Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Car–Parrinello molecular dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1145 KB  
Article
On the Simulation of Photoreactions Using Restricted Open-Shell Kohn–Sham Theory
by Ralf Büchel, Luis Álvarez, Jan Grage, Dominykas Maniscalco and Irmgard Frank
Molecules 2024, 29(18), 4509; https://doi.org/10.3390/molecules29184509 - 23 Sep 2024
Cited by 1 | Viewed by 1346
Abstract
It is a well-established standard to describe ground-state chemical reactions at an ab initio level of multi-electron theory. Fast reactions can be directly simulated. The most widely used approach is density functional theory for the electronic structure in combination with molecular dynamics for [...] Read more.
It is a well-established standard to describe ground-state chemical reactions at an ab initio level of multi-electron theory. Fast reactions can be directly simulated. The most widely used approach is density functional theory for the electronic structure in combination with molecular dynamics for the nuclear motion. This approach is known as ab initio molecular dynamics. In contrast, the simulation of excited-state reactions at this level of theory is significantly more difficult. It turns out that the self-consistent solution of the Kohn–Sham equations is not easily reached in excited-state simulations. The first program that solved this problem was the Car–Parrinello molecular dynamics code, using restricted open-shell Kohn–Sham theory. Meanwhile, there are alternatives, most prominently the Q-Chem code, which widens the range of applications. The present study investigates the suitability of both codes for the molecular dynamics simulation of excited-state motion and presents applications to photoreactions. Full article
Show Figures

Figure 1

18 pages, 3728 KB  
Article
Very Strong Hydrogen Bond in Nitrophthalic Cocrystals
by Kinga Jóźwiak, Aneta Jezierska, Jarosław J. Panek, Andrzej Kochel, Barbara Łydżba-Kopczyńska and Aleksander Filarowski
Molecules 2024, 29(15), 3565; https://doi.org/10.3390/molecules29153565 - 29 Jul 2024
Cited by 3 | Viewed by 1939
Abstract
This work presents the studies of a very strong hydrogen bond (VSHB) in biologically active phthalic acids. Research on VSHB comes topical due to its participation in many biological processes. The studies cover the modelling of intermolecular interactions and phthalic acids with 2,4,6-collidine [...] Read more.
This work presents the studies of a very strong hydrogen bond (VSHB) in biologically active phthalic acids. Research on VSHB comes topical due to its participation in many biological processes. The studies cover the modelling of intermolecular interactions and phthalic acids with 2,4,6-collidine and N,N-dimethyl-4-pyridinamine complexes with aim to obtain a VSHB. The four synthesized complexes were studied by experimental X-ray, IR, and Raman methods, as well as theoretical Car–Parrinello Molecular Dynamics (CP-MD) and Density Functional Theory (DFT) simulations. By variation of the steric repulsion and basicity of the complex’ components, a very short intramolecular hydrogen bond was achieved. The potential energy curves calculated by the DFT method were characterized by a low barrier (0.7 and 0.9 kcal/mol) on proton transfer in the OHN intermolecular hydrogen bond for 3-nitrophthalic acid with either 2,4,6-collidine or N,N-dimethyl-4-pyridinamine cocrystals. Moreover, the CP-MD simulations exposed very strong bridging proton dynamics in the intermolecular hydrogen bonds. The accomplished crystallographic and spectroscopic studies indicate that the OHO intramolecular hydrogen bond in 4-nitrophthalic cocrystals is VSHB. The influence of a strong steric effect on the geometry of the studied cocrystals and the stretching vibration bands of the carboxyl and carboxylate groups was elaborated. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications, 3rd Edition)
Show Figures

