Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = CAM assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1556 KB  
Article
3,4-Dihydroxybenzenesulfonyl-Functionalized Polyethyleneimine for Uranium Chelation
by Kai Liang, Sifan Liu, Fan Zhang, Wenjin Cui, Ying Tian, Shuchen Liu and Lin Wang
Polymers 2025, 17(16), 2256; https://doi.org/10.3390/polym17162256 - 21 Aug 2025
Viewed by 548
Abstract
3,4-dihydroxybenzenesulfonyl-functionalized polyethyleneimine (PS), a novel polymeric chelator, was synthesized by conjugating 3,4-dihydroxybenzenesulfonyl (CAM) groups with branched polyethyleneimine (BPEI, MW = 600 Da) via N-acylation. PS demonstrated a high uranium adsorption capacity of 78.08% at a concentration of 4 mg/mL, accompanied by significant selectivity [...] Read more.
3,4-dihydroxybenzenesulfonyl-functionalized polyethyleneimine (PS), a novel polymeric chelator, was synthesized by conjugating 3,4-dihydroxybenzenesulfonyl (CAM) groups with branched polyethyleneimine (BPEI, MW = 600 Da) via N-acylation. PS demonstrated a high uranium adsorption capacity of 78.08% at a concentration of 4 mg/mL, accompanied by significant selectivity over competing ions such as Ca2+, Zn2+, and Cu2+. Notably, in competitive adsorption experiments, PS exhibited a uranium adsorption rate of 59.49%, which was 3.95 times higher than that of calcium (15.06%) in the Ca2+ system. Cytotoxicity assays revealed enhanced biocompatibility (IC50 = 86.98 μg/mL), surpassing CaNa3-DTPA 3.7-fold. In a uranium exposure model (200 μg/mL), PS significantly improved cell survival rates and reduced intracellular uranium levels by 77.37% (immediate administration) and 64.18% (delayed administration). These findings establish PS as a potent and safe polymeric chelator for uranium decorporation, offering a promising strategy for mitigating the hazards of radioactive materials. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

22 pages, 1654 KB  
Article
Astaxanthin Attenuates Chlorpyrifos-Induced Pulmonary Cytotoxicity by Modulating Mitochondrial Redox and Inflammatory Pathways
by Mediha Demet Okudan Altındaş and Adem Güner
Curr. Issues Mol. Biol. 2025, 47(8), 663; https://doi.org/10.3390/cimb47080663 - 17 Aug 2025
Viewed by 391
Abstract
Chlorpyrifos (CPF), an organophosphate pesticide, is known to induce pulmonary toxicity through oxidative stress, mitochondrial dysfunction, and inflammation. Astaxanthin (ASX), a xanthophyll carotenoid derived primarily from marine microalgae (Haematococcus pluvialis), possesses strong antioxidant properties and has demonstrated cellular protective effects in numerous oxidative [...] Read more.
Chlorpyrifos (CPF), an organophosphate pesticide, is known to induce pulmonary toxicity through oxidative stress, mitochondrial dysfunction, and inflammation. Astaxanthin (ASX), a xanthophyll carotenoid derived primarily from marine microalgae (Haematococcus pluvialis), possesses strong antioxidant properties and has demonstrated cellular protective effects in numerous oxidative stress studies. However, its efficacy against CPF-induced lung cell damage remains uncharacterized. This study revealed the protective role of ASX, as a pretreatment and co-treatment, against CPF-induced cytotoxicity in human A549 lung adenocarcinoma cells by assessing cell viability, intracellular reactive oxygen species (IROS), total oxidative status (TOS), total antioxidant capacity (TAC), mitochondrial membrane potential (MMP), intracellular calcium ions (Ca2+), lactate dehydrogenase (LDH) release, malondialdehyde (MDA) levels, glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, DNA fragmentation, and apoptosis/inflammation-associated gene expression. CPF treatment significantly decreased cell viability and TAC, while elevating IROS, TOS, MMP, intracellular Ca2+, and LDH release. CPF also increased MDA levels and suppressed GPx and SOD activities. DNA fragmentation and quantitative polymerase chain reaction (qPCR) analysis revealed upregulation of pro-apoptotic and inflammatory markers such as BCL2-associated X protein (BAX), caspase-3 (CASP3), tumor protein p53 (TP53), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor kappa B (NFκB), and voltage-dependent anion-selective channel protein 1 (VDAC1) and suppression of anti-apoptotic B-cell lymphoma 2 (BCL2) and antioxidant defense genes nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). ASX treatment, particularly when administered as a pretreatment, significantly reversed CPF-induced oxidative and inflammatory responses by restoring SOD, GPx, and TAC levels, reducing IROS, TOS, MDA, and LDH release, and downregulating apoptotic and inflammatory gene expressions. ASX pretreatment notably decreased MMP and intracellular Ca2+ levels, indicating protection against mitochondrial dysfunction and calcium dysregulation. ASX upregulated Nrf2 and HO-1 expression and restored the BCL2/BAX balance, suggesting inhibition of mitochondrial-mediated apoptosis. Additionally, ASX significantly attenuated CPF-induced anti-angiogenic effects in the in ovo Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) assay. These findings demonstrate, for the first time, that ASX exerts a broad spectrum of protective effects against CPF-induced cytotoxicity in lung cells, mainly through the stabilization of mitochondrial redox status and modulation of apoptosis- and inflammation-related gene pathways, highlighting ASX as a promising candidate for further therapeutic development. Furthermore, the pronounced efficacy observed in the pretreatment regimen suggests that ASX can be evaluated as a potential nutritional preventive strategy in high-risk populations with occupational or environmental CPF exposure. Full article
Show Figures

