.3390/plants10061117 - 31 May 2021
Cited by 15 | Viewed by 4471
Abstract
The Papeda Citrus subgenus includes several species belonging to two genetically distinct groups, containing mostly little-exploited wild forms of citrus. However, little is known about the potentially large and novel aromatic diversity contained in these wild citruses. In this study, we characterized and [...] Read more.
The Papeda Citrus subgenus includes several species belonging to two genetically distinct groups, containing mostly little-exploited wild forms of citrus. However, little is known about the potentially large and novel aromatic diversity contained in these wild citruses. In this study, we characterized and compared the essential oils obtained from peels and leaves from representatives of both Papeda groups, and three related hybrids. Using a combination of GC, GC-MS, and 13C-NMR spectrometry, we identified a total of 60 compounds in peel oils (PO), and 76 compounds in leaf oils (LO). Limonene was the major component in almost all citrus PO, except for C. micrantha and C. hystrix, where β-pinene dominated (around 35%). LO composition was more variable, with different major compounds among almost all samples, except for two citrus pairs: C. micrantha/C. hystrix and two accessions of C. ichangensis. In hybrid relatives, the profiles were largely consistent with their Citrus/Papeda parental lineage. This high chemical diversity, not only among the sections of the subgenus Papeda, but also between species and even at the intraspecific level, suggests that Papeda may be an important source of aroma diversity for future experimental crosses with field crop species. Full article
Show Figures

Figure 1

12 pages, 1708 KB  
Article
Differential Responses in Non-structural Carbohydrates of Machilus ichangensis Rehd. et Wils. and Taxus wallichiana Zucc. Var. chinensis (Pilg.) Florin Seedlings to Elevated Ozone
by Jixin Cao, Zhan Chen, Hao Yu and He Shang
Forests 2017, 8(9), 323; https://doi.org/10.3390/f8090323 - 31 Aug 2017
Cited by 8 | Viewed by 3810
Abstract
Tropospheric ozone (O3) enrichment could change the carbon (C) metabolism and decrease the C stock for tree species. To assess the differences in response of non-structural carbohydrates (NSCs) between Machilus ichangensis Rehd. et Wils. (M. ichangensis) and Taxus wallichiana [...] Read more.
Tropospheric ozone (O3) enrichment could change the carbon (C) metabolism and decrease the C stock for tree species. To assess the differences in response of non-structural carbohydrates (NSCs) between Machilus ichangensis Rehd. et Wils. (M. ichangensis) and Taxus wallichiana Zucc. var. chinensis (Pilg.) Florin (T. wallichiana) with elevated O3, one-year-old container seedlings of the two species were grown with ambient air (AA), 100 ppb (elevated O3 treatment 1, E1-O3), and 150 ppb (elevated O3 treatment 2, E2-O3) treatments using open top chambers. During the experiment, net photosynthetic rate (Pn) of M. ichangensis and T. wallichiana were examined once each month from April to October. At the end of experiment, plants were harvested to examine the NSC concentrations and tissue C stocks. Results suggest elevated O3 significantly decreased Pn and total C stock for both M. ichangensis and T. wallichiana, while it also significantly decreased the NSC concentrations in the foliage of the two species, and the roots of T. wallichiana. However, the concentrations of NSCs and their components in other tissues did not change obviously. Significant increases in the ratio of soluble sugars to starch were observed in the foliage of M. ichangensis and the roots of T. wallichiana. For M. ichangensis, Pn was significantly and positively correlated with NSCs and their components only in foliage. In contrast, NSCs in both foliage and roots were significantly and positively correlated with Pn for T. wallichiana. Based on the results for Pn, total C stock, and NSC concentrations, M. ichangensis appeared more sensitive to elevated O3 than T. wallichiana. It is suggested that the strategies of C allocation in the two species are different with elevated O3. Full article
(This article belongs to the Special Issue Impact of Ozone on Forests)
Show Figures

Figure 1

Back to TopTop