Figure 1

15 pages, 2559 KB  
Article
Atomistic Details of Methyl Linoleate Pyrolysis: Direct Molecular Dynamics Simulation of Converting Biodiesel to Petroleum Products
by Michael J. Bakker and Matthew R. Siebert
Energies 2024, 17(10), 2433; https://doi.org/10.3390/en17102433 - 20 May 2024
Viewed by 1621
Abstract
Dependence on petroleum and petrochemical products is unsustainable; it is both a finite resource and an environmental hazard. Biodiesel has many attractive qualities, including a sustainable feedstock; however, it has its complications. The pyrolysis (a process already in common use in the petroleum [...] Read more.
Dependence on petroleum and petrochemical products is unsustainable; it is both a finite resource and an environmental hazard. Biodiesel has many attractive qualities, including a sustainable feedstock; however, it has its complications. The pyrolysis (a process already in common use in the petroleum industry) of biodiesel has demonstrated the formation of smaller hydrocarbons comprising many petrochemical products but experiments suffer from difficulty quantifying the myriad reaction pathways followed and products formed. A computational simulation of pyrolysis using “ab initio molecular dynamics” offers atomic-level detail of the reaction pathways and products formed. Herein, the most prevalent fatty-acid ester (methyl linoleate) from the most prevalent feedstock for biodiesel in the United States (soybean oil) is studied. Temperature acceleration within the atom-centered density matrix propagation formalism (Car–Parrinello) utilizing the D3-M06-2X/6-31+G(d,p) model chemistry is used to compose an ensemble of trajectories. The results are grounded in comparison to experimental studies through agreement in the following: (1) the extent of reactivity (40% in the experimental and 36.1% in this work), (2) the homology of hydrocarbon products formed (wt % of C6–C10 products), and (3) the CO/CO2 product ratio. Deoxygenation pathways are critically analyzed (as the presence of oxygen in biodiesel represents a disadvantage in its current use). Within this ensemble, deoxygenation was found to proceed through two subclasses: (1) spontaneous deoxygenation, following one of four possible pathways; or (2) induced deoxygenation, following one of three possible pathways. Full article
Show Figures

Figure 1

11 pages, 337 KB  
Article
Nuclear Motion Is Classical: Spectrum of a Magic Protonated Water Cluster
by Irmgard Frank
Molecules 2023, 28(18), 6454; https://doi.org/10.3390/molecules28186454 - 6 Sep 2023
Viewed by 1288
Abstract
The assumption that nuclear motion is classical explains many phenomena. The problems of Schrödinger’s cat and the EPR paradoxon do not exist in a perfectly deterministic theory. All it needs is to describe nuclear motion classically right from the beginning. To establish this [...] Read more.
The assumption that nuclear motion is classical explains many phenomena. The problems of Schrödinger’s cat and the EPR paradoxon do not exist in a perfectly deterministic theory. All it needs is to describe nuclear motion classically right from the beginning. To establish this simple idea, it must be tested for as many examples as possible. In the present paper, we use ab initio molecular dynamics to investigate the infrared spectrum of a ‘magic’ protonated water cluster H3O+(H2O)20 which exhibits some features that were believed to afford a quantum treatment of nuclear motion. The role of the temperature in contrast to a quantum mechanical description is discussed. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

8 pages, 269 KB  
Communication
Nuclear Motion Is Classical: Spectra of Hydrogen Chloride and Ammonia
by Irmgard Frank
Hydrogen 2023, 4(2), 287-294; https://doi.org/10.3390/hydrogen4020020 - 15 May 2023
Cited by 1 | Viewed by 2249
Abstract
The concept of classical nuclear motion is extremely successful in describing motion at the atomic scale. In describing chemical reactions, it is even far more convincing than the picture obtained by using the Schrödinger equation for time development. However, this theory must be [...] Read more.
The concept of classical nuclear motion is extremely successful in describing motion at the atomic scale. In describing chemical reactions, it is even far more convincing than the picture obtained by using the Schrödinger equation for time development. However, this theory must be subject to critical tests. In particular, it must be checked if vibrational and rotational spectra are obtained correctly. Particularly critical are the spectra of small molecules containing the light hydrogen atom, since they have a distinctive rotational structure. The present study presents computations of the spectra of ammonia and hydrogen chloride using ab initio molecular dynamics, that is, by describing nuclear motion classically. Full article
(This article belongs to the Special Issue Feature Papers in Hydrogen (Volume 2))
Show Figures