Figure 1

26 pages, 3940 KB  
Article
In Vitro Proof-of-Concept Study: Lidocaine and Epinephrine Co-Loaded in a Mucoadhesive Liquid Crystal Precursor System for Topical Oral Anesthesia
by Giovana Maria Fioramonti Calixto, Aylla Mesquita Pestana, Arthur Antunes Costa Bezerra, Marcela Tavares Luiz, Jonatas Lobato Duarte, Marlus Chorilli and Michelle Franz-Montan
Pharmaceuticals 2025, 18(8), 1166; https://doi.org/10.3390/ph18081166 - 6 Aug 2025
Viewed by 478
Abstract
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and [...] Read more.
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and characterized a novel lidocaine and epinephrine co-loaded liquid crystalline precursor system (LCPS) for topical anesthesia. The formulation was structurally characterized using polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological behavior was assessed through continuous and oscillatory rheological analyses. Texture profile analysis, in vitro mucoadhesive force evaluation, in vitro drug release and permeation studies, and an in vivo toxicity assay using the chicken chorioallantoic membrane (CAM) model were also conducted. Results: PLM and SAXS confirmed the transition of the LCPS from a microemulsion to a lamellar liquid crystalline structure upon contact with artificial saliva. This transition enhanced formulation consistency by over 100 times and tripled mucoadhesion strength. The LCPS also provided controlled drug release, reducing permeation flow by 93% compared to the commercial formulation. Importantly, the CAM assay indicated that the LCPS exhibited similar toxicity to the commercial product. Conclusions: The developed LCPS demonstrated promising physicochemical and biological properties for topical anesthesia, including enhanced mucoadhesion, controlled drug delivery, and acceptable biocompatibility. These findings support its potential for in vivo application and future clinical use to reduce pain during dental anesthesia procedures. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Graphical abstract

