Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (808)

Search Parameters:
Keywords = CBAM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7434 KB  
Article
A Lightweight Image-Based Decision Support Model for Marine Cylinder Lubrication Based on CNN-ViT Fusion
by Qiuyu Li, Guichen Zhang and Enrui Zhao
J. Mar. Sci. Eng. 2025, 13(10), 1956; https://doi.org/10.3390/jmse13101956 - 13 Oct 2025
Abstract
Under the context of “Energy Conservation and Emission Reduction,” low-sulfur fuel has become widely adopted in maritime operations, posing significant challenges to cylinder lubrication systems. Traditional oil injection strategies, heavily reliant on manual experience, suffer from instability and high costs. To address this, [...] Read more.
Under the context of “Energy Conservation and Emission Reduction,” low-sulfur fuel has become widely adopted in maritime operations, posing significant challenges to cylinder lubrication systems. Traditional oil injection strategies, heavily reliant on manual experience, suffer from instability and high costs. To address this, a lightweight image retrieval model for cylinder lubrication is proposed, leveraging deep learning and computer vision to support oiling decisions based on visual features. The model comprises three components: a backbone network, a feature enhancement module, and a similarity retrieval module. Specifically, EfficientNetB0 serves as the backbone for efficient feature extraction under low computational overhead. MobileViT Blocks are integrated to combine local feature perception of Convolutional Neural Networks (CNNs) with the global modeling capacity of Transformers. To further improve receptive field and multi-scale representation, Receptive Field Blocks (RFB) are introduced between the components. Additionally, the Convolutional Block Attention Module (CBAM) attention mechanism enhances focus on salient regions, improving feature discrimination. A high-quality image dataset was constructed using WINNING’s large bulk carriers under various sea conditions. The experimental results demonstrate that the EfficientNetB0 + RFB + MobileViT + CBAM model achieves excellent performance with minimal computational cost: 99.71% Precision, 99.69% Recall, and 99.70% F1-score—improvements of 11.81%, 15.36%, and 13.62%, respectively, over the baseline EfficientNetB0. With only a 0.3 GFLOP and 8.3 MB increase in model size, the approach balances accuracy and inference efficiency. The model also demonstrates good robustness and application stability in real-world ship testing, with potential for further adoption in the field of intelligent ship maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 11937 KB  
Article
Sea Surface Small Target Detection Integrating OTFS and Deep Unfolding
by Xuewen Bi and Hongyan Xing
J. Mar. Sci. Eng. 2025, 13(10), 1946; https://doi.org/10.3390/jmse13101946 - 11 Oct 2025
Viewed by 30
Abstract
To address challenges such as sparse feature representation difficulties and poor robustness in detecting weak targets against sea clutter backgrounds, this study investigates the adaptability of channel modeling and sparse reconstruction techniques for target recognition. It proposes a method for detecting small sea [...] Read more.
To address challenges such as sparse feature representation difficulties and poor robustness in detecting weak targets against sea clutter backgrounds, this study investigates the adaptability of channel modeling and sparse reconstruction techniques for target recognition. It proposes a method for detecting small sea targets that integrates OTFS with deep unfolding. Using OTFS modulation to map signals from the time domain to the Delay-Doppler domain, a sparse recovery model is constructed. Deep unfolding is employed to transform the FISTA iterative process into a trainable network architecture. A GAN model is employed for adaptive parameter optimization across layers, while the CBAM mechanism enhances response to critical regions. A multi-stage loss function design and false alarm rate control mechanism improve detection accuracy and interference resistance. Validation using the IPIX dataset yields average detection rates of 88.2%, 91.5%, 90.0%, and 83.3% across four polarization modes, demonstrating the proposed method’s robust performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 8850 KB  
Article
Intelligent Defect Recognition of Glazed Components in Ancient Buildings Based on Binocular Vision
by Youshan Zhao, Xiaolan Zhang, Ming Guo, Haoyu Han, Jiayi Wang, Yaofeng Wang, Xiaoxu Li and Ming Huang
Buildings 2025, 15(20), 3641; https://doi.org/10.3390/buildings15203641 (registering DOI) - 10 Oct 2025
Viewed by 75
Abstract
Glazed components in ancient Chinese architecture hold profound historical and cultural value. However, over time, environmental erosion, physical impacts, and human disturbances gradually lead to various forms of damage, severely impacting the durability and stability of the buildings. Therefore, preventive protection of glazed [...] Read more.
Glazed components in ancient Chinese architecture hold profound historical and cultural value. However, over time, environmental erosion, physical impacts, and human disturbances gradually lead to various forms of damage, severely impacting the durability and stability of the buildings. Therefore, preventive protection of glazed components is crucial. The key to preventive protection lies in the early detection and repair of damage, thereby extending the component’s service life and preventing significant structural damage. To address this challenge, this study proposes a Restoration-Scale Identification (RSI) method that integrates depth information. By combining RGB-D images acquired from a depth camera with intrinsic camera parameters, and embedding a Convolutional Block Attention Module (CBAM) into the backbone network, the method dynamically enhances critical feature regions. It then employs a scale restoration strategy to accurately identify damage areas and recover the physical dimensions of glazed components from a global perspective. In addition, we constructed a dedicated semantic segmentation dataset for glazed tile damage, focusing on cracks and spalling. Both qualitative and quantitative evaluation results demonstrate that, compared with various high-performance semantic segmentation methods, our approach significantly improves the accuracy and robustness of damage detection in glazed components. The achieved accuracy deviates by only ±10 mm from high-precision laser scanning, a level of precision that is essential for reliably identifying and assessing subtle damages in complex glazed architectural elements. By integrating depth information, real scale information can be effectively obtained during the intelligent recognition process, thereby efficiently and accurately identifying the type of damage and size information of glazed components, and realizing the conversion from two-dimensional (2D) pixel coordinates to local three-dimensional (3D) coordinates, providing a scientific basis for the protection and restoration of ancient buildings, and ensuring the long-term stability of cultural heritage and the inheritance of historical value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