Figure 1

14 pages, 3460 KB  
Article
Inter- vs. Intra-Molecular Hydrogen Bond in Complexes of Nitrophthalic Acids with Pyridine
by Kinga Jóźwiak, Aneta Jezierska, Jarosław J. Panek, Andrzej Kochel and Aleksander Filarowski
Int. J. Mol. Sci. 2023, 24(6), 5248; https://doi.org/10.3390/ijms24065248 - 9 Mar 2023
Cited by 6 | Viewed by 2658
Abstract
This study covers the analysis of isomeric forms of nitrophthalic acids with pyridine. This work dwells on the complementary experimental (X-ray, IR and Raman) and theoretical (Car-Parrinello Molecular Dynamics (CPMD) and Density Functional Theory (DFT)) studies of the obtained complexes. The conducted studies [...] Read more.
This study covers the analysis of isomeric forms of nitrophthalic acids with pyridine. This work dwells on the complementary experimental (X-ray, IR and Raman) and theoretical (Car-Parrinello Molecular Dynamics (CPMD) and Density Functional Theory (DFT)) studies of the obtained complexes. The conducted studies showed that steric repulsion between the nitro group in ortho-position and the carboxyl group causes significant isomeric changes. Modeling of the nitrophthalic acid—pyridine complex yielded a short strong intramolecular hydrogen bond (SSHB). The transition energy from the isomeric form with an intermolecular hydrogen bond to the isomeric form with an intramolecular hydrogen bond was estimated. Full article
Show Figures

Graphical abstract

22 pages, 10050 KB  
Article
Unraveling the Nature of Hydrogen Bonds of “Proton Sponges” Based on Car-Parrinello and Metadynamics Approaches
by Beata Kizior, Mariusz Michalczyk, Jarosław J. Panek, Wiktor Zierkiewicz and Aneta Jezierska
Int. J. Mol. Sci. 2023, 24(2), 1542; https://doi.org/10.3390/ijms24021542 - 12 Jan 2023
Cited by 3 | Viewed by 3556
Abstract
The nature of intra- and intermolecular non-covalent interactions was studied in four naphthalene derivatives commonly referred to as “proton sponges”. Special attention was paid to an intramolecular hydrogen bond present in the protonated form of the compounds. The unsubstituted “proton sponge” served as [...] Read more.
The nature of intra- and intermolecular non-covalent interactions was studied in four naphthalene derivatives commonly referred to as “proton sponges”. Special attention was paid to an intramolecular hydrogen bond present in the protonated form of the compounds. The unsubstituted “proton sponge” served as a reference structure to study the substituent influence on the hydrogen bond (HB) properties. We selected three compounds substituted by methoxy, amino, and nitro groups. The presence of the substituents either retained the parent symmetry or rendered the compounds asymmetric. In order to reveal the non-covalent interaction properties, the Hirshfeld surface (HS) was computed for the crystal structures of the studied compounds. Next, quantum-chemical simulations were performed in vacuo and in the crystalline phase. Car–Parrinello molecular dynamics (CPMD), Path Integral Molecular Dynamics (PIMD), and metadynamics were employed to investigate the time-evolution changes of metric parameters and free energy profile in both phases. Additionally, for selected snapshots obtained from the CPMD trajectories, non-covalent interactions and electronic structure were studied. Quantum theory of atoms in molecules (QTAIM) and the Density Overlap Regions Indicator (DORI) were applied for this purpose. It was found based on Hirshfeld surfaces that, besides intramolecular hydrogen bonds, other non-covalent interactions are present and have a strong impact on the crystal structure organization. The CPMD results obtained in both phases showed frequent proton transfer phenomena. The proton was strongly delocalized in the applied time-scale and temperature, especially in the PIMD framework. The use of metadynamics allowed for tracing the free energy profiles and confirming that the hydrogen bonds present in “proton sponges” are Low-Barrier Hydrogen Bonds (LBHBs). The electronic and topological analysis quantitatively described the temperature dependence and time-evolution changes of the electronic structure. The covalency of the hydrogen bonds was estimated based on QTAIM analysis. It was found that strong hydrogen bonds show greater covalency, which is additionally determined by the proton position in the hydrogen bridge. Full article
(This article belongs to the Special Issue Feature Papers in Physical Chemistry and Chemical Physics 2022)
Show Figures