14 pages, 5672 KB  
Article
Multiplex Immunofluorescence Reveals Therapeutic Targets EGFR, EpCAM, Tissue Factor, and TROP2 in Triple-Negative Breast Cancer
by T. M. Mohiuddin, Wenjie Sheng, Chaoyu Zhang, Marwah Al-Rawe, Svetlana Tchaikovski, Felix Zeppernick, Ivo Meinhold-Heerlein and Ahmad Fawzi Hussain
Int. J. Mol. Sci. 2025, 26(15), 7430; https://doi.org/10.3390/ijms26157430 - 1 Aug 2025
Viewed by 523
Abstract
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to [...] Read more.
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to characterize molecular and clinicopathological features and to assess the expression and therapeutic potential of four key surface markers: epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), tissue factor (TF), and trophoblast cell surface antigen (TROP2). Multiplex immunofluorescence (mIF) demonstrated elevated EGFR and TROP2 expression in the majority of samples. Significant positive correlations were observed between EGFR and TF, as well as between TROP2 and both TF and EpCAM. Expression analyses revealed increased EGFR and TF levels with advancing tumor stage, whereas EpCAM expression declined in advanced-stage tumors. TROP2 and TF expression were significantly elevated in higher-grade tumors. Additionally, EGFR and EpCAM levels were significantly higher in patients with elevated Ki-67 indices. Binding specificity assays using single-chain variable fragment (scFv-SNAP) fusion proteins confirmed robust targeting efficacy, particularly for EGFR and TROP2. These findings underscore the therapeutic relevance of EGFR and TROP2 as potential biomarkers and targets in TNBC. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 8639 KB  
Article
In-Depth Characterization of L1CAM+ Extracellular Vesicles as Potential Biomarkers for Anti-CD20 Therapy Response in Relapsing–Remitting Multiple Sclerosis
by Shamundeeswari Anandan, Karina Maciak, Regina Breinbauer, Laura Otero-Ortega, Giancarlo Feliciello, Nataša Stojanović Gužvić, Oivind Torkildsen and Kjell-Morten Myhr
Int. J. Mol. Sci. 2025, 26(15), 7213; https://doi.org/10.3390/ijms26157213 - 25 Jul 2025
Viewed by 1320
Abstract
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, [...] Read more.
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, prolonged use increases the risk of infections and other immune-mediated side effects. The unique ability of brain-derived blood extracellular vesicles (EVs) to cross the blood–brain barrier and reflect the central nervous system (CNS) immune status has sparked interest in their potential as biomarkers. This study aimed to assess whether blood-derived L1CAM+ EVs could serve as biomarkers of treatment response to rituximab (RTX) in patients with relapsing-remitting MS (RRMS). Serum samples (n = 25) from the baseline (month 0) and after 6 months were analyzed from the RTX arm of the ongoing randomized clinical trial OVERLORD-MS (comparing anti-CD20 therapies in RRMS patients) and were compared with serum samples from healthy controls (n = 15). Baseline cerebrospinal fluid (CSF) samples from the same study cohort were also included. EVs from both serum and CSF samples were characterized, considering morphology, size, and concentration, using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The immunophenotyping of EV surface receptors was performed using flow cytometry with the MACSPlex exosome kit, while label-free quantitative proteomics of EV protein cargo was conducted using a proximity extension assay (PEA). TEM confirmed the presence of EVs with the expected round morphology with a diameter of 50–150 nm. NTA showed significantly higher concentrations of L1CAM+ EVs (p < 0.0001) in serum total EVs and EBNA1+ EVs (p < 0.01) in serum L1CAM+ EVs at baseline (untreated) compared to in healthy controls. After six months of RTX therapy, there was a significant reduction in L1CAM+ EV concentration (p < 0.0001) and the downregulation of TNFRSF13B (p = 0.0004; FC = −0.49) in serum total EVs. Additionally, non-significant changes were observed in CD79B and CCL2 levels in serum L1CAM+ EVs at baseline compared to in controls and after six months of RTX therapy. In conclusion, L1CAM+ EVs in serum showed distinct immunological profiles before and after rituximab treatment, underscoring their potential as dynamic biomarkers for individualized anti-CD20 therapy in MS. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 8601 KB  
Article
Synthesis of Ag2O/Ag Nanoparticles Using Puerarin: Characterization, Cytotoxicity, In Ovo Safety Profile, Antioxidant, and Antimicrobial Potential Against Nosocomial Pathogens
by Sergio Liga, Raluca Vodă, Lavinia Lupa, Elena-Alina Moacă, Delia Muntean, Lucian Barbu-Tudoran, Maria Suciu, Vlad Socoliuc and Francisc Péter
J. Funct. Biomater. 2025, 16(7), 258; https://doi.org/10.3390/jfb16070258 - 11 Jul 2025
Cited by 1 | Viewed by 903
Abstract
(1) Background: Our study investigates the green synthesis of Ag2O/Ag nanoparticles using the isoflavone Puerarin as a bioreductor. (2) Methods: The PUE@Ag2O/Ag nanoparticles were characterized using various techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), electronic [...] Read more.
(1) Background: Our study investigates the green synthesis of Ag2O/Ag nanoparticles using the isoflavone Puerarin as a bioreductor. (2) Methods: The PUE@Ag2O/Ag nanoparticles were characterized using various techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), electronic microscopy (TEM, SEM), energy dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS). Biological activities were assessed through antimicrobial testing, cytotoxicity assays on human keratinocytes and melanoma cells, and an in ovo screening using the HET-CAM assay. (3) Results: The formation of crystalline Ag2O/Ag nanoparticles with sizes below 100 nm was accomplished with Puerarin. Despite their high cytotoxicity at all tested concentrations, the nanoparticles showed antioxidant activity with IC50 981.5 ± 94.2 μg/mL, antibacterial activity against several clinically relevant nosocomial strains (Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa), and no local irritant effects or inhibition of angiogenesis in the HET-CAM assay. (4) Conclusions: This study provides insights into the synthesis, characterization, and biological profile of PUE@Ag2O/Ag nanoparticles for potential biomedical applications. Full article
Show Figures