45 pages, 9186 KB  
Article
Life Cycle Assessment of Shipbuilding Materials and Potential Exposure Under the EU CBAM: Scenario-Based Assessment and Strategic Responses
by Bae-jun Kwon, Sang-jin Oh, Byong-ug Jeong, Yeong-min Park and Sung-chul Shin
J. Mar. Sci. Eng. 2025, 13(10), 1938; https://doi.org/10.3390/jmse13101938 - 10 Oct 2025
Viewed by 125
Abstract
This study evaluates the environmental impacts of shipbuilding materials through life cycle assessment (LCA) and assesses potential exposure under the EU Carbon Border Adjustment Mechanism (CBAM). Three representative vessel types, a pure car and truck carrier (PCTC), a bulk carrier, and a container [...] Read more.
This study evaluates the environmental impacts of shipbuilding materials through life cycle assessment (LCA) and assesses potential exposure under the EU Carbon Border Adjustment Mechanism (CBAM). Three representative vessel types, a pure car and truck carrier (PCTC), a bulk carrier, and a container ship, were analyzed across scenarios reflecting different steelmaking routes, recycling rates, and regional energy mixes. Results show that structural steel (AH36, EH36, DH36, A/B grades) overwhelmingly dominates embedded emissions, while aluminium and copper contribute secondarily but with high sensitivity to recycling and energy pathways. Coatings, polymers, and yard processes add smaller but non-negligible effects. Scenario-based CBAM cost estimates for 2026–2030 indicate rising liabilities, with container vessels facing the highest exposure, followed by bulk carriers and PCTCs. The findings highlight the strategic importance of steel sourcing, recycling strategies, and verifiable supply chain data for reducing embedded emissions and mitigating financial risks. While operational emissions still dominate the life cycle, the relative importance of construction-phase emissions will grow as shipping decarbonizes. Current EU-level discussions on extending CBAM to maritime services, together with recognition of domestic carbon pricing as a potential pathway to reduce liabilities, underscore regulatory uncertainty and emphasize the need for harmonized methods, transparent datasets, and digital integration to support decarbonization. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 2096 KB  
Article
Attention-Enhanced Semantic Segmentation for Substation Inspection Robot Navigation
by Changqing Cai, Yongkang Yang, Kaiqiao Tian, Yuxin Yan, Kazuyuki Kobayashi and Ka C. Cheok
Sensors 2025, 25(19), 6252; https://doi.org/10.3390/s25196252 - 9 Oct 2025
Viewed by 252
Abstract
Outdoor substations present complex conditions such as uneven terrain, strong illumination variations, and frequent occlusions, which pose significant challenges for autonomous robotic inspection. To address these issues, we develop an embedded inspection robot that integrates attention-enhanced semantic segmentation with GPS-assisted navigation for reliable [...] Read more.
Outdoor substations present complex conditions such as uneven terrain, strong illumination variations, and frequent occlusions, which pose significant challenges for autonomous robotic inspection. To address these issues, we develop an embedded inspection robot that integrates attention-enhanced semantic segmentation with GPS-assisted navigation for reliable operation. A lightweight DeepLabV3+ model is improved with ECA-SimAM and CBAM attention modules and further extended with a GPS-guided attention component that incorporates coarse location priors to refine feature focus and improve boundary recognition under challenging lighting and occlusion. The segmentation outputs are used to generate real-time road masks and navigation lines via center-of-mass and least-squares fitting, while RTK-GPS provides global positioning and triggers waypoint-based behaviors such as turning and stopping. Experimental results show that the proposed method achieves 85.26% mean IoU and 89.45% mean pixel accuracy, outperforming U-Net, PSPNet, HRNet, and standard DeepLabV3+. Deployed on an embedded platform and validated in real substations, the system demonstrates both robustness and scalability for practical infrastructure inspection tasks. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