Figure 1

11 pages, 1003 KB  
Article
Classical Nuclear Motion: Comparison to Approaches with Quantum Mechanical Nuclear Motion
by Irmgard Frank
Hydrogen 2023, 4(1), 11-21; https://doi.org/10.3390/hydrogen4010002 - 29 Dec 2022
Cited by 2 | Viewed by 2311
Abstract
Ab initio molecular dynamics combines a classical description of nuclear motion with a density-functional description of the electronic cloud. This approach nicely describes chemical reactions. A possible conclusion is that a quantum mechanical description of nuclear motion is not needed. Using Occam’s razor, [...] Read more.
Ab initio molecular dynamics combines a classical description of nuclear motion with a density-functional description of the electronic cloud. This approach nicely describes chemical reactions. A possible conclusion is that a quantum mechanical description of nuclear motion is not needed. Using Occam’s razor, this means that, being the simpler approach, classical nuclear motion is preferable. In this paper, it is claimed that nuclear motion is classical, and this hypothesis will be tested in comparison to methods with quantum mechanical nuclear motion. In particular, we apply ab initio molecular dynamics to two photoreactions involving hydrogen. Hydrogen, as the lightest element, is often assumed to show quantum mechanical tunneling. We will see that the classical picture is fully sufficient. The quantum mechanical view leads to phenomena that are difficult to understand, such as the entanglement of nuclear motion. In contrast, it is easy to understand the simple classical picture which assumes that nuclear motion is steady and uniform unless a force is acting. Of course, such a hypothesis must be verified for many systems and phenomena, and this paper is one more step in this direction. Full article
Show Figures

Graphical abstract

16 pages, 3271 KB  
Article
Exploring the Dynamical Nature of Intermolecular Hydrogen Bonds in Benzamide, Quinoline and Benzoic Acid Derivatives
by Kamil Wojtkowiak and Aneta Jezierska
Molecules 2022, 27(24), 8847; https://doi.org/10.3390/molecules27248847 - 13 Dec 2022
Cited by 4 | Viewed by 3286
Abstract
The hydrogen bonds properties of 2,6-difluorobenzamide, 5-hydroxyquinoline and 4-hydroxybenzoic acid were investigated by Car–Parrinello and path integral molecular dynamics (CPMD and PIMD), respectively. The computations were carried out in vacuo and in the crystalline phase. The studied complexes possess diverse networks of intermolecular [...] Read more.
The hydrogen bonds properties of 2,6-difluorobenzamide, 5-hydroxyquinoline and 4-hydroxybenzoic acid were investigated by Car–Parrinello and path integral molecular dynamics (CPMD and PIMD), respectively. The computations were carried out in vacuo and in the crystalline phase. The studied complexes possess diverse networks of intermolecular hydrogen bonds (N-H…O, O-H…N and O-H…O). The time evolution of hydrogen bridges gave a deeper insight into bonds dynamics, showing that bridged protons are mostly localized on the donor side; however, the proton transfer phenomenon was registered as well. The vibrational features associated with O-H and N-H stretching were analyzed on the basis of the Fourier transform of the atomic velocity autocorrelation function. The spectroscopic effects of hydrogen bond formation were studied. The PIMD revealed quantum effects influencing the hydrogen bridges providing more accurate free energy sampling. It was found that the N…O or O…O interatomic distances decreased (reducing the length of the hydrogen bridge), while the O-H or N-H covalent bond was elongated, which led to the increase in the proton sharing. Furthermore, Quantum Theory of Atoms in Molecules (QTAIM) was used to give insight into electronic structure parameters. Finally, Symmetry-Adapted Perturbation Theory (SAPT) was employed to estimate the energy contributions to the interaction energy of the selected dimers. Full article
(This article belongs to the Collection Hydrogen Bonds)
Show Figures