Figure 1

14 pages, 2539 KB  
Article
Sinusoidal Extremely Low-Frequency Electromagnetic Stimulation (ELF-EMS) Promotes Angiogenesis In Vitro
by Lena Perez Font, Amanda Moya-Gomez, Hannelore Kemps, Ivo Lambrichts, Jean-Michel Rigo, Bert Brône and Annelies Bronckaers
Biomedicines 2025, 13(6), 1490; https://doi.org/10.3390/biomedicines13061490 - 17 Jun 2025
Viewed by 691
Abstract
Background/Objectives: Angiogenesis is the multistep process of the formation of new blood vessels. It is beneficial in scenarios that require tissue repair and regeneration, such as wound healing, bone fracture repair, and recovery from ischemic injuries like stroke, where new blood vessel [...] Read more.
Background/Objectives: Angiogenesis is the multistep process of the formation of new blood vessels. It is beneficial in scenarios that require tissue repair and regeneration, such as wound healing, bone fracture repair, and recovery from ischemic injuries like stroke, where new blood vessel formation restores oxygen and nutrient supply to damaged areas. Extremely low-frequency electromagnetic stimulation (ELF-EMS), which involves electromagnetic fields in the frequency range of 0–300 Hz, have been shown to reduce ischemic stroke volume by improving cerebral blood flow and recovery effects that are dependent on eNOS. Based on previous results, we herein explore the effects of ELF-EMS treatment (13.5 mT/10 and 60 Hz) on the activation of angiogenic processes in vitro in homeostatic conditions. Methods: Using human microvascular endothelial cells (HMEC-1), we studied cell proliferation, migration, and tube formation in vitro, as well as nitric oxide production and the effect of calcium and nitric oxide (NO) on these processes. Moreover, blood vessel formation was studied using a chicken chorioallantoic membrane (CAM) assay. Results: Our results showed that ELF-EMS increases proliferation, tube formation, and both the migration and transmigration of these cells, the latter of which was mediated via NO. In turn, calcium inhibition decreased ELF-EMF-induced NO production. Furthermore, ELF-EMS significantly increased blood vessel formation in the CAM assay. Conclusions: Our results indicated that ELF-EMS exposure (13.5 mT/10 and 60 Hz) significantly induces angiogenesis in vitro and in ovo, underscoring its potential application in the treatment of conditions characterized by insufficient blood supply. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

16 pages, 7776 KB  
Article
Implementation of a CAM Assay Using Fibrosarcoma Spheroids
by Flemming Puscz, Noah Jozsef Hatem, Sonja Verena Schmidt, Felix Reinkemeier, Marius Drysch, Mustafa Becerikli, Yonca Steubing, Marcus Lehnhardt and Christoph Wallner
Int. J. Mol. Sci. 2025, 26(11), 5318; https://doi.org/10.3390/ijms26115318 - 31 May 2025
Viewed by 465
Abstract
Fibrosarcomas represent a rare but highly aggressive tumor entity among soft tissue tumors. Due to its rarity, questions regarding its development and pathophysiology remain unclear. The chorioallantoic membrane (CAM) assay represents an easily available method to investigate tumors on a growth membrane, live [...] Read more.
Fibrosarcomas represent a rare but highly aggressive tumor entity among soft tissue tumors. Due to its rarity, questions regarding its development and pathophysiology remain unclear. The chorioallantoic membrane (CAM) assay represents an easily available method to investigate tumors on a growth membrane, live and in ovo. The following study was established to test whether the growth of fibrosarcoma spheroids on the CAM was possible and to critically review their applicability for downstream investigations. The shells of fertilized chicken eggs were opened and the previously prepared HT1080 cell spheroids (50,000, 75,000, and 100,000 cells per spheroid) were applied to the CAM. After 7 days, tumors were examined for size, weight, and vascularization. After 7 days, 80 of 163 chicken eggs showed sufficient tumor growth. Of these 80 eggs with confirmed tumor growth, 32 (40%) were from the 50,000 spheroid group, 18 (22.5%) were from the 75,000 spheroid group, and 30 (37.5%) were from the 100,000 spheroid group. The 100,000-cell spheroid group exhibited the highest weights, with a mean of 110.7 mg, as well as tumor size expansion. This cell number also showed the highest vascularization rates. Tumor growth of fibrosarcoma spheroids could successfully be initiated on the CAM. Consequently, the CAM assay presents a good base for future studies involving human fibrosarcoma cell spheroids. Full article
(This article belongs to the Special Issue Pathogenesis and Novel Therapeutic Approaches for Sarcomas)
Show Figures