24 pages, 18260 KB  
Article
DWG-YOLOv8: A Lightweight Recognition Method for Broccoli in Multi-Scene Field Environments Based on Improved YOLOv8s
by Haoran Liu, Yu Wang, Changyuan Zhai, Huarui Wu, Hao Fu, Haiping Feng and Xueguan Zhao
Agronomy 2025, 15(10), 2361; https://doi.org/10.3390/agronomy15102361 - 9 Oct 2025
Viewed by 172
Abstract
Addressing the challenges of multi-scene precision pesticide application for field broccoli crops and computational limitations of edge devices, this study proposes a lightweight broccoli detection method named DWG-YOLOv8, based on an improved YOLOv8s architecture. Firstly, Ghost Convolution is introduced into the C2f module, [...] Read more.
Addressing the challenges of multi-scene precision pesticide application for field broccoli crops and computational limitations of edge devices, this study proposes a lightweight broccoli detection method named DWG-YOLOv8, based on an improved YOLOv8s architecture. Firstly, Ghost Convolution is introduced into the C2f module, and the standard CBS module is replaced with Depthwise Separable Convolution (DWConv) to reduce model parameters and computational load during feature extraction. Secondly, a CDSL module is designed to enhance the model’s feature extraction capability. The CBAM attention mechanism is incorporated into the Neck network to strengthen the extraction of channel and spatial features, enhancing the model’s focus on the target. Experimental results indicate that compared to the original YOLOv8s, the DWG-YOLOv8 model has a size decreased by 35.6%, a processing time reduced by 1.9 ms, while its precision, recall, and mean Average Precision (mAP) have increased by 1.9%, 0.9%, and 3.4%, respectively. In comparative tests on complex background images, DWG-YOLOv8 showed reductions of 1.4% and 16.6% in miss rate and false positive rate compared to YOLOv8s. Deployed on edge devices using field-collected data, the DWG-YOLOv8 model achieved a comprehensive recognition accuracy of 96.53%, representing a 5.6% improvement over YOLOv8s. DWG-YOLOv8 effectively meets the lightweight requirements for accurate broccoli recognition in complex field backgrounds, providing technical support for object detection in intelligent precision pesticide application processes for broccoli. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