Figure 1

10 pages, 695 KB  
Article
The First Reaction Steps of Lithium-Mediated Ammonia Synthesis: Ab Initio Simulation
by Dominykas Maniscalco, Dominik A. Rudolph, Ebrahim Nadimi and Irmgard Frank
Nitrogen 2022, 3(3), 404-413; https://doi.org/10.3390/nitrogen3030026 - 4 Jul 2022
Cited by 2 | Viewed by 3846
Abstract
The reaction of molecular nitrogen with molecular hydrogen was simulated using ab initio molecular dynamics. The reaction was catalyzed by the addition of bulk lithium and oxygen. As is known from the experiment, the limiting step is the breaking of the nitrogen–nitrogen triple [...] Read more.
The reaction of molecular nitrogen with molecular hydrogen was simulated using ab initio molecular dynamics. The reaction was catalyzed by the addition of bulk lithium and oxygen. As is known from the experiment, the limiting step is the breaking of the nitrogen–nitrogen triple bond. We observed a mechanism that has not been discussed before: one of the nitrogen atoms of a nitrogen molecule is absorbed by the lithium bulk, whereas the other nitrogen atom reacts with hydrogen. Adding oxygen leads to a dominating reaction of oxygen with the lithium surface. The oxygen molecules break easily into single atoms and are, in part, absorbed by the lithium structure. Part of them remains on the surface and reacts with hydrogen. In this way, hydrogen is activated and can, in turn, react easily with molecular nitrogen. The overall reactivity as observed in the ab initio simulations reflects the extremely low density of lithium. Interstitial sites are readily occupied, leading to oxide and nitride structures. Full article
Show Figures

Graphical abstract

24 pages, 7186 KB  
Article
Revealing Intra- and Intermolecular Interactions Determining Physico-Chemical Features of Selected Quinolone Carboxylic Acid Derivatives
by Kamil Wojtkowiak, Aneta Jezierska and Jarosław J. Panek
Molecules 2022, 27(7), 2299; https://doi.org/10.3390/molecules27072299 - 1 Apr 2022
Cited by 1 | Viewed by 3665
Abstract
The intra- and intermolecular interactions of selected quinolone carboxylic acid derivatives were studied in monomers, dimers and crystals. The investigated compounds are well-recognized as medicines or as bases for further studies in drug design. We employed density functional theory (DFT) in its classical [...] Read more.
The intra- and intermolecular interactions of selected quinolone carboxylic acid derivatives were studied in monomers, dimers and crystals. The investigated compounds are well-recognized as medicines or as bases for further studies in drug design. We employed density functional theory (DFT) in its classical formulation to develop gas-phase and solvent reaction field (PCM) models describing geometric, energetic and electronic structure parameters for monomers and dimers. The electronic structure was investigated based on the atoms in molecules (AIM) and natural bond orbital (NBO) theories. Special attention was devoted to the intramolecular hydrogen bonds (HB) present in the investigated compounds. The characterization of energy components was performed using symmetry-adapted perturbation theory (SAPT). Finally, the time-evolution methods of Car–Parrinello molecular dynamics (CPMD) and path integral molecular dynamics (PIMD) were employed to describe the hydrogen bond dynamics as well as the spectroscopic signatures. The vibrational features of the O-H stretching were studied using Fourier transformation of the autocorrelation function of atomic velocity. The inclusion of quantum nuclear effects provided an accurate depiction of the bridged proton delocalization. The CPMD and PIMD simulations were carried out in the gas and crystalline phases. It was found that the polar environment enhances the strength of the intramolecular hydrogen bonds. The SAPT analysis revealed that the dispersive forces are decisive factors in the intermolecular interactions. In the electronic ground state, the proton-transfer phenomena are not favourable. The CPMD results showed generally that the bridged proton is localized at the donor side, with possible proton-sharing events in the solid-phase simulation of stronger hydrogen bridges. However, the PIMD enabled the quantitative estimation of the quantum effects inclusion—the proton position was moved towards the bridge midpoint, but no qualitative changes were detected. It was found that the interatomic distance between the donor and acceptor atoms was shortened and that the bridged proton was strongly delocalized. Full article
(This article belongs to the Special Issue Molecular Sensitivity and Weak Interactions)
Show Figures