Figure 1

17 pages, 3862 KB  
Article
Comparative Analysis of Moringa oleifera Lam. Leaves Ethanolic Extracts: Effects of Extraction Methods on Phytochemicals, Antioxidant, Antimicrobial, and In Ovo Profile
by Sergio Liga, Ioana Zinuca Magyari-Pavel, Ștefana Avram, Daliana Ionela Minda, Ana-Maria Vlase, Delia Muntean, Laurian Vlase, Elena-Alina Moacă and Corina Danciu
Plants 2025, 14(11), 1653; https://doi.org/10.3390/plants14111653 - 29 May 2025
Viewed by 1239
Abstract
A comparative evaluation of Moringa oleifera Lam. ethanolic leaf extracts was performed using different extraction methods (maceration or ultrasound-assisted) and the qualitative and quantitative profile of the bioactive compounds contained were further assessed. The antioxidant potential and antimicrobial activity were evaluated, as well [...] Read more.
A comparative evaluation of Moringa oleifera Lam. ethanolic leaf extracts was performed using different extraction methods (maceration or ultrasound-assisted) and the qualitative and quantitative profile of the bioactive compounds contained were further assessed. The antioxidant potential and antimicrobial activity were evaluated, as well as the antiangiogenic effects through in ovo studies. Six ethanolic extracts were tested in this study. Moringa MAC 70% and Moringa US 70% extracts displayed the highest concentration of phenolic compounds and also showed a significant AOA at the highest tested dose. Regarding the antimicrobial effect, the extracts obtained with 70% ethanol (maceration or ultrasound-assisted) had antimicrobial activity against S. aureus, S. pyogenes and E. coli, followed by Candida parapsilosis. On the Pseudomonas aeruginosa strain, the extracts showed no effect. The HET-CAM assay showed that the extracts did not cause any irritation compared to the used positive control. Furthermore, the extracts Moringa MAC 70% and Moringa US 70% did not affect the normal process of blood vessel formation. The data obtained highlights that, from the six tested extracts, the ones obtained with 70% ethanol using maceration and ultrasound-assisted methods (Moringa MAC 70% and Moringa US 70%) showed the highest phenolic content and exhibited the strongest antioxidant activity. The same two extracts did not show signs of irritation in the HET-CAM model. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products: Development and Utilization)
Show Figures