25 pages, 6336 KB  
Article
U-AttentionFlow: A Multi-Scale Invertible Attention Network for OLTC Anomaly Detection Using Acoustic Signals
by Donghyun Kim, Hoseong Hwang and Hochul Kim
Sensors 2025, 25(19), 6244; https://doi.org/10.3390/s25196244 - 9 Oct 2025
Viewed by 225
Abstract
The On-Load Tap Changer (OLTC) in power transformers is a critical component responsible for regulating the output voltage, and the early detection of OLTC faults is essential for maintaining power grid stability. In this paper, we propose a one-class deep learning anomaly detection [...] Read more.
The On-Load Tap Changer (OLTC) in power transformers is a critical component responsible for regulating the output voltage, and the early detection of OLTC faults is essential for maintaining power grid stability. In this paper, we propose a one-class deep learning anomaly detection model named “U-AttentionFlow” based on acoustic signals from the OLTC operation. The proposed model is trained exclusively on normal operating data to accurately model normal patterns and identify anomalies when new signals deviate from the learned patterns. To enhance the ability of the model to focus on significant features, we integrate the squeeze-and-excitation (SE) block and Convolutional Block Attention Module (CBAM) into the network architecture. Furthermore, static positional encoding and multihead self-attention (MHSA) are employed to effectively learn the temporal characteristics of time-series acoustic signals. We also adopted a U-Flow-style invertible multiscale coupling structure, which integrates features across multiple scales while ensuring the invertibility of the model. Experimental validation was conducted using acoustic data collected under realistic voltage and load conditions from actual ECOTAP VPD OLTC equipment, resulting in an anomaly detection accuracy of 99.15%. These results demonstrate the outstanding performance and practical applicability of the U-AttentionFlow model for OLTC anomaly detection. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 4825 KB  
Article
Research on Instance Segmentation Algorithm for Caged Chickens in Infrared Images Based on Improved Mask R-CNN
by Youqing Chen, Hang Liu, Lun Wang, Chen Chen, Siyu Li, Binyuan Zhong, Jihui Qiao, Rong Ye and Tong Li
Sensors 2025, 25(19), 6237; https://doi.org/10.3390/s25196237 - 8 Oct 2025
Viewed by 223
Abstract
Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers [...] Read more.
Infrared images of caged chickens can provide valuable insights into their health status. Accurately detecting and segmenting individual chickens in these images is essential for effective health monitoring in large-scale chicken farming. However, the presence of obstacles such as cages, feeders, and drinkers can obscure the chickens, while clustering and overlapping among them may further hinder segmentation accuracy. This study proposes a Mask R-CNN-based instance segmentation algorithm specifically designed for caged chickens in infrared images. The backbone network is enhanced by incorporating the CBAM within this algorithm, which is further combined with the AC-FPN architecture to improve the model’s ability to extract features. Experimental results demonstrate that the model achieves average AP and AR10 values of 78.66% and 85.80%, respectively, in object detection, as per the COCO performance metrics. In segmentation tasks, the model attains average AP and AR10 values of 73.94% and 80.42%, respectively, reflecting improvements of 32.91% and 17.78% over the original model. Notably, among all categories of chicken flocks, the ‘Chicken-many’ category achieved an impressive average segmentation accuracy of 98.51%, and the other categories also surpassed 93%. The proposed instance segmentation method for caged chickens in infrared images effectively facilitates the recognition and segmentation of chickens within the challenging imaging conditions typical of high-density caged environments, thereby contributing to enhanced production efficiency and the advancement of intelligent breeding management. Full article
Show Figures

Figure 1

31 pages, 6076 KB  
Article
MSWindD-YOLO: A Lightweight Edge-Deployable Network for Real-Time Wind Turbine Blade Damage Detection in Sustainable Energy Operations
by Pan Li, Jitao Zhou, Jian Zeng, Qian Zhao and Qiqi Yang
Sustainability 2025, 17(19), 8925; https://doi.org/10.3390/su17198925 - 8 Oct 2025
Viewed by 213
Abstract
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate [...] Read more.
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate real-time inference capabilities. In response to these limitations, we put forward MSWindD-YOLO, a lightweight real-time detection model for wind turbine blade damage. Building upon YOLOv5s, our work introduces three key improvements: (1) the replacement of the Focus module with the Stem module to enhance computational efficiency and multi-scale feature fusion, integrating EfficientNetV2 structures for improved feature extraction and lightweight design, while retaining the SPPF module for multi-scale context awareness; (2) the substitution of the C3 module with the GBC3-FEA module to reduce computational redundancy, coupled with the incorporation of the CBAM attention mechanism at the neck network’s terminus to amplify critical features; and (3) the adoption of Shape-IoU loss function instead of CIoU loss function to facilitate faster model convergence and enhance localization accuracy. Evaluated on the Wind Turbine Blade Damage Visual Analysis Dataset (WTBDVA), MSWindD-YOLO achieves a precision of 95.9%, a recall of 96.3%, an mAP@0.5 of 93.7%, and an mAP@0.5:0.95 of 87.5%. With a compact size of 3.12 MB and 22.4 GFLOPs inference cost, it maintains high efficiency. After TensorRT acceleration on Jetson Orin NX, the model attains 43 FPS under FP16 quantization for real-time damage detection. Consequently, the proposed MSWindD-YOLO model not only elevates detection accuracy and inference efficiency but also achieves significant model compression. Its deployment-compatible performance in edge environments fulfills stringent industrial demands, ultimately advancing sustainable wind energy operations through lightweight lifecycle maintenance solutions for wind farms. Full article
Show Figures