Graphical abstract

16 pages, 4407 KB  
Article
Inside out Approach to Rotator State in Hydrogen-Bonded System—Experimental and Theoretical Cross-Examination in n-Octanol
by Michał Pocheć, Katarzyna M. Krupka, Jarosław J. Panek, Kazimierz Orzechowski and Aneta Jezierska
Int. J. Mol. Sci. 2022, 23(4), 2138; https://doi.org/10.3390/ijms23042138 - 15 Feb 2022
Cited by 3 | Viewed by 2236
Abstract
The experimental and theoretical description of premelting behavior is one of the most challenging tasks in contemporary material science. In this paper, n-octanol was studied using a multi-method approach to investigate it at macroscopic and molecular levels. The experimental infrared (IR) spectra were [...] Read more.
The experimental and theoretical description of premelting behavior is one of the most challenging tasks in contemporary material science. In this paper, n-octanol was studied using a multi-method approach to investigate it at macroscopic and molecular levels. The experimental infrared (IR) spectra were collected in the solid state and liquid phase at temperature range from 84C to −15 C to detect temperature-related indicators of pretransitional phenomena. Next, the nonlinear dielectric effect (NDE) was measured at various temperatures (from −30 C to −15 C) to provide insight into macroscopic effects of premelting. As a result, a two-step mechanism of premelting in n-octanol was established based on experimental data. It was postulated that it consists of a rotator state formation followed by the surface premelting. In order to shed light onto molecular-level processes, classical molecular dynamics (MD) was performed to investigate the time evolution of the changes in metric parameters as a function of simulation temperature. The applied protocol enabled simulations in the solid state as well as in the liquid (the collapse of the ordered crystal structure). The exact molecular motions contributing to the rotator state formation were obtained, revealing an enabling of the rotational freedom of the terminal parts of the chains. The Car–Parrinello molecular dynamics (CPMD) was applied to support and interpret experimental spectroscopic findings. The vibrational properties of the stretching of OH within the intermolecular hydrogen bond were studied using Fourier transformation of the autocorrelation function of both dipole moments and atomic velocity. Finally, path integral molecular dynamics (PIMD) was carried out to analyze the quantum effect’s influence on the bridged proton position in the hydrogen bridge. On the basis of the combined experimental and theoretical conclusions, a novel mechanism of the bridged protons dynamics has been postulated—the interlamellar hydrogen bonding pattern, resulting in an additional OH stretching band, visible in the solid-state experimental IR spectra. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

25 pages, 4469 KB  
Article
Intermolecular Interactions and Spectroscopic Signatures of the Hydrogen-Bonded System—n-Octanol in Experimental and Theoretical Studies
by Michał Pocheć, Katarzyna M. Krupka, Jarosław J. Panek, Kazimierz Orzechowski and Aneta Jezierska
Molecules 2022, 27(4), 1225; https://doi.org/10.3390/molecules27041225 - 11 Feb 2022
Cited by 7 | Viewed by 3688
Abstract
n-Octanol is the object of experimental and theoretical study of spectroscopic signatures and intermolecular interactions. The FTIR measurements were carried out at 293 K for n-octanol and its deuterated form. Special attention was paid to the vibrational features associated with the O-H stretching [...] Read more.
n-Octanol is the object of experimental and theoretical study of spectroscopic signatures and intermolecular interactions. The FTIR measurements were carried out at 293 K for n-octanol and its deuterated form. Special attention was paid to the vibrational features associated with the O-H stretching and the isotope effect. Density Functional Theory (DFT) in its classical formulations was applied to develop static models describing intermolecular hydrogen bond (HB) and isotope effect in the gas phase and using solvent reaction field reproduced by Polarizable Continuum Model (PCM). The Atoms in Molecules (AIM) theory enabled electronic structure and molecular topology study. The Symmetry-Adapted Perturbation Theory (SAPT) was used for energy decomposition in the dimers of n-octanol. Finally, time-evolution methods, namely classical molecular dynamics (MD) and Car-Parrinello Molecular Dynamics (CPMD) were employed to shed light onto dynamical nature of liquid n-octanol with emphasis put on metric and vibrational features. As a reference, CPMD gas phase results were applied. Nuclear quantum effects were included using Path Integral Molecular Dynamics (PIMD) and a posteriori method by solving vibrational Schrödinger equation. The latter applied procedure allowed to study the deuterium isotope effect. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