Graphical abstract

27 pages, 6634 KB  
Article
A Novel Polyherbal Formulation Modulates Cyclophosphamide-Induced Cytotoxicity in TM3 Leydig Cells and Delays Fictive Ejaculation in Spinal Cord Transected Male Rats
by Patrick Brice Defo Deeh, Hye-Yong Kim, Kiseok Han, Anbazhagan Sathiyaseelan, Hyun-Jong Cho and Myeong-Hyeon Wang
Pharmaceuticals 2025, 18(6), 803; https://doi.org/10.3390/ph18060803 - 27 May 2025
Viewed by 703
Abstract
Background: Cyclophosphamide (CP) chemotherapy is commonly associated with various side effects. The development of an effective therapy capable of counteracting these effects is of great interest. Objectives: We evaluated the effects of a novel polyherbal formulation (PHF) on CP cytotoxicity in [...] Read more.
Background: Cyclophosphamide (CP) chemotherapy is commonly associated with various side effects. The development of an effective therapy capable of counteracting these effects is of great interest. Objectives: We evaluated the effects of a novel polyherbal formulation (PHF) on CP cytotoxicity in TM3 cells and fictive ejaculation in rats, and determined its possible mechanism. Methods: The phytochemical analysis of PHF was determined by GC-MS. Various oxidative stress-related parameters (DPPH, ABTS+, CUPRAC, FRAP, MMP, and DCF-DA) and the cytotoxicity (hemolysis and HET-CAM) of PHF were evaluated. Its effect on fictive ejaculation was tested by recording the electromyographic activities of bulbospongiosus muscles, and the involvement of TRPV1/TRPM2 channels was investigated using their specific agonists and antagonists. Results: We found that PHF contained various phytocompounds. PHF prevented CP-induced oxidative stress in TM3 cells, probably due to its strong antioxidant potential. For instance, PHF inhibited apoptosis, lipid peroxidation, and ROS generation. Furthermore, the activities of capsaicin (CAP) and cumene hydroperoxide (CHPx) were significantly lowered by PHF, indicating TRPV1 and TRPM2 inhibition. In the in vivo study conducted in spinal male rats, the number of contractions of the bulbospongiosus muscles was significantly (p < 0.001) lowered in the PHF + DOPA (1.54 ± 0.3) and PHF + CAP (2.43 ± 0.74) groups, compared with the DOPA (8.75 ± 0.71) and CAP (7.41 ± 1.01) groups, respectively. Additionally, PHF delayed the pro-ejaculatory effects of dopamine (by 17.6%) and capsaicin (by 32.69%). The in silico study revealed a strong binding affinity between the selected PHF phytocompounds and the active pockets of TRPV1 and TRPM2. HET-CAM and hemolysis assays revealed no harmful effects of PHF. Conclusions: PHF prevented CP cytotoxicity in TM3 cells and delayed the pro-ejaculatory effects of dopamine and capsaicin in spinal rats through dopamine and TRPV1 inhibition. PHF could be a potential candidate for the management of CP chemotherapy-related disorders, such as premature ejaculation, in particular. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

21 pages, 4696 KB  
Article
Mechanism of Curcumol Targeting the OTUB1/TGFBI Ubiquitination Pathway in the Inhibition of Angiogenesis in Colon Cancer
by Yimiao Zhu, Wenya Wu, Dahai Hou, Yu Zhao, Jinshu Ye, Lizong Shen, Tong Zhao and Xiaoyu Wu
Int. J. Mol. Sci. 2025, 26(10), 4899; https://doi.org/10.3390/ijms26104899 - 21 May 2025
Cited by 1 | Viewed by 840
Abstract
Tumor angiogenesis and metastasis are critical processes in the progression of colon carcinoma. Curcumol, a bioactive sesquiterpenoid derived from curcuma, exhibits anti-angiogenic properties, though its underlying mechanisms remain unclear. In this study, an HT-29 xenograft mouse model demonstrated that curcumol combined with oxaliplatin [...] Read more.
Tumor angiogenesis and metastasis are critical processes in the progression of colon carcinoma. Curcumol, a bioactive sesquiterpenoid derived from curcuma, exhibits anti-angiogenic properties, though its underlying mechanisms remain unclear. In this study, an HT-29 xenograft mouse model demonstrated that curcumol combined with oxaliplatin significantly suppressed tumor growth (Ki67↓) and microvessel density (CD31↓). In vitro assays revealed that curcumol dose dependently inhibited proliferation (MTT), migration (Transwell), and tube formation (CAM assay) in Caco-2/HT-29 and HUVEC cells. Mechanistically, curcumol downregulated OTUB1 expression, promoting TGFB1 degradation via the ubiquitin–proteasome pathway. OTUB1 overexpression activated the TGFB1/VEGF axis, enhancing cell invasiveness and angiogenesis—effects reversed by high-dose curcumol. These findings identify the OTUB1-TGFB1/VEGF axis as a key target of curcumol in inhibiting colon cancer angiogenesis, elucidating its anti-tumor mechanism and offering a novel therapeutic strategy for targeted treatment. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 4724 KB  
Article
Absorption of FD-150 in Brain Endothelial Cells by Cold Atmospheric Microplasma
by Md Jahangir Alam, Abubakar Hamza Sadiq, Jaroslav Kristof, Mahedi Hasan, Farhana Begum, Yamano Tomoki and Kazuo Shimizu
Plasma 2025, 8(2), 19; https://doi.org/10.3390/plasma8020019 - 12 May 2025
Viewed by 984
Abstract
The blood–brain barrier (BBB) limits drug delivery to the brain, particularly for large or hydrophilic molecules. Brain microvascular endothelial cells (bEND.3), which form part of the BBB, play a critical role in regulating drug uptake. This study investigates the use of cold atmospheric [...] Read more.
The blood–brain barrier (BBB) limits drug delivery to the brain, particularly for large or hydrophilic molecules. Brain microvascular endothelial cells (bEND.3), which form part of the BBB, play a critical role in regulating drug uptake. This study investigates the use of cold atmospheric microplasma (CAM) to enhance membrane permeability and facilitate drug delivery in bEND.3 cells. CAM generates reactive oxygen species (ROS) that modulate membrane properties. We exposed bEND.3 cells to CAM at varying voltages (3, 3.5, 4, and 4.5 kV) and measured drug uptake using the fluorescent drug FD-150, fluorescence intensity, ROS levels, membrane lipid order, and membrane potential. The results showed a significant increase in fluorescence intensity and drug concentration in the plasma-treated cells compared to controls. ROS production, measured by DCFH-DA staining, was higher in the plasma-treated cells, supporting the hypothesis that CAM enhances membrane permeability through ROS-induced changes. Membrane lipid order, assessed using the LipiORDER probe, shifted from the liquid-ordered (Lo) to liquid-disordered (Ld) phase, indicating increased membrane fluidity. Membrane depolarization was detected with DisBAC2(3) dye, showing increased fluorescence in the plasma-treated cells. Cell viability, assessed by trypan blue and LIVE/DEAD™ assays, revealed transient damage at higher voltages (≥4 kV), with recovery after 24 h. These results suggest that CAM enhances drug delivery in bEND.3 cells by modulating membrane properties via ROS production and changes in membrane potential. CAM offers a promising strategy for improving drug delivery to the brain, with potential applications in brain-targeted therapies. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