Figure 1

24 pages, 6407 KB  
Article
Lightweight SCC-YOLO for Winter Jujube Detection and 3D Localization with Cross-Platform Deployment Evaluation
by Meng Zhou, Yaohua Hu, Anxiang Huang, Yiwen Chen, Xing Tong, Mengfei Liu and Yunxiao Pan
Agriculture 2025, 15(19), 2092; https://doi.org/10.3390/agriculture15192092 - 8 Oct 2025
Viewed by 170
Abstract
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this [...] Read more.
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this study, RGB-D cameras were integrated with an improved YOLOv11 network optimized by ShuffleNetV2, CBAM, and a redesigned C2f_WTConv module, which enables joint spatial–frequency feature modeling and enhances small-object detection in complex orchard conditions. The model was trained on a diversified dataset with extensive augmentation to ensure robustness. In addition, the original localization loss was replaced with DIoU to improve bounding box regression accuracy. A robotic harvesting system was developed, and an Eye-to-Hand calibration-based 3D localization pipeline was implemented to map fruit coordinates to the robot workspace for accurate picking. To validate engineering applicability, the SCC-YOLO model was deployed on both desktop (PyTorch and ONNX Runtime) and mobile (NCNN with Vulkan+FP16) platforms, and FPS, latency, and stability were comparatively analyzed. Experimental results showed that SCC-YOLO improved mAP by 5.6% over YOLOv11, significantly enhanced detection precision and robustness, and achieved real-time performance on mobile devices while maintaining peak throughput on high-performance desktops. Field and laboratory tests confirmed the system’s effectiveness for detection, localization, and harvesting efficiency, demonstrating its adaptability to diverse deployment environments and its potential for broader agricultural applications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 7048 KB  
Article
Enhanced Lightweight Object Detection Model in Complex Scenes: An Improved YOLOv8n Approach
by Sohaya El Hamdouni, Boutaina Hdioud and Sanaa El Fkihi
Information 2025, 16(10), 871; https://doi.org/10.3390/info16100871 - 8 Oct 2025
Viewed by 510
Abstract
Object detection has a vital impact on the analysis and interpretation of visual scenes. It is widely utilized in various fields, including healthcare, autonomous driving, and vehicle surveillance. However, complex scenes containing small, occluded, and multiscale objects present significant difficulties for object detection. [...] Read more.
Object detection has a vital impact on the analysis and interpretation of visual scenes. It is widely utilized in various fields, including healthcare, autonomous driving, and vehicle surveillance. However, complex scenes containing small, occluded, and multiscale objects present significant difficulties for object detection. This paper introduces a lightweight object detection algorithm, utilizing YOLOv8n as the baseline model, to address these problems. Our method focuses on four steps. Firstly, we add a layer for small object detection to enhance the feature expression capability of small objects. Secondly, to handle complex forms and appearances, we employ the C2f-DCNv2 module. This module integrates advanced DCNv2 (Deformable Convolutional Networks v2) by substituting the final C2f module in the backbone. Thirdly, we designed the CBAM, a lightweight attention module. We integrate it into the neck section to address missed detections. Finally, we use Ghost Convolution (GhostConv) as a light convolutional layer. This alternates with ordinary convolution in the neck. It ensures good detection performance while decreasing the number of parameters. Experimental performance on the PASCAL VOC dataset demonstrates that our approach lowers the number of model parameters by approximately 9.37%. The mAP@0.5:0.95 increased by 0.9%, recall (R) increased by 0.8%, mAP@0.5 increased by 0.3%, and precision (P) increased by 0.1% compared to the baseline model. To better evaluate the model’s generalization performance in real-world driving scenarios, we conducted additional experiments using the KITTI dataset. Compared to the baseline model, our approach yielded a 0.8% improvement in mAP@0.5 and 1.3% in mAP@0.5:0.95. This result indicates strong performance in more dynamic and challenging conditions. Full article
Show Figures