16 pages, 10864 KB  
Article
Combined ReaxFF and Ab Initio MD Simulations of Brown Coal Oxidation and Coal–Water Interactions
by Shi Yu, Ruizhi Chu, Xiao Li, Guoguang Wu and Xianliang Meng
Entropy 2022, 24(1), 71; https://doi.org/10.3390/e24010071 - 31 Dec 2021
Cited by 10 | Viewed by 3385
Abstract
In this manuscript, we use a combination of Car–Parrinello molecular dynamics (CPMD) and ReaxFF reactive molecular dynamics (ReaxFF-MD) simulations to study the brown coal–water interactions and coal oxidation. Our Car–Parrinello molecular dynamics simulation results reveal that hydrogen bonds dominate the water adsorption process, [...] Read more.
In this manuscript, we use a combination of Car–Parrinello molecular dynamics (CPMD) and ReaxFF reactive molecular dynamics (ReaxFF-MD) simulations to study the brown coal–water interactions and coal oxidation. Our Car–Parrinello molecular dynamics simulation results reveal that hydrogen bonds dominate the water adsorption process, and oxygen-containing functional groups such as carboxyl play an important role in the interaction between brown coal and water. The discrepancy in hydrogen bonds formation between our simulation results by ab initio molecular dynamics (CPMD) and that by ReaxFF-MD indicates that the ReaxFF force field is not capable of accurately describing the diffusive behaviors of water on lignite at low temperatures. The oxidations of brown coal for both fuel rich and fuel lean conditions at various temperatures were investigated using ReaxFF-MD simulations through which the generation rates of major products were obtained. In addition, it was observed that the density decrease significantly enhances the generation of gaseous products due to the entropy gain by reducing system density. Although the ReaxFF-MD simulation of complete coal combustion process is limited to high temperatures, the combined CPMD and ReaxFF-MD simulations allow us to examine the correlation between water adsorption on brown coal and the initial stage of coal oxidation. Full article
Show Figures

Figure 1

21 pages, 12905 KB  
Article
Ab-Initio Molecular Dynamics Simulation of Condensed-Phase Reactivity: The Electrolysis of Ammonia and Ethanimine in Aquatic Carbon Dioxide Solutions
by Igor Gordiy, Lukas Steinbach and Irmgard Frank
Energies 2021, 14(20), 6510; https://doi.org/10.3390/en14206510 - 11 Oct 2021
Cited by 1 | Viewed by 2462
Abstract
The re-use of wastewater is an increasingly important subject. Most recently, several attempts were reported to convert wastewater in harmless or even valuable substances by the use of electrical current. Electrochemistry is an old approach. The renewed interest stems from the fact that [...] Read more.
The re-use of wastewater is an increasingly important subject. Most recently, several attempts were reported to convert wastewater in harmless or even valuable substances by the use of electrical current. Electrochemistry is an old approach. The renewed interest stems from the fact that electrical current is often available in abundance, for example from solar energy in arid regions, while clean water is not. Experimentally, one has to deal with very many products which are the result of many reaction steps. Here, theory can help. Using Car–Parrinello molecular dynamics, we simulate the first few reaction steps of the electrolysis of wastewater. On the basis of previous studies, we investigate the reaction of carbon dioxide and nitrogen compounds. The results show a great variety of reaction steps and resulting products. Some of them are technologically interesting, such as hydrogen and formic acid. Full article
Show Figures

Figure 1

Back to TopTop