15 pages, 1489 KB  
Article
Phosphoproteomics Reveals L1CAM-Associated Signaling Networks in High-Grade Serous Ovarian Carcinoma: Implications for Radioresistance and Tumorigenesis
by Tihomir Zh Todorov, Ricardo Coelho, Francis Jacob, Viola Heinzelmann-Schwarz, Roger Schibli, Martin Béhé, Jürgen Grünberg and Michal Grzmil
Int. J. Mol. Sci. 2025, 26(10), 4585; https://doi.org/10.3390/ijms26104585 - 10 May 2025
Viewed by 971
Abstract
Quantitative phosphoproteomics enables the comprehensive analysis of signaling pathways driven by overexpressed cancer receptors, revealing the molecular mechanisms that underpin tumor progression and therapy resistance. The glycoprotein L1 cell adhesion molecule (L1CAM) is overexpressed in high-grade serous ovarian carcinoma (HGSOC) and plays a [...] Read more.
Quantitative phosphoproteomics enables the comprehensive analysis of signaling pathways driven by overexpressed cancer receptors, revealing the molecular mechanisms that underpin tumor progression and therapy resistance. The glycoprotein L1 cell adhesion molecule (L1CAM) is overexpressed in high-grade serous ovarian carcinoma (HGSOC) and plays a crucial role in carcinogenesis by regulating cancer stem cell properties. Here, CRISPR–Cas9-mediated knockout of L1CAM in ovarian cancer OVCAR8 and OVCAR4 cells significantly impaired anchor-independent growth in soft agar assays and reduced clonogenic survival following external beam irradiation. In vivo, L1CAM knockout decreased cancer stem cell frequency and significantly decreased tumorigenicity. To uncover L1CAM-regulated signaling networks, we employed quantitative phosphoproteomics and proteomics. Bioinformatics analyses and validation studies revealed L1CAM-associated pathways that contribute to radioresistance through DNA repair processes and mammalian target or rapamycin complex 1 (mTORC1)-mediated signaling. In conclusion, our study established a link between L1CAM-dependent tumorigenesis and radioresistance, both hallmarks of cancer stemness, with phosphorylation of key proteins involved in DNA damage response. This study further emphasizes the value of quantitative phosphoproteomics in cancer research, showcasing its ability to enhance understanding of cancer progression and therapy resistance. Full article
(This article belongs to the Special Issue Advances in Proteomics in Cancer)
Show Figures