Graphical abstract

14 pages, 2127 KB  
Article
CycleGAN with Atrous Spatial Pyramid Pooling and Attention-Enhanced MobileNetV4 for Tomato Disease Recognition Under Limited Training Data
by Yueming Jiang, Taizeng Jiang, Chunyan Song and Jian Wang
Appl. Sci. 2025, 15(19), 10790; https://doi.org/10.3390/app151910790 - 7 Oct 2025
Viewed by 172
Abstract
To address the challenges of poor model generalization and suboptimal recognition accuracy stemming from limited and imbalanced sample sizes in tomato leaf disease identification, this study proposes a novel recognition strategy. This approach synergistically combines an enhanced image augmentation method based on generative [...] Read more.
To address the challenges of poor model generalization and suboptimal recognition accuracy stemming from limited and imbalanced sample sizes in tomato leaf disease identification, this study proposes a novel recognition strategy. This approach synergistically combines an enhanced image augmentation method based on generative adversarial networks with a lightweight deep learning model. Initially, an Atrous Spatial Pyramid Pooling (ASPP) module is integrated into the CycleGAN framework. This integration enhances the generator’s capacity to model multi-scale pathological lesion features, thereby significantly improving the diversity and realism of synthesized images. Subsequently, the Convolutional Block Attention Module (CBAM), incorporating both channel and spatial attention mechanisms, is embedded into the MobileNetV4 architecture. This enhancement boosts the model’s ability to focus on critical disease regions. Experimental results demonstrate that the proposed ASPP-CycleGAN significantly outperforms the original CycleGAN across multiple disease image generation tasks. Furthermore, the developed CBAM-MobileNetV4 model achieves a remarkable average recognition accuracy exceeding 97% for common tomato diseases, including early blight, late blight, and mosaic disease, representing a 1.86% improvement over the baseline MobileNetV4. The findings indicate that the proposed method offers exceptional data augmentation capabilities and classification performance under small-sample learning conditions, providing an effective technical foundation for the intelligent identification and control of tomato leaf diseases. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

23 pages, 4303 KB  
Article
LMCSleepNet: A Lightweight Multi-Channel Sleep Staging Model Based on Wavelet Transform and Muli-Scale Convolutions
by Jiayi Yang, Yuanyuan Chen, Tingting Yu and Ying Zhang
Sensors 2025, 25(19), 6065; https://doi.org/10.3390/s25196065 - 2 Oct 2025
Viewed by 212
Abstract
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from [...] Read more.
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from multi-channel sleep data remains limited; (2) excessive model parameters hinder efficiency improvements. To address these challenges, this work proposes a lightweight multi-channel sleep staging network (LMCSleepNet). LMCSleepNet is composed of four modules. The first module enhances frequency domain features through continuous wavelet transform. The second module extracts time–frequency features using multi-scale convolutions. The third module optimizes ResNet18 with depthwise separable convolutions to reduce parameters. The fourth module improves spatial correlation using the Convolutional Block Attention Module (CBAM). On the public datasets SleepEDF-20, SleepEDF-78, and LMCSleepNet, respectively, LMCSleepNet achieved classification accuracies of 88.2% (κ = 0.84, MF1 = 82.4%) and 84.1% (κ = 0.77, MF1 = 77.7%), while reducing model parameters to 1.49 M. Furthermore, experiments validated the influence of temporal sampling points in wavelet time–frequency maps on sleep classification performance (accuracy, Cohen’s kappa, and macro-average F1-score) and the influence of multi-scale dilated convolution module fusion methods on classification performance. LMCSleepNet is an efficient lightweight model for extracting and integrating multimodal features from multichannel Polysomnography (PSG) data, which facilitates its application in resource-constrained scenarios. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

23 pages, 24448 KB  
Article
YOLO-SCA: A Lightweight Potato Bud Eye Detection Method Based on the Improved YOLOv5s Algorithm
by Qing Zhao, Ping Zhao, Xiaojian Wang, Qingbing Xu, Siyao Liu and Tianqi Ma
Agriculture 2025, 15(19), 2066; https://doi.org/10.3390/agriculture15192066 - 1 Oct 2025
Viewed by 327
Abstract
Bud eye identification is a critical step in the intelligent seed cutting process for potatoes. This study focuses on the challenges of low testing accuracy and excessive weighted memory in testing models for potato bud eye detection. It proposes an improved potato bud [...] Read more.
Bud eye identification is a critical step in the intelligent seed cutting process for potatoes. This study focuses on the challenges of low testing accuracy and excessive weighted memory in testing models for potato bud eye detection. It proposes an improved potato bud eye detection method based on YOLOv5s, referred to as the YOLO-SCA model, which synergistically optimizing three main modules. The improved model introduces the ShuffleNetV2 module to reconstruct the backbone network. The channel shuffling mechanism reduces the model’s weighted memory and computational load, while enhancing bud eye features. Additionally, the CBAM attention mechanism is embedded at specific layers, using dual-path feature weighting (channel and spatial) to enhance sensitivity to key bud eye features in complex contexts. Then, the Alpha-IoU function is used to replace the CloU function as the bounding box regression loss function. Its single-parameter control mechanism and adaptive gradient amplification characteristics significantly improve the accuracy of bud eye positioning and strengthen the model’s anti-interference ability. Finally, we conduct pruning based on the channel evaluation after sparse training, accurately removing redundant channels, significantly reducing the amount of computation and weighted memory, and achieving real-time performance of the model. This study aims to address how potato bud eye detection models can achieve high-precision real-time detection under the conditions of limited computational resources and storage space. The improved YOLO-SCA model has a size of 3.6 MB, which is 35.3% of the original model; the number of parameters is 1.7 M, which is 25% of the original model; and the average accuracy rate is 95.3%, which is a 12.5% improvement over the original model. This study provides theoretical support for the development of potato bud eye recognition technology and intelligent cutting equipment. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 3177 KB  
Article
Ground Type Classification for Hexapod Robots Using Foot-Mounted Force Sensors
by Yong Liu, Rui Sun, Xianguo Tuo, Tiantao Sun and Tao Huang
Machines 2025, 13(10), 900; https://doi.org/10.3390/machines13100900 - 1 Oct 2025
Viewed by 251
Abstract
In field exploration, disaster rescue, and complex terrain operations, the accuracy of ground type recognition directly affects the walking stability and task execution efficiency of legged robots. To address the problem of terrain recognition in complex ground environments, this paper proposes a high-precision [...] Read more.
In field exploration, disaster rescue, and complex terrain operations, the accuracy of ground type recognition directly affects the walking stability and task execution efficiency of legged robots. To address the problem of terrain recognition in complex ground environments, this paper proposes a high-precision classification method based on single-leg triaxial force signals. The method first employs a one-dimensional convolutional neural network (1D-CNN) module to extract local temporal features, then introduces a long short-term memory (LSTM) network to model long-term and short-term dependencies during ground contact, and incorporates a convolutional block attention module (CBAM) to adaptively enhance the feature responses of critical channels and time steps, thereby improving discriminative capability. In addition, an improved whale optimization algorithm (iBWOA) is adopted to automatically perform global search and optimization of key hyperparameters, including the number of convolution kernels, the number of LSTM units, and the dropout rate, to achieve the optimal training configuration. Experimental results demonstrate that the proposed method achieves excellent classification performance on five typical ground types—grass, cement, gravel, soil, and sand—under varying slope and force conditions, with an overall classification accuracy of 96.94%. Notably, it maintains high recognition accuracy even between ground types with similar contact mechanical properties, such as soil vs. grass and gravel vs. sand. This study provides a reliable perception foundation and technical support for terrain-adaptive control and motion strategy optimization of legged robots in real-world environments. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

Back to TopTop