Graphical abstract

29 pages, 6444 KB  
Article
Novel Gels for Post-Piercing Care: Evaluating the Efficacy of Pranoprofen Formulations in Reducing Inflammation
by Negar Ahmadi, Maria Rincón, Mireia Mallandrich, Joaquim Suñer-Carbó, Lilian Sosa, Mireya Zelaya, Sergio Martinez-Ruiz, Cecilia Cordero and Ana C. Calpena
Gels 2025, 11(5), 334; https://doi.org/10.3390/gels11050334 - 30 Apr 2025
Viewed by 1002
Abstract
Mild to moderate pain for a few hours to several days post-piercing is normal, and the pain is usually accompanied by swelling, redness, and warmth due to the inflammatory response. Cool compresses and over-the-counter analgesics (e.g., NSAIDs) can ease mild discomfort. However, oral [...] Read more.
Mild to moderate pain for a few hours to several days post-piercing is normal, and the pain is usually accompanied by swelling, redness, and warmth due to the inflammatory response. Cool compresses and over-the-counter analgesics (e.g., NSAIDs) can ease mild discomfort. However, oral NSAIDs may have systemic side effects; for this reason, we propose a topical anti-inflammatory approach. Four pranoprofen-loaded gels were created using different gelling agents: Sepigel® 305 (PF-Gel-Sep), Carbopol® 940 (PF-Gel-Car), Pluronic® F-68 (PF-Gel-Plu), and Lutrol® F-127 (PF-Gel-Lut). The gels were assessed for pH, morphology, FT-IR spectroscopy, rheological properties, spreadability, swelling and degradation, drug release kinetics, skin permeation (cow and human skin), irritation potential (HET-CAM assay), and impact on skin barrier function (TEWL and SCH). The gels exhibited varied rheological properties with PF-Gel-Car showing high viscosity and PF-Gel-Plu very low viscosity. All gels had similar spreadability with PF-Gel-Lut showing the highest. PF-Gel-Car showed the highest amounts of PF released, whereas PF-Gel-Plu led to the highest amount of pranoprofen retained in human and bovine skin. The HET-CAM assay indicated that none of the PF-Gels were irritating. Additionally, PF-Gel-Car and PF-Gel-Plu showed no cytotoxic effects on HaCaT cells. In vivo testing on mice showed that PF-Gel-Car prevented inflammation, while the rest of the gels were able to revert it in 25 min. Skin tolerance tests revealed the gels did not affect TEWL, and some gels improved SCH. The study successfully formulated and characterized four PF-loaded topical gels with potential to be used as an alternative for treating inflammation from piercings and ear tags. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

23 pages, 2849 KB  
Article
Assessment of Flurbiprofen Suspension and Composite Gel Pre- and Post Skin Perforation: Effectiveness in Managing Inflammatory Responses in Ear Tags and Periocular Piercings
by Sheimah El Bejjaji, Gladys Ramos-Yacasi, Valeri Domínguez-Villegas, Délia Chaves Moreira Dos Santos, Antonio Braza, Lilian Sosa, Maria José Rodríguez-Lagunas, Ana Cristina Calpena, Mireia Zelaya and Alexander Parra
Gels 2025, 11(4), 292; https://doi.org/10.3390/gels11040292 - 15 Apr 2025
Viewed by 970
Abstract
(1) Background: Controlled skin perforations, such as ear tags, piercings, and microdermal implants, induce inflammation and stress in individuals undergoing these procedures. This localized trauma requires care to optimize healing, reduce inflammation, and prevent infections. (2) Methods: Two formulations were developed: an FB-suspension [...] Read more.
(1) Background: Controlled skin perforations, such as ear tags, piercings, and microdermal implants, induce inflammation and stress in individuals undergoing these procedures. This localized trauma requires care to optimize healing, reduce inflammation, and prevent infections. (2) Methods: Two formulations were developed: an FB-suspension and an FB-gel. Their in vivo efficacy was evaluated, along with drug retention in porcine and human skin after 30 min of administration, chemical stability at different temperatures, cytotoxicity, histological changes induced via transdermal application, and irritative potential, assessed using the HET-CAM assay. (3) Results: Both formulations reduced inflammation when applied 30 min before perforation compared to the positive control. The FB-suspension demonstrated no cytotoxicity and exhibited greater efficacy than the free flurbiprofen solution, highlighting the advantages of using nanoparticle-mediated drug delivery. Moreover, the FB-gel maintained chemical stability for up to 3 months across a temperature range of 4 to 40 °C. Histologically, no significant changes in skin composition were observed. (4) Conclusions: The FB-suspension is viable for both pre- and post-perforation application, as it is a sterile formulation. In contrast, the FB-gel is a convenient and easy application, making it a practical alternative for use in both clinical and veterinary settings. Full article
Show Figures

Graphical abstract

Back to TopTop